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Abstract

This paper shows how to obtain the spinor field and dynamics from the

vielbein and geometry of General Relativity. The spinor field is physically

realized as an orthogonal transformation of the vielbein, and the spinor action

enters as the requirement that the unit time form be the gradient of a scalar

time field.
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I. INTRODUCTION

Suit the action to the word, the word to the action, with this special observance,
that you o’erstep not the modesty of nature: for any thing so o’erdone is from
the purpose of playing, whose end, both at the first and now, was and is, to hold
as ’twere the mirror up to nature: to show virtue her feature, scorn her own
image, and the very age and body of the time his form and pressure.

–HAMLET Act 3, scene 2, 17-24

The aim of this brief paper is unification, not just in the trivial sense of concatenation, but
in the more general and aesthetic sense of union within an elegant framework. A strong effort
has been made towards the graceful and concise exposition of the physical and mathematical
formalism, as well as towards the fluid introduction of the physical concepts. The starting
point is pseudo-Riemannian geometry, and the construction of an elegant minimal framework
leads directly to the domain of Clifford algebra, a formalism allowing the seemingly facile
manipulation of complex geometric entities. A Clifford algebra decomposition of the unit
basis vector frame leads naturally to the appearance of a spinor field. A physically motivated
constraint on the dynamics of the frame is suggested, that the unit time form of the frame
be the gradient of a scalar time field. This constraint produces a much sought after clock
on the manifold and appears as the addition of a spinor dependent term in the gravitational
action, a term corresponding to the dynamics of matter. In this manner the unification
of gravitation and matter is achieved within the most elementary framework of geometry
conceivable.

II. MANIFOLD AND VIELBEIN

Assume that the universe is an n-dimensional pseudo-Riemannian manifold. The geom-
etry of the manifold is completely described in any coordinate patch by a set of orthogonal
unit vectors, the vielbein, frame, or tetrad,

êα = (eα)
i~∂i (2.1)

that satisfy

êα · êβ = (eα)
i(eβ)

j
gij = ηαβ (2.2)

in which ~∂i is a coordinate basis vector, roman indices are coordinate indices, g is the
metric, η is the Minkowski metric, and greek indices are labels raised and lowered by η. If a
smoothly varying vielbein can be defined everywhere, the manifold is called a spin manifold.
The vielbein naturally implies a set of basis 1-forms, the fielbein

êα = ~dxi (e−1i)
α (2.3)

with ~dxi the coordinate 1-forms, that are dual to the vielbein vectors

(eα)
i(e−1i)

β
= δβα (2.4)
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or, more compactly in matrix notation, ee−1 = I, where the components of e are (eα)
i. On

a pseudo-Riemannian manifold the 1-forms may be identified with vectors via the metric,
~dxi = gij ~∂j = ~∂i and ˆe−1 α = ηαβ êβ = êα , and often go under the name of covariant vectors.
The only time a distinction need be drawn between vectors and 1-forms is when taking them
to a submanifold, as 1-forms are the objects that may be pulled back to a submanifold. Any
vector (the word now used interchangeably with “form”) may be represented in terms of the
coordinate or vielbein basis vectors

~v = vi~∂i = vαêα = (vi(e−1i)
α)êα = vi gij ~dxj = vαêα (2.5)

The fielbein can be considered a factorization of the metric, since

gij = (e−1i)
α
ηαβ (e

−1
j)

β
(2.6)

or g = e−1ηe−1
T
. However, the frame of orthogonal unit vectors tangent to a manifold seems

a more satisfying intuitive description than the equivalent metric, and should be interpreted
as being more fundamental. Also note that the vielbein describes an orientation on the
manifold, information absent from the metric. The metric is, however, a more compact
description of the geometry, having n(n+1)

2
degrees of freedom compared to the vielbein’s n2.

