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1 Bell’s Theorem

In this first section, we reconstruct several versions of Bell’s theorem. We work with a standard set-up

– to be described in class – involving a pair of photons in the singlet state, and consider the probability

that they will both pass through polarizer sheets having specified orientations.

We take prQM (A, B|a, b) to be the probability, given by QM, for a joint outcome of A on the left and

B on the right, given polarizer orientations a on the left and b on the right. (Thus A and B take as

values “yes” (the photon passes through the polarizer) and “no” (it does not pass through the polarizer),

while a and b take as values lines in the plane orthogonal to the motion of the particles.) We take

prQM (A, |a, b) to be the probability of outcome A on the left (regardless of the outcome on the right)

given polarizer settings a on the left and b on the right. Since the outcome on the right must be either

“yes” or “no” (and cannot be both) we have, for example,

prQM (yes, |a, b) = prQM (yes, yes|a, b) + prQM (yes, no|a, b).

(Of course, prQM ( , B|a, b) is handled similarly.)

The predictions of QM are fully characterized by the following two conditions. (Here ∠(a, b) is the

(acute) angle between a and b.)

(QM1) For all a, b, prQM (yes, yes|a, b) = 1
2 cos2 ∠(a, b).

(QM2) (“yes-no” symmetry) For all a, b,

prQM (yes, no|a, b) = prQM (yes, yes|a, b⊥)

prQM (no, yes|a, b) = prQM (yes, yes|a⊥, b)

prQM (no, no|a, b) = prQM (yes, yes|a⊥, b⊥).

(Here, b⊥ is understood to be the line othogonal to b (in the plane orthogonal to the motion of the

particles).) In light of the symmetry conditions in (QM2), we lose nothing in what follows if we re-

strict consideration to “yes-yes” outcomes.) It follows from (QM1) and (QM2) that the “single side”

probabilities generated by QM satisfy the following condition.

(QM3) For all a, b, prQM (yes, |a, b) =
1

2
= prQM ( , yes|a, b).

The computation is straight-forward. Since ∠(a, b⊥) =
π

2
− ∠(a, b), we have

prQM (yes, |a, b) = prQM (yes, yes|a, b) + prQM (yes, no|a, b)

= prQM (yes, yes|a, b) + prQM (yes, yes|a, b⊥)

=
1

2
cos2 ∠(a, b) +

1

2
cos2[

π

2
− ∠(a, b)]

=
1

2
cos2 ∠(a, b) +

1

2
sin2

∠(a, b) =
1

2
.
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(The other case, of course, is handled similarly.) (QM3) asserts that the (single side) probability that

a photon will pass through a polarizer is
1

2
, whatever the orientation of the polarizer, even though the

joint probability for passage through both polarizers is a function of ∠(a, b). Thus, except for the very

special case in which ∠(a, b) =
π

4
(and hence

1

2
cos2(∠(a, b)) =

1

4
),

prQM (yes, yes|a, b) 6= prQM (yes, |a, b) · prQM ( , yes|a, b),

i.e., the outcomes on the two sides are statistically correlated.

The “EPR” case, where b = a⊥ (and so ∠(a, b) =
π

2
), is of special interest. We have the following

conditions.

(QM4) For all c,

prQM (yes, yes|c, c⊥) = 0 = prQM (no, no|c, c⊥)

prQM (yes, no|c, c⊥) =
1

2
= prQM (no, yes|c, c⊥).

(The two equalities in the first line follow immediately from (QM1) and (QM2). The two in the second

line follow from the first two and (QM3). So, for example,

prQM (yes, no|c, c⊥) = prQM (yes, |c, c⊥) − prQM (yes, yes|c, c⊥) =
1

2
− 0 =

1

2
.)

Notice that in the EPR case, the outcomes on the two sides exhibit perfect anti-correlation, i.e., the

probability that they differ (either in the pattern “yes-no” or “no-yes”) is 1.

........................................

Now we consider possible “hidden-variable theories” that posit a space Λ of hidden states, and deter-

mine probabilities prHV (A, B|a, b; λ) for each λ ∈ Λ. We show that if prHV satisfies certain constraints,

then it is not possible to recover prQM from prHV – more precisely, it is not possible to represent prQM

in the form

prQM (A, B|a, b) =

∫

Λ

prHV (A, B|a, b; λ)ρ(λ)dλ

where ρ is a probability density on Λ, i.e., an (integrable) function ρ : Λ → [0, 1] satisfying
∫

Λ ρ(λ)dλ = 1.

(We think of ρ(λ) as the probability that the photon pair is in hidden state λ.)

Technical note: We have been deliberately vague in the preceding paragraph. We have made reference

to “spaces” and to integration over those spaces without indicating exactly what mathematical structures

and operations we have in mind. We have done so because it really makes no difference. The proofs that

follow invoke only such elementary properties of integrals as are exhibited by all species. We could be

thinking about Riemann integration over suitably chosen sets in R
n, such as one studies in a calculus

course. Or, for example, we could be thinking about integration over abstract measure spaces.

3



We will be interested in the following four conditions on hidden variable theories.

Quasi-determinism: For all A,B, a, b, λ, prHV (A, B|a, b; λ) = 0/1

Screening-off: For all A,B, a, b, λ, prHV (A, B|a, b; λ) = prHV (A, |a, b; λ) · prHV ( , B|a, b; λ)

Locality: For all A, B, a, a′, b, b′, λ,

prHV (A, |a, b; λ) = prHV (A, |a, b′; λ)

prHV ( , B|a, b; λ) = prHV ( , B|a′, b; λ)

Anti-correlation: For all A, c, λ, prHV (A, A|c, c⊥; λ) = 0.

The first is clear. It asserts that conditionalization on the hidden state λ pushes all HV-probabilities

to 0 or 1. (Notice that our notion of hidden variable theory does not build-in this condition from the

beginning, i.e., we allow for “non-deterministic hidden variable theories”.) The second asserts that the

observed correlation between outcomes (yes or no) on the two sides is “screened-off” by the underlying

hidden variable state . The third asserts that (after conditionalization on the hidden state λ) the HV-

probability for an outcome on one side is independent of the polarizer orientation (or setting) on the

other side. (The distinction between “outcome-outcome correlations” and “setting-outcome correlations”

is crucially important here.) The fourth condition asserts that HV-probabilties (after conditionalization

on the hidden state λ) exhibit the same the anti-correlation pattern as QM-probabilities. (Recall condition

(QM4).)

........................................

We turn to our first two versions of Bell’s theorem. (There will be three altogether.) The first rules

out hidden variable theories that satisfy the locality and screening-off conditions. The second (really just

a corollary of the first) rules out theories that satisfy the locality and quasi-determinism conditions.

Proposition 1.1. Let prHV (A, B|a, b; λ) satisfy the locality and screening-off conditions. Let ρ be a

probability density on Λ, and let prHV (A, B|a, b) be defined by

prHV (A, B|a, b) =

∫

Λ

prHV (A, B|a, b; λ)ρ(λ)dλ.

