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GRA VITY AND SPATIAL GEOMETRY.
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Philosophers of science have written at great length about the geometric
structure of physical space. But they have devoted their attention primarily
to the question of the epistemic status of our attributions of geometric
structure. They have debated whether our attributions are a priori truths,
empirical discoveries, or, in a special sense, matters of stipulation or
convention. It is the goal of this paper to explore a quite different issue -

the role played by assumptions of spatial geometry within physical theory,
specifically within Newtonian gravitational theory.

Standard formulations of Newtonian physics, of course, presuppose that
space is Euclidean. But the question arises whether they must do so. After
all, the geometric structure of physical space was a topic of intense interest
in the 19th century long before Newtonian physics was abandoned. Think
of Gauss, Riemann, Helmholtz, and POIncare. It is probably most natural
to assume, and perhaps these men did assume, that any hypotheses about
spatial geometry function only as inessential auxiliary hypotheses within
Newtonian physics - superimposed, as it were, on a core of basic
underlying physical principles which themselves are neutral with respect to
spatial geometry. Yet it turns out that there is an interesting sense in which
this is just not so, a sense which is only revealed when one considers
Newtonian gravitational theory from the vantage point of general

relativity.
One can, and I think should, construe the former theory as a special

limiting form of the latter in which relativistic effects become negligible.

I The following is extracted from a long, technical paper [3). Proofs can be found there
together with a good deal of supplemental material on spacetime structure in Newtonian
physics. The results presented there draw on work of Kunzle in [1] and [2].. I am grateful to Jiirgen Ehlers and Robert Geroch for comments on an earlier draft.
Ehlers, in particular, saved me from making a number of seriously misleading statements.
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That is, one can think of Newtonian gravitational theory as the so-called
"classical limit" of general relativity. The big surprise, at least to me,
however, is that when one does think about it this way one finds that the
theory must posit that space is Euclidean. It's curious. The very limiting
process which produces Newtonian physics and a well-defined, observer
invariant spatial structure also generates strong constraints on spatial
curvature. These constraints turn out to be so strong as to guarantee the
Euclidean character of space. That, anyway, will be my principal claim

today.

Claim. Insofar as it is the "classical limit" of general relitivity, Newtonian
gravitational theory must posit that space is Euclidean.

A good bit of differential geometry will be required to make the claim
precise. But the underlying idea is quite intuitive. It is absolutely funda-
mental to relativity theory that there is an upper bound to the speeds with
which particles can travel (as measured by an observer). The existence of
this upper bound is embodied in the null cones (or light cones) one finds in
spacetime diagrams. In classical physics, however, there is no upper bound
to particle speeds. The transition from general relativity to Newtonian
physics is marked by this all important difference. The maximal particle
speed goes to infinity. The transition can be conceived geometrically as a
process in which the null cones at all spacetime points "flatten" and
eventually become degenerate. In the limit the cones are all tangent to a
family of hypersurfaces, each of which represents "space" at a given
"time". The curious fact is this. If at every intermediate stage of the
collapse process spacetime structure is in conformity with the dynamic
constraints of general relativity (as embodied in Einstein's field equation),
then the resulting induced hypersurfaces are necessarily flat, i.e. have
vanishing Riemann curvature. One can think of it this way - the limiting

process which effects the transition from general relativity to Newtonian
gravitational theory "squeezes out" all spatial curvature!

The proposition which follows is intended to capture the collapsing light
cone picture in a precise statement about relativistic spacetime models.

We take a relativistic spacetime model to be a triple (M, gab, T db) where
M is a smooth, connected, four-dimensional manifold (representing the
totality of all spacetime points); 8ah is a smooth Riemannian metric of
Lorentz signature (+ 1, - 1, - 1, - 1) on M (which represents the metric of
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spacetime); Tab is a smooth, symmetric field on M (which represents the
mass-energy density present throughout spacetime); and where Einstein's

equation
~ -4g...R = 81rT..

is satisfied. In the proposition we start with a one-parameter family of such
models all sharing the same underlying manifold M:

(M,g"b(A),Taj,(A)), O<A~l.