The metric is invariant under local orthonormal ( Lorentz ) transformations of the fielbein,

êα 7→ êβLα
β (2.7)

with Lα
β ηαµ L

µ
ν = ηβν ( or LT ηL = η ), which leads to the natural unique decomposition

of the fielbein matrix,

(e−1i)
α
= (γi)

β
Lα

β (2.8)

in which γ is symmetric and L is restricted to be a proper ( detL > 0 ) orthochronous (
L0

0 > 0 ) Lorentz transformation taking timelike vectors to timelike vectors and spacelike

vectors to spacelike vectors, so êα · êβ = γ̂α · γ̂β and the direction of time is preserved.
This decomposition capitalizes on the metric invariance (2.7) to factor the fielbein into a

gravitational part, the symmetric fielbein, γ̂β, which has n(n+1)
2

degrees of freedom and gives

g = e−1ηe−1
T
= γηγT , and the rotational part, L, which has n(n−1)

2
degrees of freedom.

III. SPINORS

Since the 1-forms may be naturally identified with vectors via the metric, the vector dot
product may be carried over this way and combined with the exterior algebra to produce a
Clifford algebra with the symmetric fielbein vectors, γ̂α, as 1-form basis elements satisfying
the Clifford product relation,

γ̂αγ̂β = γ̂α · γ̂β + γ̂α ∧ γ̂β (3.1)

= ηαβ + γ̂α ∧ γ̂β (3.2)
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with the dot product of two vectors, ~a ·~b = 1
2
(~a~b +~b~a), producing a scalar and the wedge

product, ~a ∧ ~b = 1
2
(~a~b −~b~a), producing a 2-vector ( aka bivector or 2-form ). Several ex-

cellent treatments of Clifford algebras and their application in physics have been made by
David Hestenes and I recommend the reader to his work [1,2] as an introduction. Readers
unfamiliar with Clifford algebra but familiar with Dirac matrices should note the isomor-
phism between the basis 1-forms and Dirac matrices, γ̂α ∼ γα, which form a basis for the
matrix representation of Clifford algebra and satisfy the same multiplicative identities, such
as γαγβ + γβγα = 2ηαβ and anti-commutivity, γαγβ = −γβγα for α 6= β.

The factoring of the fielbein in (2.8) is performed in a Clifford algebra as

êα = γ̂βLα
β = Ψγ̂αΨ̃ (3.3)

where Ψ, an even or odd unitary Dirac-Hestenes spinor, is an even or odd graded multi-
vector element of the Clifford algebra satisfying ΨΨ̃ = 1, and Ψ̃ denotes the reverse of the
multi-vector, which reverses the products of all vectors in Ψ. The components of L may be
readily obtained from Ψ since

Lαµ = êα · γ̂µ = (Ψγ̂αΨ̃) · γ̂µ = γ̂α · (Ψ̃γ̂µΨ) (3.4)

An even unitary spinor has n(n−1)
2

degrees of freedom and may be written as the exponential
of a bivector, Ψ = eB.

In four dimensional spacetime, S, an even spinor may be written out in terms of the
basis as

ψ = a0 + bǫγ̂0γ̂ǫ + aǫγ̂1γ̂2γ̂3γ̂ǫ + b0γ (3.5)

= a0 + aǫγγ̂ǫγ̂0 + γ(b0 + bǫγγ̂ǫγ̂0) (3.6)

in which ǫ here sums from 1 to 3, and the volume element ( pseudo-scalar ) is γ = γ̂0γ̂1γ̂2γ̂3 =
dx0dx1dx2dx3 det γ = e−1 ( both the volume-element, γ, and symmetric fielbein matrix, γ,
appear in this expression, the distinction apparent via context ). Note that the quater-
nions, familiar from their use in 3-space rotations, are here equivalent to the spacelike
bivectors γσǫ = γγ̂ǫγ̂0. An even non-unitary Dirac-Hestenes spinor, ψ, induces a conformal
transformation, a Lorentz transformation by L and scaling by s ( aka Weyl or orthogonal
transformation ), given by

sγ̂βLα
β = ψγ̂αψ̃ (3.7)

in which ψ is an even multi-vector free of restrictions. An even non-unitary, non-null (