Then it is not the case that prQM (A, B|a, b) = prHV (A, B|a, b) for all A, B, a, b.

To prove the theorem, we show that if the stated hypotheses hold, then prHV must satisfy the following

inequality (the “Clauser-Horne inequality”):

0 ≤ prHV (yes, |a, ) + prHV ( , yes| , b) + prHV (yes, yes|a′, b′)

−prHV (yes, yes|a, b′) − prHV (yes, yes|a′, b) − prHV (yes, yes|a, b) ≤ 1.

for all a, b, a′, b′. (The expressions prHV (yes, |a, ) and prHV ( , yes| , b) make sense if the locality

condition holds for then

prHV (yes, |a, b) =

∫

Λ

prHV (yes, |a, b; λ)ρ(λ)dλ
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does not depend on b (and similarly prHV ( , yes|a, b) does not depend on a).) This will suffice, since

QM probabilities do not satisfy the counterpart inequality for all a, b, a′, b′. For example, if ∠(a′, b′) =
π

2
and ∠(a, b) = ∠(a, b′) = ∠(a′, b) =

π

6
, then

prQM (yes, yes|a, b′) = prQM (yes, yes|a′, b)

= prQM (yes, yes|a, b) =
1

2
cos2(

π

6
) =

3

8

prQM (yes, yes|a′, b′) =
1

2
cos2(

π

2
) = 0

prQM (yes, |a, ) = prQM ( , yes| , b) =
1

2

(The expressions prQM (yes, |a, ) and prQM ( , yes| , b) make sense since, by (QM4), prQM (yes, |a, b)

does not depend on b, and prQM ( , yes|a, b) does not depend on a.) Hence the sum of six terms in the

inequality is

1

2
+

1

2
+ 0 − 3(

3

8
) = −

1

8

(which is not between 0 and 1).

Proof. First note that for all numbers x, x′, y, y′ in the interval [0, 1],

0 ≤ x + y + x′y′ − xy′ − x′y − xy ≤ 1. (1.1)

There are various ways to see this. One involves a simple consideration of three cases: (i) x ≤ x′, (ii)

y ≤ y′, (iii) x > x′ and y > y′. In case (i), we have

0 ≤ x(1 − y) + y(1 − x′) + y′(x′ − x) ≤ x + (1 − x′) + (x′ − x) = 1.

But the underlined expression is equal to x + y + x′y′ − xy′ − x′y − xy. So (*) holds. Similarly, in case

(ii), we have

0 ≤ y(1 − x) + x(1 − y′) + x′(y′ − y) ≤ y + (1 − y′) + (y′ − y) = 1.

Finally, in case (iii), we have

0 ≤ (x − x′)(y − y′) + y(1 − x) + x(1 − y) ≤ xy + y(1 − x) + (1 − y) = 1.

Thus (1.1) holds in all three cases. Now assume prHV satisfies the locality and screening-off conditions.

Then we can express prHV (yes, yes|a, b; λ) in the form

prHV (yes, yes|a, b; λ) = prHV (yes, |a, ; λ) · prHV ( , yes| , b; λ). (1.2)

Given lines a, a′, b, b′, and hidden state λ, let

x = prHV (yes, |a, ; λ)

x′ = prHV (yes, |a′, ; λ)

y = prHV ( , yes| , b; λ)

y′ = prHV ( , yes| , b′; λ).
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Then x, x′, y, and y′ are all in the interval [0, 1] and so, by (1.1) and (1.2),

0 ≤ prHV (yes, |a, ; λ) + prHV ( , yes| , b; λ) + prHV (yes, yes|a′, b′; λ)

−prHV (yes, yes|a, b′; λ) − prHV (yes, yes|a′, b; λ) − prHV (yes, yes|a, b; λ) ≤ 1.

We move from this inequality to the Clauser-Horne inequality with a simple integration. Let X(a, a′, b, b′, λ)

be the (middle) sum of six terms, and let ρ be a probability density on Λ, Then

0 =

∫

Λ

0 · ρ(λ)dλ ≤

∫

Λ

X(a, a′, b, b′, λ) · ρ(λ)dλ ≤

∫

Λ

1 · ρ(λ)dλ = 1,

and

∫

Λ

X(a, a′, b, b′, λ) · ρ(λ)dλ =

prHV (yes, |a, ) + prHV ( , yes| , b) + prHV (yes, yes|a′, b′)

−prHV (yes, yes|a, b′) − prHV (yes, yes|a′, b) − prHV (yes, yes|a, b).

It is not hard to show that the quasi-determinism condition implies the screening off condition (and

we leave this as an exercise).

Problem 1.1. Show

(a) quasi-determinism =⇒ screening-off

(b) screening-off & locality & anti-correlation =⇒ quasi-determinism

So we have the following immediate corollary. (Everything remains the same except that reference to

the latter condition is replaced by reference to the former.)

Proposition 1.2. Let prHV (A, B|a, b; λ) satisfy the locality and quasi-determinism conditions. Let ρ be

a probability density on Λ, and let prHV (A, B|a, b) be defined by

prHV (A, B|a, b) =

∫

Λ

prHV (A, B|a, b; λ)ρ(λ)dλ.

Then it is not the case that

prQM (A, B|a, b) = prHV (A, B|a, b)

for all A, B, a, b.

........................................

Now we consider a third version of the theorem that is a bit different in character from the first two.

It is of interest in its own right. (For one thing, it is perfectly precise in formulation. No reference is
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made to some not fully specified sense of integration.) And it will prepare the way for our discussion of

Itamar Pitowsky’s work on the geometric interpretation of Bell type inequalities.

For the moment, let us continue within the framework of section 1.2. Suppose we have a space Λ

of hidden states for our two-photon system, a probability function prHV (yes, yes|a, b; λ) over Λ, and a

probability density over Λ, i.e., an (integrable) function ρ : Λ → [0, 1] satisfying
∫

Λ ρ(λ)dλ = 1. Further

suppose that prHV (A, B|a, b) is defined (as above) by

prHV (A, B|a, b) =

∫

Λ

prHV (A, B|a, b; λ)ρ(λ)dλ.

Finally, suppose that prHV (A, B|a, b; λ) satisfies both locality and quasi-determinism.

For all lines a and b, consider sets:

Xab = {λ ∈ Λ : prHV (yes, yes|a, b; λ) = 1}

La = {λ ∈ Λ : prHV (yes, |a, ; λ) = 1}

Ra = {λ ∈ Λ : prHV ( , yes| , b; λ) = 1}

The latter two are well defined by locality. By locality and quasi-determinism (which implies screening

off)

prHV (yes, yes|a, b; λ) = prHV (yes, |a, ; λ) · prHV ( , yes| , b; λ).

So

prHV (yes, yes|a, b; λ) = 1 ⇐⇒ prHV (yes, |a, ; λ) = 1 and prHV ( , yes| , b; λ) = 1.

