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We show that in models where dark energy is coupled to matter, there is a generic instability.
This instability may be cured in models that predict an equation of state for dark energy that is
smaller than -1, i.e., super-acceleration. These models are no more fine-tuned than quintessence,
and they do not exhibit acausal behavior or contain ghosts. We also explore other ways to avoid
this instability.

MOTIVATION

Observations of distant Type Ia supernovae [1, 2] and
the cosmic microwave background [3] together strongly
prefer an accelerated expansion of the universe in the re-
cent past. In the standard cosmological model this is
accommodated by introducing “dark energy”, a compo-
nent which is usually taken to interact with the rest of
the universe only gravitationally and which has a signif-
icantly negative pressure causing the acceleration of the
universe.

In order to accelerate the universe, the dark energy
component must have an energy density which decreases
(if at all) much more slowly than matter density as the
universe expands. Current data favor a dark energy den-
sity which is almost constant or even increasing with time
[4, 5, 6, 7, 8, 9, 10, 11, 12] and exciting results can be ex-
pected in the future [13, 14, 15, 16]. We label the phase
when the effective dark energy density is increasing with
the expansion of the universe as super-acceleration [17].
In such a phase, the apparent equation of state (pressure
over energy density) wDE is less than -1. However this
does not imply that the theory contains ghosts or that it
violates causality as discussed below.

Scalar field models with canonical kinetic term always
produce wDE > −1. Effective models with the opposite
sign kinetic term [4] imply wDE < −1 but are unstable
[18] unless more than one scalar field is considered [19,
20]. Models with higher derivative terms or scalar-tensor
theories can give rise to an apparent wDE < −1, but
are extremely constrained [21, 22]. Interpreting a non-
GR gravity theory in the context of GR can also lead
to super-acceleration [23, 24]. In our view, the simplest
way to obtain super-acceleration is to consider a model
where the dark energy is coupled to all of matter. One
naturally expects such interactions if the dark energy is
described by scalar degrees of freedom [25]. The time
variation of the comoving matter density (resulting from
the coupling) can then produce an apparent equation of
state which is less than -1 [26].

The coupling of dark energy to matter could be such
that the total matter density decreases more slowly than
1/a3 where a is the scale factor of the universe. When we

interpret observations in such a universe with a canoni-
cal matter density term (that decreases with expansion
as 1/a3) and dark energy, we would infer an equation
of state for dark energy more negative than it truly is.
There is no physical reason why this inferred equation of
state cannot be below -1. Note that the total energy den-
sity of the universe is always decreasing as the universe
expands in this model.

Super-acceleration is a property of the dark energy
density defined as 3m2

pl(H
2(a) − ΩMH2

0/a3) [17] where
H0 is the present expansion rate of the universe and
mpl = 1/(8πG). It does necessarily not imply that
the speed of sound is larger than the speed of light
(i.e., acausal behavior) or signal the presence of ghosts.
We mention another equally harmless model [27] to
emphasize this point: conversion of photons to axions
in a universe dominated by cosmological constant (or
quintessence).

In this paper, we analyze models in which dark en-
ergy is coupled to non-relativistic matter. We find that
these models suffer from a generic instability, which we
label Z-instability. This instability was first pointed out
in the context of mass-varying neutrinos (MaVaN) [28].
We show that Z-instability may occur very generally in
models of dark energy coupled to matter, such as the Ma-
VaN scenario [29], the Chameleon dark energy scenario
[30] and the Cardassian expansion scenario [31].

We then show how one may build models in which this
instability is avoided. We find that successful models
generically lead to super-acceleration, i.e., the apparent

dark energy density increases as the universe expands.
Future SNIa and CMB observations have the poten-

tial to detect super-acceleration [17]. No other combina-
tion has been shown to robustly detect the signature of
super-acceleration, although combining SNIa and baryon
oscillation [9] or weak lensing data set seem promising.
Note that a measurement of just the average equation of
state [32] is not sufficient for this purpose [33]. This was
made explicit recently [34] using a simple single scalar
field model.

In thinking of a scalar degree of freedom coupled to
matter (e.g., [35, 36, 37, 38, 39, 40, 41]) with the scalar
field acting as dark energy, we will assume that the mass
of this scalar degree of freedom is much larger than the
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expansion rate (for example, the MaVaN scenario [29]).
In this regard interacting dark energy models are much
less fine-tuned than quintessence models that have a mass
of order or smaller than H0. Also, in this regard, the
models studied in the present work are different from
interacting quintessence models wherein (for the same
reasons), it is possible to obtain super-acceleration [26].

Z-INSTABILITY

In this section we will assume that the dark energy
density is coupled to the non-relativistic matter density
in some unspecified manner. For an example of how this
could occur, suppose that non-relativistic matter parti-
cles are coupled to a scalar field. Thus the local density
of the matter particles can influence the vacuum expec-
tation value (vev) of the scalar field. The change in the
potential of the scalar then affects the dark energy, thus
coupling dark matter and dark energy.