ψψ̃ 6= 0 ), spinor may be factored as ψ = s
1

2 eγ
φ

2Ψ, which contains an even unitary spinor, Ψ,

as well as a duality rotation, eγ
φ

2 , that does not effect the result of the vector transformation
(3.7). An even unitary spinor factors into a boost along ~v and rotation around ~r as Ψ =
eB = evǫσ

ǫ

erǫγσ
ǫ

.
This is the most important fact to understand in this paper: A unitary spinor field

is defined and understood here as a Clifford algebra representation of a restricted Lorentz
transformation. And the fielbein, êα, factors uniquely into a unitary spinor part, Ψ, and a
metric part, γ̂α, via (3.3). The fielbein hence carries a spinor part and gravitational part –
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spinors are already in General Relativity, they’ve just remained hidden in êα. This is quite
different then the way spinors are usually defined, but an isomorphism holds between this
definition of spinor as transformation and the standard definition. Appendix A contains a
translation to Dirac spinors and the conformal transformation matrix.

IV. COORDINATE TRANSFORMATIONS

Although the fielbein vectors, êα, are coordinate independent objects, the fielbein matrix,

(e−1i)
α
, and it’s decomposition, are not coordinate independent. A new set of γ̂β and a new

Lα
β and hence new Ψ must be obtained after a coordinate transformation such that the new

γ matrix is symmetric. This is achieved as follows:

Consider a coordinate change xi → x′j(x) that gives ~dxi = ~dx′j ∂xi

∂x′j = ~dx′jLi
j. The old

symmetric γ̂β are now given by γ̂β = ~dxi (γi)
β = ~dx′jLi

j (γi)
β. The matrix Li

j (γi)
β is now

not symmetric in j and β. A new set of γ̂β
′
, the old set rotated by the same L, is needed so

that the new γ′ is symmetric. This is

γ̂β
′
= ~dx′j (γ′j)

β = ~dx′jLi
j (γi)

µLµ
β = γ̂µLµ

β = Φγ̂βΦ̃ (4.1)

giving a symmetric γ′ = LTγL, and Φ the unitary spinor corresponding to transformation

by L. Since êα remains the same but γ̂β has changed, Ψ must change as well so that

êα = Ψγ̂αΨ̃ = ΨΦ̃γ̂′αΦΨ̃ = Ψ′γ̂′αΨ̃′ (4.2)

and the spinor Ψ changes as expected under a coordinate transformation to Ψ′ = ΨΦ̃.

V. DERIVATIVE

The covariant derivative, ∇~V
, is defined to have the following properties,

∇ ~A+f ~B
C = ∇ ~A

C + f∇ ~B
C (5.1)

∇ ~A(B + fC) = ∇ ~AB + f∇ ~AC + (Ai∂if)C (5.2)

where ∂i =
∂
∂xi and f is a scalar. The covariant derivative acting on vectors gives

∇i~v = ∇i(v
k ~∂k) = (∂iv

k) ~∂k + vk(∇i
~∂k) (5.3)

= ~∂j [∂iv
j + vkgjm ~∂m · (∇i

~∂k)] (5.4)

= ~∂j [∂iv
j + Γj

ikv
k] (5.5)

in which ∇i = ∇~∂i
and the affine connection is Γjik = ~∂j · ∇i

~∂k.
Clifford algebra allows for the definition of the vector derivative, or gradient,

~∇ = êα∇êα = γ̂α∇γ̂α = γ̂α(γ−1α)
i∇i = ~∂i∇i (5.6)

which gives, for example,
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~∇~v = ~∇ · ~v + ~∇∧ ~v (5.7)

= ~∂i · ∇i~v + ~∂i ∧∇i~v (5.8)