Hence,

λ ∈ Xab ⇐⇒ λ ∈ La & λ ∈ Rb

or, equivalently,

Xab = La ∩ Rb

for all a and b.

Now consider the measure µ on Λ defined by setting

µ(C) =

∫

C

ρ(λ)dλ.

(We understand C to be in the domain of µ if the integral is well defined.) It then follows by quasi-

determinism that, for all a and b,

prHV (yes, yes|a, b) =

∫

Λ

prHV (yes, yes|a, b; λ)ρ(λ)dλ

=

∫

Xab

1 · ρ(λ)dλ +

∫

(X−Xab)

0 · ρ(λ)dλ =

∫

Xab

ρ(λ)dλ

= µ(Xab) = µ(La ∩ Rb).
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(Notice that it is quasi-determinism that allows us to divide the first integral into two subintegrals – one

over the set Xab where prHV (yes, yes|a, b; λ) is 1, and one over the complement set (X − Xab) where

prHV (yes, yes|a, b; λ) is 0.) Similarly, it follows that

prHV (yes, |a, b) =

∫

Λ

prHV (yes, |a, ; λ)ρ(λ)dλ =

∫

La

ρ(λ)dλ = µ(La)

prHV ( , yes|a, b) =

∫

Λ

prHV ( , yes| , b; λ)ρ(λ)dλ =

∫

Rb

ρ(λ)dλ = µ(Rb)

for all a and b. Now suppose it were the case that prQM (A, B|a, b) = prHV (A, B|a, b) for all a, b. Then

it would follow that

prQM (yes, yes|a, b) = µ(La ∩ Rb)

prQM (yes, |a, ) = µ(La)

prQM( , yes| , b) = µ(Rb)















(∗)

for all a and b.

We now have another way to set up the second version of the theorem. We forget about our route to

the three equations in (∗) and use them, in effect, to characterize a (local, deterministic) hidden variable

theory. We think of µ as just some probability measure (or other) on Λ, and pay no attention to whether

it arises from a probability density. For any subset C of X (in the domain of µ), we understand µ(C) as

the probability that the exact underlying state of the sytem is, in fact, in C. In particular, we interpret

µ(La ∩ Rb) as the probability that the underlying state of the system happens to be in one in which it

is determined that, with orientations a and b, both photons will pass through the polarizer sheets. The

surprising result, of course, is that we cannot have a hidden variable theory in the sense just characterized.

This will be our third version of Bell’s theorem.

Before stating it, we need to recall the definition of a probability space. It is a structure (X, Σ, µ) where

X is a non-empty set, Σ is a set of subsets of X satisfying three conditions

(F1) X ∈ Σ

(F2) For all subsets A of X , A ∈ Σ ⇒ (X − A) ∈ Σ

(F3) For all subsets A1, A2 of X , A1, A2 ∈ Σ ⇒ (A1 ∪ A2) ∈ Σ;

and µ is a probability measure on Σ, i.e., a map µ : Σ → [0, 1] such that

(M1) µ(X) = 1

(M2) For all sets A1, A2 in Σ that are pairwise disjoint, µ(A1 ∪ A2) = µ(A1) + µ(A2).

It follows immediately by induction, of course, that the conditions in (F3) and (M2) can be extended

to arbitrary finite unions. Furthermore, it follows from (F2) and (F3) that Σ is closed under finite

intersections (as well as unions) – since

(A1 ∩ A2 ∩ ... ∩ An) = X − [(X − A1) ∪ (X − A2) ∪ ... ∪ (X − An)].
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Technical note: Standardly one replaces (F3) with the stronger requirement that Σ be closed under

countable unions, and replaces (M2) with the stronger requirement of countable additivity. But the

difference between the two formulations (finite versus countable) is irrelevant for our purposes.

Now we have all the pieces in place.

Proposition 1.3. There does not exist a classical probability space (X, Σ, µ) and, for all directions a, b,

sets La and Rb in Σ, such that the three equations in (∗) hold.

(There are clear advantages to this formulation. The disadvantage is that it depends crucially on the

assumption of quasi-determinism. There is no variant that uses only the screening-off condition (and so

serves as counterpart to our first version of Bell’s thorem).)

Proof. We already know that quantum mechanical probabilities violate the Clauser-Horne inequality. So

it suffices to show that given a probability space (X, Σ, µ), and any four sets La, L′
a, Rb, R

′
b in Σ, the

corresponding inequality

0 ≤ µ(La) + µ(Rb) + µ(La′ ∩ Rb′) − µ(La ∩ Rb′) − µ(La′ ∩ Rb) − µ(La ∩ Rb) ≤ 1

is satisfied. We do so using a low brow computation. Every point λ in X is either in La or in its

complement L−
a = X − La. Similarly, it is either in La′ or in its complement L−

a′ ; the same for Rb and

Rb′ . Thus we can partition X into sixteen disjoint sets. Typical members are

(La ∩ La′ ∩ R−
b ∩ Rb′)

(L−
a ∩ L−

a′ ∩ R−
b ∩ Rb′).

The first is the set of all points λ in X that are in La, La′ , and Rb′ , but not in Rb. The second is the set

of all such points that are in Rb′ , but not in La, La′ , or Rb.

To proceed, we just have to express the six sets that enter into the Clauser-Horne inequality in terms

of the elements of the partitition, and then do some cancelling. For example, (La ∩Rb) can be expressed

as the disjoint union of the four sets

(La ∩ La′ ∩ Rb ∩ Rb′)

(La ∩ La′ ∩ Rb ∩ R−
b′ )

(La ∩ L−
a′ ∩ Rb ∩ Rb′)

(La ∩ L−
a′ ∩ Rb ∩ R−

b′ ).

(Notice that La and Rb appear in all four (rather than their complements L−
a and R−

b ).) So it follows
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from the basic additivity property of µ that

µ(La ∩ Rb) = µ(La ∩ La′ ∩ Rb ∩ Rb′)

+µ(La ∩ La′ ∩ Rb ∩ R−
b′ )

+µ(La ∩ L−
a′ ∩ Rb ∩ Rb′)

+µ(La ∩ L−
a′ ∩ Rb ∩ R−

b′ ).

We list the decompositions for the six sets below. For ease of reading, we use a simple labelling scheme

for the 16 sets in the partition. So, for example, µ(1011) stands for the set µ(La ∩ L−
a′ ∩Rb ∩ Rb′). (The

marks on the extreme right (checks, circles, infinity signs) indicate a cancellation pattern that we will

consider shortly.

