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1 Introduction

It is the aim of Kaluza-Klein theory to explain the existence and behavior of
gauge fields solely as the dynamics of gravitation. Integral to the Kaluza-Klein
approach is the assumption that the spacetime manifold in which we live is
not four dimensional, but rather is a higher dimensional manifold in which the
higher dimensions have curled up, or compactified, to a degree that dynamics
in the compactified dimensions may be understood simply as the wrapping of
the four dimensional spacetime around the compactified dimensions.

2 Manifold and Vielbein

Assume that the universe is an orientable, n-dimensional, pseudo-Riemannian
manifold. The geometry of the manifold is completely described in any coordi-
nate patch by a set of orthogonal unit vectors, the vielbein, frame, or tetrad,

êα = (eα)i~∂i (1)

that satisfy
êα · êβ = (eα)i(eβ)jgij = ηαβ (2)

in which ~∂i is a coordinate basis vector, roman indices are coordinate indices, g

is the metric, η is the Minkowski metric, and greek indices are labels raised and
lowered by η. The vielbein naturally implies a set of basis 1-forms, the fielbein

σ̂α = ~dxi (σi)
α (3)
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dual to the vielbein vectors

(eα)i(σi)
β = δβ

α (4)

or, more compactly in matrix notation, eσ = I, where the components of e are
(eα)i. On a pseudo-Riemannian manifold the 1-forms may be identified with

vectors via the metric, ~∂i = gij
~dxj = gij

~∂j and hence σ̂α = ηαβ êβ , and often
go under the name of covariant vectors. Any vector may be represented in terms
of the coordinate or vielbein basis vectors

~v = vi~∂i = vαêα = (vi(σi)
α)êα = vi gij

~dxj = vασ̂α (5)

The fielbein can be considered a factorization of the metric, since

gij = (σi)
α ηαβ (σj)

β (6)

or g = σησT . However, the frame of orthogonal unit vectors tangent to a man-
ifold seems a more satisfying intuitive description than the equivalent metric,
and I interpret it as being more fundamental. Also note that the vielbein de-
scribes an orientation on the manifold, information absent from the metric. The

metric is, however, a more compact description of the geometry, having n(n+1)
2

degrees of freedom compared to the vielbein’s n2. The metric is invariant under
local orthonormal ( Lorentz ) transformations of the fielbein,

σ̂α 7→ Lα
β σ̂β (7)

with Lα
β ηαµ Lµ

ν = ηβν ( or LT ηL = η ), which leads to the natural unique
decomposition of the fielbein matrix,

(σi)
α = L+

α
β(γi)

β (8)

in which γ is Upper Triangular and L+ is a proper Lorentz transformation,
detL+ > 0. This decomposition capitalizes on the metric invariance (7) to
factor the fielbein into a gravitational part, the UT fielbein, γ̂β, which has
n(n+1)

2 degrees of freedom and gives g = σησT = γηγT , an UDL decomposition,

and the rotational part, L+, which has n(n−1)
2 degrees of freedom. Note that

this decomposition is not coordinate independent, but may always be performed
anew after a coordinate transformation.

3 F

The exterior derivative of the basis 1-forms gives a set of 2-forms,

Fα = dσα (9)

=
∑

i<j

(∂i (σj)
α − ∂j(σi)

α) dxi ∧ dxj (10)

=
∑

β<γ

Fβγ
ασβ ∧ σγ (11)
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where the field strength Fβγ
α = (eβ)i(eγ)j(Fij)

α and (Fij)
α = ∂i(σj)

α−∂j(σi)
α.

The field strength first appears in the equation for a geodesic. For a param-
eterized curve, ui(τ), extremizing the square of the path length,

∫

dτu̇iu̇jgij (12)

gives the unit geodesic equation,

0 = v̇k + Γk
ijv

ivj (13)

where vi = u̇i = d
dτ

ui and Γ is the torsionless connection. Or, in the vielbein
basis,

0 = v̇α + Fα
(βγ)v

βvγ (14)

where vα = vi(σi)
α, parenthesis around indices indicate symetricisation, and

the greek indices are raised and lowered with η.