= gik(∂ivk − Γj
ikvj) + ~∂i ∧ ~∂k (∂ivk − Γj

ikvj) (5.9)

= γ̂α · ∇γ̂α~v + γ̂α ∧∇γ̂α~v (5.10)

= (∂µv
µ + ωα

αµv
µ) + γ̂α ∧ γ̂β (∂αvβ + ωβαµv

µ) (5.11)

where the spin connection for the symmetric fielbein is ωβαµ = γ̂β ·∇γ̂α γ̂µ and ∂α = (γ−1α)
i
∂i

in this expression.
The covariant derivative acting on a symmetric vielbein vector may also be written as

∇µγ̂ν = γ̂αωαµν =
1

2
(ωµγ̂ν − γ̂νωµ) (5.12)

in which the connection bivector is defined as ωµ = 1
2
ωαµν γ̂α ∧ γ̂ν , and the shorthand

∇µ = ∇γ̂µ . This expression may be applied to an arbitrary multivector, A, to obtain

∇µA = ∂̄µA+
1

2
(ωµA− Aωµ) (5.13)

where ∂̄µ = (γ−1µ)
i∂̄i is the partial derivative acting only on coefficients in A. This naturally

gives rise to the “covariant spinor derivative” when acting on objects composed of an even
multiple of a spinor, for example

∇µ

(
Ψγ̂0Ψ̃

)
= (∂̄µΨ+

1

2
(ωµΨ−Ψωµ))γ̂0Ψ̃ (5.14)

+ Ψ
1

2
(ωµγ̂0 − γ̂0ωµ)Ψ̃ (5.15)

+ Ψγ̂0(∂̄µΨ̃ +
1

2
(ωµΨ̃− Ψ̃ωµ)) (5.16)

= (∇s
µΨ)γ̂0Ψ̃ + Ψγ̂0 ˜(∇s

µΨ) (5.17)

in which the middle terms cancel to give the covariant spinor derivative, ∇s
µΨ = ∂̄µΨ+ 1

2
ωµΨ,

also known as the covariant Dirac operator in curved spacetime.

VI. CURVATURE AND GRAVITATION

Since the metric is independent of local Lorentz transformations of the fielbein, all tra-
ditional geometric objects derived from the metric may be written interchangeably in terms
of the fielbein, êα, or symmetric fielbein, γ̂α, basis. Since the metric degrees of freedom
are contained uniquely in γ̂α ( êα containing also the spin information of Ψ ) traditional
geometric objects will be written in terms of γ̂α except where noted.

The Ricci vectors and scalar curvature in Clifford notation are

~Rα = Rαβ γ̂β = (~∇∧ ~∇) · γ̂α (6.1)

R = γ̂α · ~Rα (6.2)
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in which Rαβ is the Ricci tensor in the symmetric fielbein basis. Integration over the scalar
curvature gives the gravitational action,

S =
∫
γ R =

∫
γ

{
γ̂α · (~∇∧ ~∇) · γ̂α

}
(6.3)

Requiring this action to be stationary with respect to independent variations of γ̂α and ~∇,
the Palatini method [3], gives the equations,

~Rα −
1

2
γ̂αR = 0 (6.4)

~∇∧ γ̂α + γ̂µ ∧ γ̂ν ωνµα = 0 (6.5)

The first is the vacuum Einstein equation and the second, solvable for ωνµα in terms of γ̂α
and ∂iγ̂α, is the defining equation for the metric compatible torsionless spin connection.