µ(La) = µ(La ∩ La′ ∩ Rb ∩ Rb′) µ(1111) X

+µ(La ∩ La′ ∩ Rb ∩ R−
b′ ) µ(1110) XX

+µ(La ∩ L−
a′ ∩ Rb ∩ Rb′) µ(1011) XXX

+µ(La ∩ L−
a′ ∩ Rb ∩ R−

b′ ) µ(1010) XXXX

+µ(La ∩ La′ ∩ R−
b ∩ Rb′) µ(1101) ◦ ◦

+µ(La ∩ La′ ∩ R−
b ∩ R−

b′ ) µ(1100)

+µ(La ∩ L−
a′ ∩ R−

b ∩ Rb′) µ(1001) ◦ ◦ ◦ ◦

+µ(La ∩ L−
a′ ∩ R−

b ∩ R−
b′ ) µ(1000)

µ(Rb) = µ(La ∩ La′ ∩ Rb ∩ R′
b) µ(1111) ∞

+µ(La ∩ La′ ∩ Rb ∩ R−
b′ ) µ(1110) ∞∞

+µ(La ∩ L−
a′ ∩ Rb ∩ Rb′) µ(1011) ◦ ◦◦

+µ(La ∩ L−
a′ ∩ Rb ∩ R−

b′ ) µ(1010)

+µ(L−
a ∩ La′ ∩ Rb ∩ Rb′) µ(0111)

+µ(L−
a ∩ La′ ∩ Rb ∩ R−

b′ ) µ(0110) ∞∞∞∞

+µ(L−
a ∩ L−

a′ ∩ Rb ∩ Rb′) µ(0011)

+µ(L−
a ∩ L−

a′ ∩ Rb ∩ R−
b′ ) µ(0010)

µ(La′ ∩ Rb′) = µ(La ∩ La′ ∩ Rb ∩ Rb′) µ(1111) ◦

+µ(La ∩ La′ ∩ R−
b ∩ Rb′) µ(1101)

+µ(L−
a ∩ La′ ∩ Rb ∩ Rb′) µ(0111) ∞∞∞

+µ(L−
a ∩ La′ ∩ R−

b ∩ Rb′) µ(0101)
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µ(La ∩ R′
b) = µ(La ∩ La′ ∩ Rb ∩ Rb′) µ(1111) ◦

+µ(La ∩ La′ ∩ R−
b ∩ Rb′) µ(1101) ◦ ◦

+µ(La ∩ L−
a′ ∩ Rb ∩ Rb′) µ(1011) ◦ ◦◦

+µ(La ∩ L−
a′ ∩ R−

b ∩ Rb′) µ(1001) ◦ ◦ ◦ ◦

µ(La′ ∩ Rb) = µ(La ∩ La′ ∩ Rb ∩ Rb′) µ(1111) ∞

+µ(La ∩ La′ ∩ Rb ∩ R−
b′ ) µ(1110) ∞∞

+µ(L−
a ∩ La′ ∩ Rb ∩ Rb′) µ(0111) ∞∞∞

+µ(L−
a ∩ La′ ∩ Rb ∩ R−

b′ ) µ(0110) ∞∞∞∞

µ(La ∩ Rb) = µ(La ∩ La′ ∩ Rb ∩ Rb′) µ(1111) X

+µ(La ∩ La′ ∩ Rb ∩ R−
b′) µ(1110) XX

+µ(La ∩ L−
a′ ∩ Rb ∩ Rb′) µ(1011) XXX

+µ(La ∩ L−
a′ ∩ Rb ∩ R−

b′) µ(1010) XXXX

To compute the Clauser-Horne expression

µ(La) + µ(Rb) + µ(La′ ∩ Rb′) − µ(La ∩ Rb′) − µ(La′ ∩ Rb) − µ(La ∩ Rb)

we add the (8+8+4) terms arising from

µ(La) + µ(Rb) + µ(La′ ∩ Rb′)

and then subtract the (4+4+4) terms arising from

µ(La ∩ Rb′) + µ(La′ ∩ Rb) + µ(La ∩ Rb).

But as a simple inspection confirms, every term in the second group already appears in the first group,

and eight terms in the first group are left over. (See the cancellation pattern indicated with check marks

and related symbols.) When the dust clears, we have

µ(La) + µ(Rb) + µ(La′ ∩ Rb′) − µ(La ∩ Rb′) − µ(La′ ∩ Rb) − µ(La ∩ Rb)

=µ(1100) + µ(1000) + µ(1010) + µ(0111) + µ(0011) + µ(0010) + µ(1101) + µ(0101).

The right side is a sum of terms, each of which is ≥ 0. So the sum is ≥ 0. And the sum is clearly ≤ 1

since the sum of all 16 terms of form µ( ) is 1. So the expression on the left side of the equality is

clearly bounded by 0 and 1, as claimed.
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2 The Geometric Interpretation of Bell Type Inequalities

Let us put quantum mechanics aside for the moment and consider a quite general question that Pitowsky

[4] poses and answers.

Let n ≥ 2 be given, and let S be a non-empty subset of {〈i, j〉 : 1 ≤ i < j ≤ n}. Further, assume we

are given n + |S| numbers

pi i = 1, ..., n

pij 〈i, j〉 ∈ S

(Here |S| is the number of elements in S.) It is helpful to think of the numbers as determining an

(n+ |S|)-tuple 〈p1, ..., pn, ..., pij , ...〉 where, let us agree, the pij are ordered by their indices, and the latter

are ordered lexicographically. We say that the (n + |S|)-tuple admits a probability space representation

if there exists a probability space (X, Σ, µ), and (not necessarily distinct) sets A1, ..., An ∈ Σ such that,

for all i ∈ {1, 2, ..., n} and all 〈i, j〉 ∈ S,

pi = µ(Ai)

pij = µ(Ai ∩ Aj).

Question: Under what conditions does 〈p1, ..., pn, ..., pij , ...〉 admit a probability space representation?

Pitowsky gives a beautifully simple answer. Let {0, 1}n be the set of all n-tuples of 0’s and 1’s. Given

any such n-tuple ǫ = 〈ǫ1, ..., ǫn〉, let pǫ be the (n + |S|)-tuple 〈ǫ1, ..., ǫn, ..., ǫi ǫj , ...〉 where the product

term ǫiǫj appears precisely if 〈i, j〉 ∈ S. (For example, if n = 3, S = {〈1, 2〉, 〈2, 3〉}, and ǫ = 〈0, 1, 1〉,

pǫ = 〈0, 1, 1, 0, 1〉.)

Now let c(n, S) to be the closed, convex polytope in R
(n+|S|) whose vertices are the 2n vectors of form

pǫ, where ǫ ∈ {0, 1}n, i.e., the set of all vectors that can be expressed as convex sums of these 2n vectors.

(Recall that, quite generally, given vectors v1, , ..., vm in a vector space (over R), a convex sum of those

vectors is a sum of the form λ1 v1 + ... + λm vm where λi ≥ 0 for all i, and λ1 + ... + λm = 1.)

Example If n = 2 and S = {〈1, 2〉}, c(n, S) is the set of all vectors in R
3 of the form

λ(0, 0) (0, 0, 0) + λ(1, 0) (1, 0, 0) + λ(0, 1) (0, 1, 0) + λ(1, 1) (1, 1, 1)

= ( (λ(1, 0) + λ(1, 1)), (λ(0, 1) + λ(1, 1)), λ(1, 1) )

where the four coefficients λ(0, 0), λ(1, 0), λ(0, 1), λ(1, 1) are non-negative and sum to 1. (See figure 2.1.)