4 Curvature and Gravitational Action

The covariant derivative applied to tensors is

Div
j = ∂iv

j + Γj
ikvk (15)

The curvature scalar can be calculated from the vielbein as

R = (eα)j(DiDj − DjDi)(eα)i (16)

Since the Einstein-Hilbert action is

S =

∫

dxn
√

|g|R (17)

we may rewrite R as

R = Di[(e
α)jDj(eα)i]−Dj[(e

α)jDi(eα)i]+[Di(eα)i][Dj(e
α)j ]−[Di(eα)j ][Dj(e

α)i]
(18)

and drop the divergence terms, assuming no boundary contribution, to give us
our equivalent action

S =

∫

dxn|σ|L (19)

in which we may now calculate L directly from the field strength as

L = −
1

4
FαβγFαβγ −

1

2
FαβγFαγβ + Fαβ

βFα
γ

γ (20)

Note that this gravitational Lagrangian contains no second derivatives. Note
also that the use of a vielbein and field strength, F , as well as the dropping of
divergence terms in the action, is not a requirement of Kaluza-Klein theory, but
gives a simpler exposition.
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5 Kaluza-Klein theory

We adopt the Kaluza-Klein hypothesis that we live in a universe in which one
or more spacelike dimensions have compactified, leaving an effective universe
of four dimensional spacetime, S, and a collection of gauge fields. This may
be imagined as our spacetime submanifold, S, embedded in a tightly wrapped,
higher dimensional universe possessing symmetries ( Killing vectors ) in the

wrapped directions (Figure ??). For one compactified direction, ~∂4, we begin
by assuming a five dimensional vielbein of the form

(eα)i =

(

(eSα)i Aα

0 1
ρ

)

where (eSα)i are the vielbein components for the spacetime indices 0 ≤ α, i ≤
3 and the vielbein is assumed independent of the compactified fourth spatial
coordinate. ρ may be imagined as the radius of compactification and A will be
our U(1) gauge field. The corresponding basis 1-forms are

(σi)
α =

(

(σSi)
α −ρAi

0 ρ

)

(21)

Giving the field strength components

Fβγ
α<4 = FSβγ

α (22)

Fβ4
4 =

1

ρ
∂βρ (23)

Fβγ
4 = −ρ(eSβ)i(eSγ)j (∂iAj − ∂jAi) = −ρFβγ (24)

where we have used the abbreviation ∂β = (eβ)i∂i. Integrating over the com-
pactified dimension gives the effective action

S =

∫

dxS |σS |ρ(LS −
1

4
ρ2FαβFαβ) (25)

The ρ multiplying LS may be scaled away by multiplying the original vielbein
by ρ

1

3 ( a Weyl scaling ) and dropping two resulting divergence terms, giving
the effective action

S =

∫

dxS |σS |(LS −
1

4
ρ2FαβFαβ +

4

3
ρ−2(∂iρ)(∂iρ)) (26)

Assuming constant ρ produces the action for gravity and our one gauge field.
We note also that the equation for a geodesic through a Kaluza-Klein universe
with flat spacetime,

0 = v̇α + ρv4Fα
βvβ (27)

is the Lorentz force law for a charged particle moving in an electromagnetic
field. The U(1) field strength, F 4 = dσ4, describes the curvature of S around
the compactified dimension, a curvature that cannot be untwisted by coordinate
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transformation. A coordinate transformation of the compactified coordinate,
x4 7→ x4 − λ(x), results in the gauge transformation, Ai 7→ Ai + ∂iλ, via the
corresponding Lorentz transformation, and leaves F 4 unchanged.

Although it is standard practice to assume that all fields are independent
of the compactified coordinate, we may choose to keep this dependency and
expand the fields in a Fourier series in the compact dimension. If this is done
we obtain the U(1) field as the zero mode as well as an infinite collection of
interacting higher modes. These higher mode gauge fields may be calculated to
have a large mass due to the small compactification scale and are thus usually
discarded.

6 SU(2)

We have obtained an effective U(1) gauge field by considering a universe with
a compactified dimension admitting U(1) symmetry. Now we wish to obtain
non-abelian SU(2) gauge fields. The double cover of S2 is a maximally sym-
metric solution of Einstein’s equations that has SU(2) symmetry. We begin by
confirming this SU(2) symmetry explicitly by obtaining the Killing vectors, then
use the Killing vectors to construct our SU(2) gauge theory via Kaluza-Klein
theory.