VII. TIME AND SPINOR DYNAMICS

There is a long standing problem in General Relativity, and hence in approaches to quan-
tum gravity, regarding the nature of time. One would like to evolve a spacelike submanifold
in some coordinate time on the spacetime manifold, but the equations are invariant with
respect to diffeomorphisms of the coordinates, so demanding a priori that the coordinate
x0 be time, a non-coordinate invariant statement, is clearly a poor option. One needs to
come up with a coordinate invariant clock, a scalar field, t, that, on relevant patches of the
manifold, corresponds to the time. One good option is to introduce t as a separate physical
scalar field on the manifold [4], but consider the following alternative method:

Demand that, on relevant patches, the unit time fielbein vector, ê0, be closed

~∇∧ ê0 = 0 (7.1)

and hence that, on patches of the manifold for which every closed oriented curve is the
boundary of some compact oriented surface [5], ê0 is exact

ê0 = ~∇t (7.2)

This method has several good attributes. The arrow of time, the coordinate invariant
form, ê0, gives rise naturally to the scalar time, t. Hence the clock field, t, is obtained in
a coordinate invariant manner using geometric elements at hand. One may then naturally
choose to transform to coordinates in which x0 = t and evolve a spacelike submanifold in
Gaussian normal coordinates with ê0 as the normal vector field.

The constraint equation, (7.1), is a bivector equation corresponding to the restriction of
n(n−1)

2
degrees of freedom and determines the dynamics of Ψ as follows

0 = ~∇∧ ê0 (7.3)

= γ̂µ ∧∇µ

(
Ψγ̂0Ψ̃

)
(7.4)

= γ̂µ ∧ [(∇s
µΨ)γ̂0Ψ̃ + Ψγ̂0 ˜(∇s

µΨ)] (7.5)
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= 2γ̂µ∧ <(∇s
µΨ)γ̂0Ψ̃>1 (7.6)

= 2γ̂µ ∧ γ̂ν <γ̂ν(∇
s
µΨ)γ̂0Ψ̃>0 (7.7)

= 2γ̂µ ∧ γ̂ν <Ψγ̂ν(∇
s
µΨ)>0 (7.8)

= 2γ̂µ ∧ γ̂ν Tµν (7.9)

in which the operator <>n gives the grade n elements of a multivector, Ψ = γ̂0Ψ̃, and
the energy-momentum tensor for a spinor field, Tµν , has been recognized. The requirement

that the unit time vector, ê0, be closed is hence equivalent to the requirement that the
anti-symmetric part of the spinor energy-momentum tensor, Tµν , vanish.

One natural way to enforce the vanishing of T[µν] is to construct the equations of motion
to be

Rµν −
1

2
ηµνR = Tµν (7.10)

in which the symmetry of the Ricci tensor will enforce the vanishing of T[µν]. Since Tµν =

<Ψγ̂ν(γ
−1

µ)
i
(∇s

iΨ)>0 is the energy-momentum tensor of the standard spinor action, these
equations of motion will come from the action

S =
∫
γ

{
R+ <Ψ ~∇sΨ>0

}
(7.11)

Thus it appears that the matter action arises from the geometric restriction that full fielbein
gravity have a closed unit time vector. To vary Ψ in (7.11) in spacetime one may vary Ψ
over all even multi-vectors and enforce ΨΨ̃ = 1 via the method of Lagrange multipliers.
Introducing ms and mp as Lagrange multiplier scalar fields, (7.11) is equivalent to

S =
∫
γ

{
R+ <ψ ~∇sψ>0 + <(ms + γmp)(ψψ̃ − 1)>0

}
(7.12)

with ψ varied over it’s eight degrees of freedom and the physical interpretation of m clear.
If ψ is dynamically restricted to be unitary, as above, then one might also consider terms in
the action such as ψRψ̃ and address conformal symmetry.

An alternative to the inclusion of the term <Ψ ~∇sΨ>0 in the action might be the direct
restriction to ~∇ ∧ ê0 = 0 via the method of Lagrange multipliers, with the inclusion of a
term such as <B2

~∇(Ψγ̂0Ψ̃)>0, with B2 a Lagrange multiplier bivector field and dynamical
selection of B2 acting as a method of symmetry breaking.