Proposition 2.1. For all n and S, 〈p1, ..., pn, ..., pij , ...〉 admits a probability space representation iff it

belongs to c(n, S).
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(1, 1, 1)

(1, 0, 0)(0, 0, 0)

(0, 1, 0)

0 = p12

p12 = p2

p12 = p1

p1 + p2 − p12 = 1

Figure 2.1: The c(n, S) polytope in the case where n = 2 and S = {〈1, 2〉}. The planes of
the bounding faces are identified.

Proof. Let n, S, and p be given. Assume first that p admits a classical representation, i.e., assume

there is a probability space (X, Σ, µ) and sets A1, ..., An ∈ Σ such that, for all i ≤ n and all 〈i, j〉 ∈ S,

pi = µ(Ai) and pij = µ(Ai ∩ Aj). Given a set A ∈ Σ, let A1 = A and A0 = X − A. Further, given

ǫ = 〈ǫ1, ..., ǫn〉 ∈ {0, 1}n, let

A(ǫ) = Aǫ1
1 ∩ Aǫ2

2 ∩ ... ∩ Aǫn

n .

The sets A(ǫ) form a partition of X as ǫ ranges over {0, 1}n, i.e., ǫ 6= ǫ′ ⇒ A(ǫ) ∩ A(ǫ′) = ∅ and

∪{A(ǫ) : ǫ ∈ {0, 1}n} = X . Finally, let λ(ǫ) = µ(A(ǫ)). Clearly, λ(ǫ) ≥ 0 for all ǫ in {0, 1}n, and

Σǫ∈Iλ(ǫ) = 1, where I = {0, 1}n. For all i ∈ {1, 2, ..., n} and all 〈i, j〉 ∈ S,

Ai = ∪ {A(ǫ): ǫ ∈ I and ǫi = 1}

Ai ∩ Aj = ∪ {A(ǫ): ǫ ∈ I and ǫi = ǫj = 1}.

Hence,

pi = µ(Ai) = Σ{ǫ∈I:ǫi=1}λ(ǫ) = Σǫ∈Iλ(ǫ)ǫi = Σǫ∈Iλ(ǫ)(pǫ)i

pij = µ(Ai ∩ Aj) = Σ{ǫ∈I:ǫi=ǫj=1}λ(ǫ) = Σǫ∈Iλ(ǫ)ǫiǫj = Σǫ∈Iλ(ǫ)(pǫ)ij .

Thus p = Σǫ∈Iλ(ǫ)pǫ. So p belongs to c(n, S).

Conversely, assume p belongs to c(n, S). Then there exist numbers λ(ǫ) ≥ 0 such that Σǫ∈Iλ(ǫ) = 1

and p = Σǫ∈Iλ(ǫ)pǫ. Let

X = I = {0, 1}n

Σ = P(X) (the power set of X)
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and for all A in Σ, let

µ(A) = Σǫ∈Aλ(ǫ).

Clearly, (X, Σ, µ) is a probability space. Finally, for all i ≤ n, let

Ai = {ǫ : ǫi = 1}.

Then

µ(Ai) = Σǫ∈Ai
λ(ǫ) = Σ{ǫ∈I:ǫi=1}λ(ǫ) = Σǫ∈Iλ(ǫ)ǫi = Σǫ∈Iλ(ǫ)(pǫ)i = pi,

µ(Ai ∩ Aj) = Σǫ∈Ai∩Aj
λ(ǫ) = Σ{ǫ∈I:ǫi = ǫj=1}λ(ǫ) = Σǫ∈Iλ(ǫ)ǫiǫj

= Σǫ∈Iλ(ǫ)(pǫ)ij = pij .

So p admits a classical representation.

The polytope c(n, S) can be characterized not only as the convex hull of its vertices, but also as the

set of vectors bounded by its supporting hyperplanes, and thus as the set of vectors whose components

satisfy a particular set of linear inequalities. It turns out that it is precisely these hyperplane-describing

inequalities, for simple choices of n and S, that we have come to know as “Bell-type inequalities”.

Proposition 2.2. (Examples)

(a) Let n = 2 and let S = {〈1, 2〉}. A vector 〈p1, p2, p12〉 belongs to c(n, S) in this case iff

0 ≤ p12 ≤ p1 ≤ 1

0 ≤ p12 ≤ p2 ≤ 1

p1 + p2 − p12 ≤ 1.

(b) Let n = 3 and let S = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}. A vector 〈p1, p2, p3, p12, p13, p23〉 belongs to c(n, S)

in this case iff for all 〈i, j〉 ∈ S,

0 ≤ pij ≤ pi ≤ 1

0 ≤ pij ≤ pj ≤ 1

pi + pj − pij ≤ 1

p1 + p2 + p3 − p12 − p13 − p23 ≤ 1

0 ≤ p1 − p12 − p13 + p23

0 ≤ p2 − p12 − p23 + p13

0 ≤ p3 − p13 − p23 + p12.
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(c) Let n = 4 and let S = {〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉}. A vector 〈p1, p2, p3, p4, p13, p14, p23, p24〉 belongs

to c(n, S) in this case iff for all 〈i, j〉 ∈ S,

0 ≤ pij ≤ pi ≤ 1

0 ≤ pij ≤ pj ≤ 1

pi + pj − pij ≤ 1

−1 ≤ p13 + p14 + p24 − p23 − p1 − p4 ≤ 0

−1 ≤ p23 + p24 + p14 − p13 − p2 − p4 ≤ 0

−1 ≤ p14 + p13 + p23 − p24 − p1 − p3 ≤ 0

−1 ≤ p24 + p23 + p13 − p14 − p2 − p3 ≤ 0.

Of course, if one combines propositions 2.1 and 2.2, one can bypass reference to correlation polytopes,

and assert directly that, in the particular cases considered, vectors in R
n+|S| admit a classical represen-

tation if and only if they satisfy the corresponding set of inequalities. The combined versions, for cases

(b) and (c), were proved by Fine ([2], [3]). His argument, however, did not involve geometrical ideas, and

did not readily lend itself to generalization. Pitowsky’s does. Proposition 2.1 provides an algorithm for

finding the set of “generalized Bell inequalities” corresponding to any choice of n and S. One can find it,

at least in principle, by systematically formulating all conditions of form “vector p falls to one (specified)

side of hyperplane H”, as H ranges over all bounding hyperplanes of c(n, S).

Proof. (a) Let n = 2 and let S = {〈1, 2〉}. The vertices of c(n, S) are: (0, 0, 0), (1, 0, 0), (0, 1, 0), and

(1, 1, 1). All four satisfy the inequalities:

0 ≤ p12 ≤ p1 ≤ 1 0 ≤ p12 ≤ p2 ≤ 1 p1 + p2 − p12 ≤ 1.

