
Chapter 1

n

T

Introductio

he display of four-dimensional data is usually accomplished by assigning three

-

p

dimensions to location in three-space, and the remaining dimension to some scalar pro

erty at each three-dimensional location. This assignment is quite apt for a variety of

v

four-dimensional data, such as tissue density in a region of a human body, pressure

alues in a volume of air, or temperature distribution throughout a mechanical object.

d

While there exist a number of methods to approach the visualization of three-

imensional scalar fields ([Chen 85], [Drebin 88], [Kajiya 84], [Lorensen 87], and [Sa-

d

bella 88] are good examples), there are few methods that are effective on true four-

imensional data, where the data do not represent a three-dimensional scalar field.

s

t

This paper approaches the problem of displaying 4D objects as physical model

hrough two main approaches: wireframe methods and raytracing. Both of these

t

(

methods employ true four-dimensional viewpoints and viewing parameters, and ligh

or depthcue) the rendered objects from four-space.
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1.1 Background

The tremendous difficulty of visualizing true four-space data lies in the fact that

d

there are no solid paradigms for three-space creatures such as ourselves. This

ifficulty is best understood in imagining the plights of two-space creatures who try to

o

comprehend our three-space world (see [Abbott 52] or [Dewdney 84] for explorations

f this idea).

The method we use to comprehend three-dimensional scenes is quite complex,

d

since each eye is presented with only the two-dimensional projection of the three-

imensional scene. There are several methods we employ to convert these 2D projec-

t

u

tions to an imaginary 3D model. These methods include focusing (of limited help bu

seful when viewing with a single eye), parallax (deriving depth through binocular vi-

d

sion), application of object knowledge to understand different views, and motion to

erive depth information.

These methods of visualizing 3D objects are very strong, and are usually quite

-

c

accurate. When dealing with a single rendered 2D projection, however, the image be

omes a bit more difficult to comprehend, because the viewer can no longer use focus-

ing or parallax to extract information from the scene.

Usually, however, rendered 2D projections are quite intelligible because these

s

a

projections involve objects or structures familiar to the viewer, and because shadow

nd highlights also help the viewer to extract depth information. The main thing that

a

aids our understanding of a scene when given only 2D projections is our experience

nd intuitive understanding of the 3D world. This additional understanding helps us to

w

intuitively reconstruct the original 3D scene, and to accurately guess the portions for

hich we have no visual information.
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n

If we are deprived of this intuition and experience, then reconstructing the origi-

al scene from a projection is very difficult. This is what makes visualizing 4D data

s

o

such a complex task. In fact, when rendering a 4D scene, not one but two dimension

f the original data are lost; one can think of a screen image of 4D data as a projection

o

of the projection of the scene. This further loss of information, coupled with our lack

f intuitive understanding, demands that the 4D visualization methods provide addi-

.

T

tional information, usually in the form of motion, multiple views or other visual cues

hese techniques will be presented in more detail later in this paper.

1.2 Previous Work

The idea of understanding four-dimensional space is at least as old as the

.

U

nineteenth century, and has been studied mathematically at least as early as the 1920’s

nderstanding four-space has also been explored in texts that attempt to model two-

-

n

dimensional creatures and their perceptions of three-space (see [Abbott 52] and [Dewd

ey 84]). Studying the difficulties of two-space creatures who attempt to understand

r

t

three-space often yields insight into the problem of understanding four-space from ou

hree-dimensional world.

The task of viewing four-space structure has been explored as early as [Noll 67],

l

who rendered four-dimensional wireframes with 4D perspective projection. Noll was

imited in his exploration of four-dimensional structures by the technology of that time;

i

his method consisted of generating pictures via plotter and then transferring each draw-

ng onto film. The movies he produced yielded a great amount of insight into the

s

c

structure of various four-dimensional objects. However, the lack of interaction wa

ertainly a significant hindrance.
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In 1978, David Brisson ([Brisson 78]) presented hyperstereograms of 4D

ireframes. These hyperstereograms are unconventional in the sense that the viewer

f

t

must rotate the hyperstereograms in order to resolve the second degree of parallax o

he 4D view. These hyperstereograms are very difficult to view, but do provide anoth-

er method of understanding the four-dimensional structures.