More generally, define ρDEM = ρDE + ρM to be the
combined density of the dark energy (DE) and matter
(M) fluids. We take ρDEM = f(ρM). We note that this
is the same form as the Cardassian model [31]. We now
implicitly assume that the underlying micro-physics re-
sponds to changes in ρM on time-scales much shorter than
1/H(a). We wish to consider perturbations of this sys-
tem and analyze its stability.

On length scales much larger than m−1
χ , the evolution

of the system is adiabatic and hence the sound speed is

c2
a =

ṖDEM

ρ̇DEM

. (1)

Here the pressure PDEM = f ′ρM− f is defined by the en-
ergy conservation equation ρ̇DEM = −3H(ρDEM+PDEM).
If c2

a is negative, it indicates that the system is unstable
on sub-horizon scales much larger than 1/mχ.

In this model, there are two ways to define the equa-
tion of state. One may simply define the equation of
state to be wDEM = PDEM/ρDEM using the above defini-
tions. However, in cases where one considers the mat-
ter component coupled to DE to be the bulk of the
dark matter in the universe, it is more useful to have
the observationally motivated definition of the effective
wDE ≡ PDEM/(ρDEM − ρM).

The adiabatic sound speed in this theory can then be
expressed as

c2
a =

ρMw′

DE + wDE(1 + wDE)

1 + wDE + ρM/(f − ρM)
, (2)

=
ρMw′

DEM + wDEM(1 + wDEM)

1 + wDEM

. (3)

For an accelerating universe wDEM < 0. Now ρMw′

DEM

cannot be large and positive over a long period of time,
since this will drive wDEM to positive values in the past.

If we assume that the w′

DEM term is sub-dominant, then
we have c2

a ≈ wDEM < 0, and the system is unstable.
We dub this the Z-instability. This instability was first

noted in the context of the MaVaN scenario [28].
For cases where the coupled matter is all the dark mat-

ter in the universe, it is more useful to consider Eq. 2.
First, consider the case where wDE > −1: the denomina-
tor is positive and if the w′

DE term is sub-dominant, then
Z-instability sets in. Note that this instability will likely
set in well before the current epoch because at early times
ρM/(f −ρM) ≫ 1. We also note that this instability may
not be present in models with wDE < −1. This point will
be discussed in more detail below.

Once the instability sets in, linear perturbation theory
becomes invalid and a full non-perturbative calculation
is required to track the behavior of the coupled dark en-
ergy and matter system. We do not speculate here on
the outcome of the instability except to assume that the
instability is such that we can no longer have an accel-
erating expansion solution. This is reasonable because
the instability arose from the requirement that the dark
energy cause the expansion of the universe to accelerate.

EXAMPLE OF A Z-UNSTABLE MODEL

We now consider an example of a class of models that
are Z-unstable. In this class of models, the matter fields
are coupled to a scalar field χ, the dark energy, through
Yukawa like couplings. In this case, one may write

ρDEM = V0(χ) + g(χ)ρM . (4)

We will assume that mχ, the mass of the scalar field
about its vev χ0, is much larger than the expansion
rate of the universe H . (Note that this is unlike the
quintessence scenario where the mass of the scalar field
is fine-tuned to be <

∼ H0.)
For small deviations away from the minimum, the

scalar field will re-adjust on time-scales of order 1/mχ.
Thus the cosmological evolution of the field χ is simply
that it adiabatically tracks the minimum of the effective
potential as the minimum evolves on time scales of order
H . The equation for the minimum of the potential then
determines the evolution of χ as the universe expands.

The equation of motion for χ is given by

V ′

0(χ0) + g′(χ0)ρM = 0 . (5)

Thus χ0 (value of the scalar field at its minimum) is a
function of ρM. Now consider small deviations in ρM.
The vev of the scalar field shifts to account for this change
in ρM. Taking a further derivative, we find

m2
χ

∂χ0

∂ρM

+ g′(χ0) = 0 . (6)

where we have introduced the mass of the scalar field at
the minimum m2

χ = V ′′

0 (χ0) + g′′(χ0)ρM.
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We can now evaluate the sound speed. We find

c2
a = −

[g′(χ0)]
2
ρM

m2
χg(χ0)

. (7)

We note that g(χ0) > 0 since it is the mass term for the
matter. It is immediately seen that c2

a is always negative;
therefore such models are always unstable.

We stress that this result is only valid for the cases
when the scalar field is much heavier than the expansion
rate of the universe and on scales where the gradient term
can be neglected. A second point we would like to stress
is that this result is valid at any epoch and not just at
the present time.

We also note that the instability dies out in the limit
of infinite mass because in that limit perturbations don’t
propagate and we have c2

a = 0. (c2
a scales inversely with

the squared mass of the scalar field.) The mass of the
scalar field also dictates the scale at which the transi-
tion to adiabatic evolution of perturbations occurs. On
length scales larger than 1/mχ, the gradient terms be-
come unimportant and the response to perturbations is
dictated by the adiabatic sound speed. It is in this regime
that the DEM fluid is unstable.