(This is easy to check.) Furthermore, if vectors p and p′ in R
n+|S| satisfy the inequalities, so does every

convex combination p′′ = λ p + (1 − λ) p′. For example, p′′ satisfies the third inequality because

p′′1 + p′′2 − p′′12 = [λ p + (1 − λ) p′]1 + [λ p + (1 − λ) p′]2 − [λ p + (1 − λ) p′]12

= λ [p1 + p2 − p12] + (1 − λ) [p′1 + p′2 − p′12] ≤ λ + (1 − λ) = 1.

Thus every vector in c(n, S), i.e., every convex combination of the four vertices, satisfies the three in-

equalities.

Conversely, assume that the vector p in R
n+|S| satisfies them. Then we can express p as a convex

combination of (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 1):

p = (p1, p2, p12)

= (1 − p1 − p2 + p12)(0, 0, 0) + (p1 − p12)(1, 0, 0) + (p2 − p12)(0, 1, 0) + p12(1, 1, 1).
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That is, p belongs to c(n, S).

(b) Let n = 3 and let S = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}. To prove that every vector in c(n, S) satisfies the

indicated inequalities it suffices to check that every vertex

pǫ = (ǫ1, ǫ2, ǫ3, ǫ1ǫ2, ǫ1ǫ3, ǫ2ǫ3) ǫ = 〈ǫ1, ǫ2, ǫ3〉 ∈ {0, 1}3

does so. (Again, this is easy.) For the converse, assume that a vector p in R
n+|S| satisfies the inequalities.

Then there exists a number α such that

α ≤ min{p12, p13, p23, 1 − (p1 + p2 + p3 − p12 − p13 − p23)}

and

max{0, (−p1 + p12 + p13), (−p2 + p12 + p23), (−p3 + p13 + p23)} ≤ α.

(The inequalities guarantee that every number in the second list is less than or equal to every number in

the first list.) To every ǫ in {0, 1}3 we assign a number λ(ǫ) ≥ 0 as follows:

λ(0, 0, 0) = 1 − (p1 + p2 + p3 − p12 − p13 − p23) − α

λ(1, 0, 0) = α + (p1 − p12 − p13)

λ(0, 1, 0) = α + (p2 − p12 − p23)

λ(0, 0, 1) = α + (p3 − p13 − p23)

λ(1, 1, 0) = p12 − α

λ(1, 0, 1) = p13 − α

λ(0, 1, 1) = p23 − α

λ(1, 1, 1) = α.

Clearly the sum of these eight numbers is 1. Furthermore, p = Σǫ∈{0,1}3λ(ǫ)pǫ. For example,

λ(1, 0, 0) + λ(1, 1, 0) + λ(1, 0, 1) + λ(1, 1, 1) = [α + (p1 − p12 − p13)] + (p12 − α) + (p13 − α) + α = p1

and

λ(1, 1, 0) + λ(1, 1, 1) = (p12 − α) + α = p12

as required. (The other cases are handled similarly.)

(c) Let n = 4 and let S = {〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉}. To prove that every vector in c(n, S) satisfies

the indicated inequalities it suffices to check that every vertex

pǫ = (ǫ1, ǫ2, ǫ3, ǫ4, ǫ1ǫ3, ǫ1ǫ4, ǫ2ǫ3, ǫ2ǫ4) ǫ = 〈ǫ1, ǫ2, ǫ3, ǫ4〉 ∈ {0, 1}4

does so. For the converse, assume that a vector p in R
n+|S| satisfies the inequalities. Then there exists a

number β such that

β ≤ min{p1, p2, (p1 − p13 + p23), (p2 − p23 + p13), (p1 − p14 + p24), (p2 − p24 + p14)}
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and

max{0, (p1 + p2 − 1), (p13 + p23 − p3), (p14 + p24 − p4),

(p1 + p2 + p3 − p13 − p23 − 1), (p1 + p2 + p4 − p14 − p24 − 1)} ≤ β.

(Again, the inequalities guarantee that every number in the second list is less than or equal to every

number in the first list.) Now let S′ = {〈1, 3〉, 〈2, 3〉, 〈1, 3〉}, and consider p′ = (p′1, p′2, p′3, p′12, p′13, p′23)

in R
3+|S′| defined by

p′1 = p1 p′2 = p2 p′3 = p3

p′12 = β p′13 = p13 p′23 = p23.

One can easily check that p′ satisfies all the inequalities cited in part (b). For example,

p′1 + p′2 + p′3 − p′12 − p′13 − p′23 ≤ 1

holds since the left side expression equals (p1+p2+p3−β−p13−p23) and (p1+p2+p3−p13−p23−1) ≤ β.

Hence, p′ belongs to c(n, S′), i.e., p′ can be expressed as a convex sum of form

p′ = Σǫ∈{0,1}3 λ′(ǫ) pǫ.

Similarly, the vector p′′ = (p′′1 , p′′2 , p′′3 , p′′12, p′′13, p′′23) in R
3+|S′| defined by

p′′1 = p1 p′′2 = p2 p′′3 = p4

p′′12 = β p′′13 = p14 p′′23 = p24

can be expressed as the convex sum

p′′ = Σǫ∈{0,1}3 λ′′(ǫ) pǫ.

Now for ǫ = (ǫ1, ǫ2, ǫ3, ǫ4) ∈ {0, 1}4 we set

λ(ǫ) = λ(ǫ1, ǫ2, ǫ3, ǫ4) =
λ′(ǫ1, ǫ2, ǫ3)λ′′(ǫ1, ǫ2, ǫ4)

λ′(ǫ1, ǫ2, 0) + λ′(ǫ1, ǫ2, 1)

if the denominator is not zero. If it is zero, we set λ(ǫ) = λ(ǫ1, ǫ2, ǫ3, ǫ4) = 0.

[Note that we could just as well have taken λ′′(ǫ1, ǫ2, 0)+λ′′(ǫ1, ǫ2, 1) for the denominator because the

two expressions are equal for all ǫ1 and ǫ2. This follows from the fact that

(i) λ′(1, 1, 0) + λ′(1, 1, 1) = p′12 = p′′12 = λ′′(1, 1, 0) + λ′′(1, 1, 1)

(ii) λ′(1, 0, 0) + λ′(1, 0, 1) + λ′(1, 1, 0) + λ′(1, 1, 1) =

p′1 = p′′1 = λ′′(1, 0, 0) + λ′′(1, 0, 1) + λ′′(1, 1, 0) + λ′′(1, 1, 1)

(iii) λ′(0, 1, 0) + λ′(0, 1, 1) + λ′(1, 1, 0) + λ′(1, 1, 1) =

p′2 = p′′2 = λ′′(0, 1, 0) + λ′′(0, 1, 1) + λ′′(1, 1, 0) + λ′′(1, 1, 1).
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There are four cases to consider. If ǫ1 = 1 and ǫ2 = 1, the desired equation is (i). If ǫ1 = 1 and ǫ2 = 0,

we derive it by subtracting (i) from (ii). Similarly, if ǫ1 = 0 and ǫ2 = 1, we derive it by subtracting (i)

from (iii). Finally, if ǫ1 = 0 and ǫ2 = 0, the desired equation follows from the three previous ones and

the fact that

Σǫ∈{0,1}3 λ′(ǫ) = 1 = Σǫ∈{0,1}3 λ′′(ǫ).]