We use polar coordinates 0 < θ < π and 0 < φ < 4π, and use the vielbein
on the sphere,

(eα)i =

(

1
r

0
0 1

r sin θ

)

(28)

which implies the basis 1-forms and metric,

(σi)
α =

(

r 0
0 r sin θ

)

, gij =

(

r2 0
0 r2sin2 θ

)

(29)

The symmetries of a space are the coordinate transformations that leave the
metric unchanged. The infinitesimal coordinate transformations can be written
xi 7→ xi + εaξa

i, where ~ξa are the set of Killing vector fields, each corresponding
to a metric symmetry, and εa are the parameters of the transformation. Each
~ξ represents a flow that leaves the space unchanged, and hence each must be a
solution to Killing’s equation,

0 = [L~ξ
g]ij = ξk∂kgij + gkj∂iξ

k + gik∂jξ
k (30)

For our S2 metric, this equation gives

0 = 2r2∂θξ
1 (31)

0 = r2 sin θ2∂θξ
2 + r2∂φξ1 (32)

0 = 2r2 sin θ cos θξ1 + 2r2 sin θ2∂φξ2 (33)

which admit three Killing vectors as solutions,

ξx
i =

(

− sinφ

− cosφ cot θ

)

, ξy
i =

(

cosφ

− sinφ cot θ

)

, ξz
i =

(

0
1

)

(34)
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corresponding to rotations about the x, y and z axes. These vectors satisfy the
commutation relations corresponding to the SU(2) Lie algebra,

[~ξa, ~ξb] = L~ξa

~ξb = −εabc
~ξc (35)

Or, in components,

[~ξa, ~ξb]
i = ξa

k∂kξb
i − ξb

k∂kξa
i = −εabcξc

i (36)

The vectors also satisfy the normalization relation,

∫ π

0

∫ 4π

0

dθdφr2 sin θ < ~ξa, ~ξb > = 8πr2 2

3
r2δab (37)

Now we construct the Kaluza-Klein space for SU(2) as we did for U(1) by
starting with the vielbein,

(eα)i =





(eSα)i ξ1
aAa

α ξ2
aAa

α

0 1
r

0
0 0 1

r sin θ



 (38)

where Aa will be our three SU(2) gauge fields corresponding to the three Killing
vectors of the compactified space. The corresponding basis 1-forms are

(σi)
α =





(σSi)
α −rξ1

aAa
i −r sin θξ2

aAa
i

0 r 0
0 0 r sin θ



 (39)

Giving the field strength components

Fβγ
α<4 = FSβγ

α (40)

F45
5 =

1

r
cot θ (41)

Fβ4
4 = Fβ5

5 =
1

r
∂βr (42)

Fβ5
4 = −Fβ4

5 = sec θξ2
aAa

β (43)

Fβγ
4 = −rξ1

cF c
βγ (44)

Fβγ
5 = −r sin θξ2

cF c
βγ (45)

where we have used the Killing vector commutation relations to obtain the
SU(2) field strength,

F c
βγ = (eSβ)i(eSγ)j

(

∂iA
c
j − ∂jA

c
i − εabcA

a
i Ab

j

)

(46)

We sum the field strength components to obtain the action,

S =

∫

dxS |σS |

∫ π

0

∫ 4π

0

dθdφr2 sin θ(LS −
1

4
< ~ξa, ~ξb > F a

βγF bβγ
+

2

r2
(∂ir)(∂

ir))

(47)
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and complete the integral over the compactified space, using the Killing vector
normalization relation, to obtain the effective action,

S =

∫

dxS |σS |8πr2(LS −
1

4

2

3
r2F c

βγF cβγ +
2

r2
(∂ir)(∂

ir)) (48)

which, after another Weyl scaling, we identify as the non-abelian SU(2) action.
A similar calculation for the manifold CP 2 produces the gauge fields of

SU(3).

ρ

S

4

γ4

Sα

α

2

γ

γ
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