Then we impose two constraints - one on the limiting behavior of the
gab (A) as A goes to 0, and one on that of the Tab (A). The first guarantees
that all null cones open up and become tangent to a family of hypersur-
faces. The second guarantees that the limiting values of mass-energy
density, momentum density, and material stress (as determined by anyone
observer) are all finite. Our conclusion is that as a result of the conditions
imposed the limiting hypersurfaces have vanishing Riemann curvature.

To motivate the first constraint it will help to consider a special case
which should look familiar. In Minkowski spacetime all curvature vanishes.
One can find a global t, x, y, z coordinate system in which the metric ~
and its inverse gab have coefficients

gab = diag(+ 1, -1/c2, -1/c2,~ l/c2),

g ab = dia g( + 1 - C2 ""C2 - CZ).

, . ;; , )

(That is, the coefficients of ~ form a 4 x 4 matrix whose diagonal entries
are + 1, -1/c2, -1/c2, -1/c2, and whose non-diagonal entries are all 0.)
Now let us consider these as fields parametrized by c. The first has a limit as
c goes to infinity. The other does too after it is suitably rescaled:

gab (c)-+ diag( + 1,0,0,0),

gab.(c)/c2-+diag(0, -1, -1, -1).

In a sense the limiting process has allowed us to recover separate temporal
and spatial metrics. We have pulled apart a non-degenerate metric of
signature (+ 1, -1, -1, -1) to recover its degenerate positive and nega-
tive pieces.

This example is special in several respects. The null cones open
symmetrically around the "time" axis at each point. The opening occurs
uniformly across the manifold. (It is as if the cones were rigidly rigged to
each other.) And background affine structure is kept fixed and flat
throughout the process. These features cannot be retained when one
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considers arbitrary (curved) relativistic spacetime models. But the limit
existence assertions can be generalized, and they turn out to be exactly
what one needs.

Consider again our parametrized family of metrics. We are not going to
regiment how their null cones open. We shall allow, intuitively, that the
cones open at different rates at difterent points, that their axes wiggle as
they open, and so forth. Our sole requirement is that, somehow or other, the
cones do finally become tangent to a family of "constant-time" hypersur-
faces, and that they do so in such a way that, after resealing, a well-defined
spatial metric is induced on the surfaces. Formally the requirement comes
out this way. (Here and in what follows, all limits are taken as A goes to 0.)

(la) There exists a smooth, non-vanishing, closed field ta on M such that

8ab (A)~ tatb.

(1 b) There exists a smooth, non-vanishing field hub of signature (0, + 1,
+1,+1) on M such that Agab(A)~-hab.

Clearly the parameter A corresponds to 1/c2.
Let's consider the first clause. I claim that it captures the intended

collapsing null cone condition. Suppose ta is as in (la). Since it is closed, ta
must be locally exact. That is, at least locally it must be the gradient of
some scalar field t on M. It is precisely the hypersurfaces of constant t
value to which the cones of the gab (A) become tangent. [To see this let Va
be any derivative operator on M, and let 1]a be any vector in the domain of
t, tangent to the surface through that point. Then ta = Vat and 1] a Vat = O. It

follows that
gab (A )l1al1b -+ tatbl1al1b = (l1aV att = O.

Thus, in the limit l1a becomes a null vector. The surfaces of constant t
value are degenerate null cones!]

One can also easily verify that the scalar field t gives limiting values of
elapsed proper time. [Suppose that Y : [a, b) -+ M is a timelike curve with
respect to all the g..b (A), and its image falls within the domain of t. The
elapsed proper time between y(a) and y(b) along y relative to gab (A) is

given by

where 11 a is the tangent field to y. As A goes to 0 we have

~T(y, A)~ Jab (t"l1")ds = Jab (l1"V"t)ds = t(y(b))- t(y(a)).
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Thus the limiting value of proper time is independent of the chojce of
tjmelike curve connecting y(a) to y(b). It is gjven, sjmply, by the
t -coordinate interval between the two points.]