It is clear that λ(ǫ) ≥ 0 for all ǫ ∈ {0, 1}4 . We also have Σǫ∈{0,1}4 λ(ǫ) = 1. To see this note first that

Σǫ∈{0,1}4λ(ǫ) =
Σǫ1ǫ2Σǫ3ǫ4 [λ

′(ǫ1, ǫ2, ǫ3)λ′′(ǫ1, ǫ2, ǫ4)]

λ′(ǫ1, ǫ2, 0) + λ′(ǫ1, ǫ2, 1)
.

But for all ǫ1, ǫ2,

Σǫ3ǫ4 [λ
′(ǫ1, ǫ2, ǫ3)λ′′(ǫ1, ǫ2, ǫ4)] = [λ′(ǫ1, ǫ2, 0) + λ′(ǫ1, ǫ2, 1)] [λ′′(ǫ1, ǫ2, 0) + λ′′(ǫ1, ǫ2, 1)].

So

Σǫ∈{0,1}4λ(ǫ) = Σǫ1ǫ2 [λ
′′(ǫ1, ǫ2, 0) + λ′′(ǫ1, ǫ2, 1)] = Σ ǫ∈{0,1}3λ′′(ǫ) = 1.

We claim, finally, that p = Σǫ∈{0,1}4 λ(ǫ) pǫ. We check just one representative component: p14. We need

to show that

p14 = λ(1, 0, 0, 1) + λ(1, 0, 1, 1) + λ(1, 1, 0, 1) + λ(1, 1, 1, 1).

Now if λ′(1, 0, 0) + λ′(1, 0, 1) 6= 0, then

λ(1, 0, 0, 1) + λ(1, 0, 1, 1) =
λ′(1, 0, 0)λ′′(1, 0, 1) + λ′(1, 0, 1)λ′′(1, 0, 1)

λ′(1, 0, 0) + λ′(1, 0, 1)
= λ′′(1, 0, 1).

On the other hand, if λ′(1, 0, 0) + λ′(1, 0, 1) = 0, then λ(1, 0, 0, 1) + λ(1, 0, 1, 1) = 0. But in this case we

also have λ′′(1, 0, 0) + λ′′(1, 0, 1) = 0, and hence λ′′(1, 0, 1) = 0. So, in either case,

λ(1, 0, 0, 1) + λ(1, 0, 1, 1) = λ′′(1, 0, 1).

Similarly,

λ(1, 1, 0, 1) + λ(1, 1, 1, 1) = λ′′(1, 1, 1).

Therefore,

λ(1, 0, 0, 1) + λ(1, 0, 1, 1) + λ(1, 1, 0, 1) + λ(1, 1, 1, 1) = λ′′(1, 0, 1) + λ′′(1, 1, 1) = p′′13 = p14

as required.
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3 One Attempt to Get Around Bell’s Theorem

Here we consider one recent, somewhat non-standard, response to Bell’s theorem by László E. Szabó. He

argues that, the theorem notwithstanding, quantum mechanics is compatible with both “local determin-

ism” and the classical character of probability. (See Szabó ([5], [6]), and Bana and Durt [1].)

Recall the set up in the first section. Given our pair of photons in the singlet state, we know that

there exist orientations of the polarizers a, a′, b, b′ such that the associated probabilities

pa = prQM (yes, |a, )

pb = prQM ( , yes| , b)

pab = prQM (yes, yes|a, b)

pab′ = prQM (yes, yes|a, b′)

pa′b = prQM (yes, yes|a′, b)

pa′b′ = prQM (yes, yes|a′, b′)

have the values

pa = pb =
1

2
pab = pab′ = pa′b =

3

8
pa′b′ = 0.

These violate the Clauser-Horne inequality

0 ≤ pa + pb − pab − pab′ − pa′b + pa′b′ ≤ 1.

Hence (by theorem 1.3.1), we know these “probabilities” do not admit a probability space representation,

i.e., there does not exist a probability space (X, Σ, µ) and sets L+
a , L+

a′ , R
+
b , R+

b′ ∈ Σ such that

pa = µ(L+
a )

pb = µ(R+
b )

pab = µ(L+
a ∩ R+

b )

pab′ = µ(L+
a ∩ R+

b′)

pa′b = µ(L+
a′ ∩ R+

b )

pa′b′ = µ(L+
a′ ∩ R+

b′).















































(∗∗)

One straight-forward interpretation of this result is that “quantum probability” violates the constraints

of classical probability (as codified by Kolmogorov). The starting point of Szabó’s response is the obser-

vation that the “quantum probabilities” in question here are conditional in character. pa, for example,

is supposed to be the conditional probability that the left photon will pass through the polarizer given

that the latter is oriented in direction a. What if we try to take into consideration just what the prob-

ability is that the polarizer is oriented in that direction? Or if we are casting the discussion in terms of

determinism, what if we consider possible hidden variables that determine polarizer settings in addition

to everything else (rather than treat the settings as independent variables under our control).
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Szabó’s proposal, in effect, is to consider a second, weaker sense in which one might try to give the num-

bers pa, pb, pab, ..., pa′b′ a “probability space representation”. Here we explicitly recognize the composite

character of the events under consideration. Rather than looking for just four sets L+
a , L+

a′ , R
+
b , R+

b′ in Σ,

we look for six sets La, La′ , Rb, Rb′ , L
+, R+ in Σ. Intuitively, we think of La as the set of hidden states

in which it is determined that the left polarizer will have orientation a (and similarly for La′ , Rb, Rb′).

We think of L+ as the set of hidden states in which it is determined that the photon will pass through

the left polarizer (and similarly for R+). The conditions we require now are not (∗∗) above, but rather

the following:

pa =
µ(La ∩ L+)

µ(La)

pb =
µ(Rb ∩ R+)

µ(Rb)

pab =
µ(La ∩ L+ ∩ Rb ∩ R+)

µ(La ∩ Rb)

pab′ =
µ(La ∩ L+ ∩ Rb′ ∩ R+)

µ(La ∩ Rb′)

pa′b =
µ(La′ ∩ L+ ∩ Rb ∩ R+)

µ(La′ ∩ Rb)

pa′b′ =
µ(La′ ∩ L+ ∩ Rb′ ∩ R+)

µ(La′ ∩ Rb′)
.























































































































(∗ ∗ ∗)

Actually, we need more than just these conditions. We are now, implicitly, relativizing our probability

space representations (or, equivalently, our deterministic hidden variable theories) to particular experi-

ments. In any one experiment, the polarizer orientations, right and left, occur with particular frequencies.