We have seen that with one scalar field coupling lin-
early to matter, we do not have a stable model. We
could consider more than one scalar field. Let these n
scalar fields have arbitrary self-interactions and interac-
tions amongst themselves. We next assume that they all
couple to the matter fields the same way as χ above with
arbitrary coupling constants (that could be zero). Then
a similar analysis to that given above shows that this
configuration is unstable as long as all the eigenvalues of
the n × n mass-squared matrix are positive. Note that
this is a stringent requirement and not necessary for suc-
cessful model building. In principle one could imagine
a small negative mass-squared eigenvalue such that in-
stability develops along the corresponding direction only
recently.

AVOIDING THE Z-INSTABILITY

There are several ways in which interacting dark mat-
ter may avoid the Z-instability.

Referring to Eq. 2, we see that a model with wDE > −1
could be stable if w′

DE > 0 and if the variation of wDE is
sufficiently strong to dominate the wDE(1 + wDE) term.
This is not easy to achieve as a large positive w′

DE would
result in a larger dark energy density in the past that
may be inconsistent with data. If ρMw′

DE ≪ 1 in the
past, then again we encounter the instability if wDE < 0
in the past.

A more interesting way to avoid this instability is to
appeal to finite temperature effects. Finite temperature
effects will provide a positive contribution to c2

a [28] and

cure the instability. This is not easy to arrange for [42],
especially if matter is cold and weakly interacting.

Thirdly, the scalar field could have additional interac-
tions that keep the sound speed squared from becoming
negative.

SUPER-ACCELERATION PROVIDES

STABILITY

The most interesting way to avoid Z-instability is to
look at models with super-acceleration. To see this, go
back to Eq. 2. Let us assume that w′

DE < 0, since that
makes the effects of the dark energy sub-dominant in the
past. Then c2

a can still be positive, as long as 1 + wDE <
0, implying wDE < −1 (super-acceleration) at present.
Note that regardless of the sign of w′

DE, if ρMw′

DE ≪ 1
then our arguments above demand that wDE < −1.

Let us now look at an explicit model. Take the total
density to be f(ρM) = V0 + cρn

M + ρM. We find

c2
a =

cn(n − 1)ρn
M

cnρn
M + ρM

, (8)

1 + wDE =
cnρn

M

V0 + cρn
M

=
nc2

aρ

c2
aρM + V0(n − 1 − c2

a)
, (9)

where V0 and c are constants.

We can then obtain stable models of super-acceleration
by taking c > 0, n < 0 as long as cnρn−1

M + 1 < 0. This
last condition can be made to hold over all past times by
taking c sufficiently small.

Larger classes of such models can be constructed by
coupling matter to scalar fields through more general in-
teractions. We assume as before that all scalar fields are
massive enough that they always track the minimum of
the potentials. In this situation, the total energy density
is a function of the matter density and the minimum of
the scalar fields ρDEM = g(ρM, χ0). Repeating the anal-
ysis, we find that in these models

c2
a =

g′′(ρM, χ0) − m2
χ(χ′

0)
2

g′(ρM, χ0) + 1
, (10)

1 + wDE =
g′(ρM, χ0)ρ − ρ

g(ρM, χ0) − ρ
, (11)

where all primes indicate partial derivatives with respect
to ρM at fixed χ. We have written the formulae for the
case when matter is coupled to just one scalar field for
the sake of clarity. They can be easily generalized to the
case of more than one scalar field. It is clear that for
a stable system, we need g′′(ρM, χ0) ≥ m2

χ(χ′

0)
2. In the

Z-unstable model discussed above, g′′(ρM, χ0) was zero,
so this condition could not be satisfied.
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CONCLUSIONS

The evidence for an accelerating expansion of the uni-
verse has grown over the last decade. The cause of this
acceleration, namely dark energy, remains mysterious.

One of the intriguing possibilities that has been ex-
plored in the past is that dark energy may interact with
matter. Such a hypothesis is natural if the explanation
for dark energy requires extra scalar degrees of freedom.
We have shown here that these models suffer from a
generic instability.

We discussed a few ways in which this instability could
be avoided. Most interestingly, we found that this insta-
bility can be naturally cured in models where the equa-
tion of state of the effective dark energy density is smaller
than -1, i.e., super-acceleration.

In these models, super-acceleration does not imply
acausal behavior (the speed of sound is not larger than
c) or signal the presence of ghosts in the theory. Super-
acceleration results from the interaction due to which the
matter density decreases more slowly with the expansion
of the universe. Therefore, if we fit our observations using
a canonical matter density term and dark energy then the
apparent equation of state for dark energy will be more
negative.

There is a theoretical prejudice against models of
wDE < −1 due to their apparent theoretical problems.
The observational data certainly do not disfavor wDE <
−1. Indeed a large region of the parameter space al-
lowed by SNIa observations correspond to a constant
wDE < −1. Here we have shown that it is straightfor-
ward to construct stable models with wDE < −1 without
encountering ghosts or acausal behavior. These models
are no more fine-tuned than quintessence models. Thus
theoretical bias against wDE < −1 should be treated with
circumspection, and not be given any weight when inter-
preting observational data.
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