It remains now to consider the constraint to be imposed on the
mass-energy tensor fields Tab (A). Suppose (M, 8ah, Tab) is a relativistic
spacetime model, and ga is a unit time like vector at some point of M
representing an observer O. 0 will decompose Tab at the point into its
temporal and spatial parts by contracting each index with ga gm or
(gagm - gam). (The latter is the "spatial metric" as determined by 0.) The

components he determines have the following physical interpretation:2

T abgagb = mass-energy density relative to 0,

T abga(gbg" - gM) = three-momentum density relative to 0,

;r..(~agm - gam)(gbg" - gM) = three-dimensional stress

tensor relative to O.

We shall require of the limiting process that it assign (finite) limiting values
to these quantities as determined by some observer O. The condition comes
out as follows.

(2) There exjsts a smooth field Tab on M such that Tab (A)~ Tab.

Here Tab (A) = T non (A )g"'" (A )gM (A). [The condjtion js stronger than the

requjrement that the Tab (A) have a finjte ljmit. To see where jt comes from,
consider a family of coaljgned vectors Ij,a (A), each of unjt length
wjth respect to ~b (A). For each A, perform the decomposition
above. If Tab (A)lj,a(A)lj,b(A), Tab(A)Ij,G(A)[lj,b(A)i;"(A)-gbn(A)], and
Tab(A)[i;a(A)lj,m(A)~gam(A)][lj,b(A)Ij,"(A)-gb"(A)] are all to have finite
limjts, it follows that Tab(A)galil(A)gbn(A) must have one too.] Now we can
formulate the proposition.

PRoposmON. Suppose that for all A E(O,l], (M,g..b(A),Tab(A» is a re-
lativistic spacetime model. Further suppose that conditions (1) and (2) above
are satisfied. Finally suppose that S is any spacelike hypersurface in M as
determined by ta (i.e. any imbedded three-dimensional submanifold of M
satisfying ta'l}a = 0 for all vectors l1a tangent to S). Then if ~abcd (A) is the

three-dimensional Riemann curvature tensor field on S induced by gab (A),

~abcd(A)-O.

2 See, e.g., MISNER, THORNE, and WHEELER (4), p. 131
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A proof is given in considerable detail in [3]. Here we simply indicate the
structure of the argument. It proceeds in two stages. Suppose that for each
A, V" (A) is the unique derivative operator (or affine connection) on M
compatible with g"b (A). Further suppose that p is taken to be the scalar
field T"bt"tb. First one shows that there must exist a derivative operator V"
on M such that V" (A)~ V",' and such that the structure (M, t", h"b,V ",p)
satisfies the conditions:

Compatibility

Orthogonality

Poisson's Equation

Integrability

V"tb = 0 = V "h "",

t"hdb = 0,

Rdb = 41Tpta~,

R I" c) 0(b d) = .

These conditions characterize a kind of generalized Newtonian spacetime
structure introduced by Kiinzle in [1] and [2]. Thus the first stage of the
argument is of interest in its own right. It makes precise one sense in which
a generalized version of Newtonian gravitational theory is the "classical
limit" of general relativity.4 In particular it shows that Poisson's equation is
a limiting form of Einstein's equation.

The second stage of the argument makes the connection with spatial
geometry. It certainly need not be the case that the four-dimensional
Riemann tensor field R "bcd on M determined by V" vanishes. But Poisson's
equation (in the presence of the Compatibility and Orthogonality condi-
tions) does imply that the three-dimensional Riemann field ~"bcd induced
on any spacelike hypersurface S does so. (The claim is that space, not
spacetime, is necessarily flat in the "classical limit" of general relativity.)
Once the dust clears, this second stage of the argument turns on a simple
linear algebraic fact. In three dimensions (but not higher) the Ricci tensor
field cannot vanish without the full Riemann tensor field doing so as well.

One has ~ 4bcd = 0; and ~ 4bcd (A) - ~ 4bcd follows easily from

V 4 (A)- V 4' So the proposition follows.

Edmund Whittaker once said that "gravitation simply represents a
continual efiort of the universe to straighten itself out". I have tried to
show that at least in the limiting Newtonian context that straightening
process is so complete as to rule out any spatial curvature whatsoever.

, The condition V. (A)-+ V. can be taken to mean that for any smooth vector field ",' on

M, V. (A)"," -+ V.",". See [3) for a detailed discussion of limit relations between tensor fields.
4 The argument in [3) is a variant of that given by Kiinzle in [2).
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