These frequencies must also be recovered. (Maybe on one occasion, for example, the four possibilities

(a, b), (a, b′), (a′, b), (a′, b′) are observed with equal frequency – each, say, occurring 250 times in a run of

1000.) Nothing has been said so far about such frequencies because it has been assumed that they made

no difference. Now we imagine that we have a particular experimental run in mind, and have observed

experimental probabilities (or frequencies) for the different polarizer settings:

la = observed probability for orientation a on the left

la′ = observed probability for orientation a′ on the left

rb = observed probability for orientation b on the right

rb′ = observed probability for orientation b′ on the right

What we must add to (∗ ∗ ∗) is the following set of conditions:
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la = µ(La)

la′ = µ(La′)

rb = µ(Rb)

rb′ = µ(Rb′)

larb = µ(La ∩ Rb)

larb′ = µ(La ∩ Rb′)

la′rb = µ(La′ ∩ Rb)

la′rb′ = µ(La′ ∩ Rb′).







































































(∗ ∗ ∗ ∗)

Putting all this together, the question under consideration is whether, given a particular run of the

two photon experiment, we can find a probability space (X, Σ, µ) and sets La, La′ , Rb, Rb′ , L+, R+ in

Σ such that (∗ ∗ ∗) and (∗ ∗ ∗ ∗) hold. The answer is certainly ‘yes’. Let’s first verify that this is so, and

then return to consider the significance of this fact.

La La′

Rb

La ∩ L+ ∩ Rb ∩ R+ La ∩ L+ ∩ Rb ∩ R− La′ ∩ L+ ∩ Rb ∩ R+ La′ ∩ L+ ∩ Rb ∩ R−

3
8 (larb)

1
8 (larb)

3
8 (la′rb)

1
8 (la′rb)

La ∩ L− ∩ Rb ∩ R+ La ∩ L− ∩ Rb ∩ R− La′ ∩ L− ∩ Rb ∩ R+ La′ ∩ L− ∩ Rb ∩ R−

1
8 (larb)

3
8 (larb)

1
8 (la′rb)

3
8 (la′rb)

Rb′

La ∩ L+ ∩ Rb′ ∩ R+ La ∩ L+ ∩ Rb′ ∩ R− La′ ∩ L+ ∩ Rb′ ∩ R+ La′ ∩ L+ ∩ Rb′ ∩ R−

3
8 (larb′)

1
8 (larb′) 0 1

2 (la′rb′ )

La ∩ L− ∩ Rb′ ∩ R+ La ∩ L− ∩ Rb′ ∩ R− La′ ∩ L− ∩ Rb′ ∩ R+ La′ ∩ L− ∩ Rb′ ∩ R−

1
8 (larb′)

3
8 (larb′)

1
2 (la′rb′ ) 0

Table 1: The displayed probabilities satisfy all conditions in (∗ ∗ ∗) and (∗ ∗ ∗ ∗).

It will be easiest to exhibit the requisite example with a diagram (see Table 1). (The elements of the

background set X make no difference. They might as well be points in a region of the Euclidean plane.)

In the diagram we label 16 distinct boxes, each the intersection of four sets, e.g., (La ∩ L+ ∩ Rb ∩ R+).

(Notation: L− and R− are understood to be the complement sets X − L+ and X − R+.) The six sets

La, La′ , Rb, Rb′ , L+, R+ individually, of course, can be reconstructed as appropriate unions of (eight of

these) boxes. So, for example, La is the union of the boxes:

(La ∩ L+ ∩ Rb ∩ R+) (La ∩ L+ ∩ Rb ∩ R−)

(La ∩ L− ∩ Rb ∩ R+) (La ∩ L− ∩ Rb ∩ R−)

(La ∩ L+ ∩ Rb′ ∩ R+) (La ∩ L+ ∩ Rb′ ∩ R−)

(La ∩ L− ∩ Rb′ ∩ R+) (La ∩ L− ∩ Rb′ ∩ R−).
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In each box there is a displayed a number that should be understood as the probability assigned by the

measure µ to that box. So, for example,

µ(La ∩ L+ ∩ Rb ∩ R+) =
3

8
(larb).

Assignments to disjoint unions of these boxes are determined by addition. Thus

µ(La ∩ Rb) = µ(La ∩ L+ ∩ Rb ∩ R+) + µ(La ∩ L+ ∩ Rb ∩ R−)+

µ(La ∩ L− ∩ Rb ∩ R+) + µ(La ∩ L− ∩ Rb ∩ R−)

=
3

8
(larb) +

1

8
(larb) +

1

8
(larb) +

3

8
(larb)

= larb.

It is straightforward to verify that all the conditions in (∗ ∗ ∗) and (∗ ∗ ∗ ∗) are satisfied. For example,

µ(La ∩ L+)

µ(La)
=

(3
8 + 1

8 )(larb) + (3
8 + 1

8 )(larb′)

larb + larb′
=

1

2
= pa

and

µ(La ∩ L+ ∩ Rb ∩ R+)

µ(La ∩ Rb)
=

3
8 (larb)

larb

=
3

8
= pab.

The example we have just considered – with quantum mechanical probabilities arising from a pair of

photons in the singlet state – is very specific, of course. The question naturally arises whether a similar

treatment is available for all probabilities arising in quantum mechanics. The question is not yet precise,

and we will not take the time to make it so. But this can be done (see Szabó [6] and Bana and Durt [1])

and the answer is ‘yes’. Roughly speaking, the claim is this.

All probabilities involving experimental trials can be considered conditional in character. They can be

understood to be of form p(O|I), the probability that if an experiment characterized by initial conditions I

is performed, the outcome will be O. Sometimes, as in our example, we consider, side by side, probabilities

whose associated initial conditions are incompatible with one another. (We cannot simultaneously test

the probability that the left photon will pass through the polarizer when it has orientation a, and also

test the probability that it will pass through when polarizer has orientation a′.) It is in these cases that

it sometimes becomes impossible to give the numbers in question (i.e., the numbers p(O|I)) a probability

space representation in the initial sense.

The burden of the theorem under consideration is to make precise and prove the claim that in all cases

– not just those involving quantum mechanics – one can have a modified probability space representation

in which the numbers emerge as conditional probabilities of form µ(O ∩ I)/µ(I). In this sense, at least,

Szabó argues, observed empirical data can never be in conflict with the principles of classical probability

or with determinism.
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It should be appreciated just how weak this sense is. Let’s stay with the two photon example. It is

a prediction of quantum mechanics that the probability for joint passage through the two polarizers is

given by

prQM (yes, yes|a, b) =
1

2
cos2 ∠(a, b).

(Recall assertion (QM1) on page 2.) This formula is confirmed by numerous experiments of the most

diverse sort. It seems to express a fact about the the two photon system (in the single state) itself, about

its disposition to behave whenever it is subjected to a test of the appropriate sort. One would like to

have a hidden variable theory that reconstructs these probabilties once and for all, without reference to

particular experimental tests. Instead, one gets from Szabó, in effect, a different hidden variable theory

for each test or, to be more precise, a different theory for each set of non-negative real numbers la, la′ ,

rb, rb′ summing to 1.

I hope to have further discussion of the significance of Szabo’s work in class.
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