VIII. GAUGE SYMMETRIES

A central proposal of this paper is that the ostensibly non-gravitational dynamics of the
fielbein, the dynamics of ψ, are contained entirely in the geometric restriction ~∇ ∧ ê0 = 0.
The dynamics imposed by (7.12) on ψ are overly restrictive in this regard and need to be

loosened by the addition of symmetries corresponding to the symmetries of ~∇∧ ê0 = 0. This
is accomplished via the method of adding vector gauge fields and couplings to attain the
necessary symmetries.
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The first symmetries to notice in ~∇ ∧ ê0 = γ̂µ ∧ ∇µ

(
ψγ̂0ψ̃

)
= 0 are the invariance of

this equation under duality and space rotations of γ̂0. The duality rotation invariance is

invariance of ê0 under the transformation ψ 7→ ψeγ
φ

2 . It corresponds to the group U(1)
and necessitates the addition of the corresponding vector gauge field in the standard man-
ner to (7.12). The space rotation invariance is invariance of ê0 under the transformations
ψ 7→ ψerǫγσ

ǫ

. It corresponds to the group SU(2) and necessitates the addition of the three
corresponding gauge fields.

One should consider the lifting of the restriction that ψ in (7.12) be even. This raises
the possibility that one might add to ψ an odd multivector part, such as ψo eL, in which
ψo is odd and eL = 1

2
(1 + γ̂3γ̂0) is an idempotent projection operator. This ensures that

the scalar and pseudo-scalar parts of ψψ̃ remain unchanged, since eLẽL = 0. Note also that
eLγ̂0ẽL is a null vector, so factoring ψ into the left ideals of eL and ẽL = eR shows how ψ

is built from left and right chirality states and allows one to see the geometric meaning of
U(1)× SU(2)L.

A possible symmetry of ~∇ ∧ ê0 = 0 to notice is the symmetry of transformations of the
whole bivector equation, B = ~∇ ∧ ê0 = 0. This equation will be satisfied if and only if
<BB̃ >0= 0. The scalar <BB̃ >0 is invariant under the group SU(3) of transformations
of the bivector B, as described in [6], though it does not seem possible to incorporate this
symmetry into ψ as a gauge symmetry in the same manner as U(1) and SU(2). This
difficulty suggests that it may be necessary to consider other dimensions from the four of
spacetime in order to naturally obtain the U(1) × SU(2) × SU(3) gauge symmetry of the
standard model.

IX. CONCLUSION

In this paper a step towards unification has been achieved, the unification of matter and
gravity in a minimal geometric framework. Although others have recently proposed a similar
unification scheme of obtaining gravitational dynamics from the Dirac operator [7], the path
proposed in the present exhibition goes in the other direction by obtaining the spinor field
and Dirac operator from geometry.

A significant problem remaining in the current approach is the difficulty in satisfactorily
accommodating SU(3) symmetry. It seems plausible that SU(3) could obtain with the ad-
dition of other dimensions to spacetime, perhaps in a Kaluza-Klein compactification scheme
or in a holographic approach. And, of course, this program on the unification of matter and
gravity would be incomplete without mention of the possibility of understanding quantum
field theory within a geometric model. It is my greatest hope that this goal will be achieved,
and that this work has furthered progress towards that end.
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APPENDIX A: SPINORS AND ORTHOGONAL TRANSFORMATIONS

An even Dirac-Hestenes spinor, ψ, in spacetime may be written as a 4× 4 matrix if the
γ̂α are identified with Dirac matrices and multiplied accordingly. For a Dirac matrix choice,
in agreement with a mostly negative η, of

γ0 =
(
I 0
0 −I

)
γǫ =

(
0 σǫ

−σǫ 0

)

in which I is the 2×2 identity matrix and σǫ represents the Pauli matrices

σ1 =
(
0 1
1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0
0 −1

)

(3.6) gives

ψ =




a0 + i a3 a2 + i a1 b3 − i b0 b1 − i b2
−a2 + i a1 a0 − i a3 b1 + i b2 −b3 − i b0
b3 − i b0 b1 − i b2 a0 + i a3 a2 + i a1
b1 + i b2 −b3 − i b0 −a2 + i a1 a0 − i a3


 (A1)

Each column and each row of the matrix spinor representation contains all of the information
in ψ. The translation can be made to the equivalent Dirac column spinor by

ψD = ψ




1
0
0
0


 =




a0 + i a3
−a2 + i a1
b3 − i b0
b1 + i b2


 (A2)

which contains the same information as the spinor ψ in (3.6), though in a less intuitive

representation. Since the massless Dirac equation is equivalent in either notation, γ̂β∂̄βψ =
0 ⇔ γβ∂βψD = 0, translation from one notation to the other is immediate. Note also the

relationship ψ̃ = γ0ψ = γ0ψ
†γ0.

The matrix elements of sLαβ can be calculated via (3.4,3.7) in terms of the coefficients
of ψ, and hence in terms of the Dirac spinor, ψD. They are presented here to convince the
reader of this identification.

sL00 = a0
2 + a3

2 + a2
2 + a1

2 + b3
2 + b0

2 + b1
2 + b2

2

sL01 = 2(−a0b1 + a3b2 + a1b0 − a2b3)

sL02 = 2(−a3b1 − a0b2 + a2b0 + a1b3)

sL03 = 2(a2b1 − a1b2 + a3b0 − a0b3)

sL10 = 2(a0b1 + a3b2 − a2b3 − a1b0)

sL11 = −a0
2 + a3

2 − a1
2 + a2

2 − b0
2 + b3

2 − b1
2 + b2

2

sL12 = 2(−b0b3 − b1b2 − a0a3 − a1a2)

sL13 = 2(b0b2 − b3b1 + a0a2 − a3a1)

sL20 = 2(−a3b1 + a0b2 + a1b3 − a2b0)

sL21 = 2(a0a3 − a1a2 + b0b3 − b1b2)
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sL22 = −a0
2 + a3

2 + a1
2 − a2

2 − b0
2 + b3

2 + b1
2 − b2

2

sL23 = 2(−b0b1 − b3b2 − a0a1 − a3a2)

sL30 = 2(−a3b0 + a0b3 + a2b1 − a1b2)

sL31 = 2(−a3a1 − a0a2 − b3b1 − b0b2)

sL32 = 2(a0a1 − a3a2 + b0b1 − b3b2)

sL33 = b1
2 + b2

2 − b0
2 − b3

2 + a1
2 + a2

2 − a0
2 − a3

2

A symbolic computation confirms that this satisfies sLTηsL = s2 η and gives the scaling

s2 = s2LT ηLη = a0
4 + a1

4 + a2
4 + a3

4 + b0
4 + b1

4 + b2
4 + b3

4

+2a0
2b0

2 − 2a0
2b1

2 − 2a0
2b2

2 + 2a3
2a2

2 + 2a3
2a1

2 + 2a3
2b3

2

−2a3
2b0

2 − 2a3
2b1

2 − 2a3
2b2

2 + 2a2
2a1

2 − 2a2
2b3

2 − 2a2
2b0

2

−2a2
2b1

2 + 2a2
2b2

2 − 2a1
2b3

2 − 2a1
2b0

2 + 2a1
2b1

2 − 2a1
2b2

2

+2a0
2a1

2 − 2a0
2b3

2 + 2b3
2b0

2 + 2b0
2b2

2 + 2b0
2b1

2 + 2b3
2b2

2

+2a0
2a3

2 + 2a0
2a2

2 + 2b3
2b1

2 + 2b1
2b2

2 + 8a0b1a1b0

+8a0b2a2b0 + 8a2b1a1b2 + 8a3b0a0b3 + 8a3b1a1b3 + 8a3b2a2b3
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