In the early 1980’s, Thomas Banchoff (who is heavily involved in the visualiza-

w

tion of four-space) rendered hypersphere ‘‘peels’’ ([Dewdney 86] and [Banchoff 90])

hich resulted in some beautiful images of their rotation in four-space.

-

d

Several people have rendered four-dimensional objects by producing the three

imensional slices of the object; this is presented in [Banchoff 90].

,

r

Rendering solid four-dimension objects yields a three-dimensional ‘‘image’’

ather than the two-dimensional image of a three-dimensional object. [Steiner 87] and

d

[Carey 87] use scanplane conversion to render four-dimensional objects into three-

imensional voxel fields. Both approaches also tackle the difficult problem of hidden

w

volume removal in four-dimensional views. The resulting fields are then displayed

ith semi-transparent voxels in order to view the internal structure of the three-

1

dimensional projections.

.3 Overview of This Research

This research builds on the existing wireframe display techniques and tackles the

visualization of solid four-dimensional objects via raytracing techniques.

The wireframe viewer takes as input a list of four-space vertices and a list of

-

j

edges between pairs of these vertices. It produces a single image which is the 2D pro

ection of the 4D scene, and which may be interactively rotated, depthcued, and

parallel- or perspective-projected.
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The limitations of the 4D wireframe viewer are pretty much the same as those

or a 3D wireframe viewer: the lack of surface information, the multiple ambiguities

d

e

of a wireframe view, and the fact that all objects must be decomposed to vertices an

dges.

The significant advantage of the wireframe viewer is that image display is quite

f

fast, especially when compared to raytracing methods. This speed of display allows

or interactive rotation of the 4D object, which greatly aids in an understanding of the

w

object and its relationship to the rest of the scene. Another advantage is that the

ireframe viewer is able to display curves in four-space.

y

s

The 4D raytracer solves the hidden volume and lighting problem in a ver

traight-forward manner (as for 3D). It takes an input file of 4D object information

-

d

and probes the scene that contains these objects. The implemented 4D raytracer han

les three primitives: hyperspheres, tetrahedra, and parallelepipeds, although the

methods presented in this paper apply to a much broader class of objects.

The output of the 4D raytracer is a gridded 3D volume of RGB triples, analo-

-

v

gous to the gridded 2D volume of RGB data produced by a 3D raytracer. The disad

antages of the raytracer include the increased rendering time and the resultant 3D

volume, which must be further rendered with other methods.

The main advantages of the raytracer include the fact that the rendered image has

s

hidden volumes, shadows, highlights, reflections and other artifacts that aid the under-

tanding of the scene.
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1.4 Contents of This Paper

Chapter 2 covers the four-dimensional geometry that is used in this research, and

p

focuses on vector operations and 4D rotations. The 3D and 4D viewing models are

resented on a functional level in Chapter 3 and implemented in detail in Chapters 4

s

t

and 5. Chapter 4 covers the rendering of 4D data via wireframe methods. It describe

he method of projecting the image from four-space to three-space, and then from

-

t

three-space to the 2D viewport. It also covers the implementation of 4D object rota

ion and other wireframe visual aids. The four-dimensional raytracing method is

-

t

presented in Chapter 5; this includes the generation of the ray target grid, the intersec

ion algorithms used for the fundamental 4D objects, and the methods of visualizing

o

t

the resulting 3D ‘‘image’’ of RGB data. Finally, Chapter 6 provides a conclusion t

his research. It includes notes on the research in general, suggestions for further

e

p

research and exploration, and provides a few comments on the implementation of th

rograms discussed in this paper.



Chapter 2

y

M

Four Dimensional Geometr

any of the underlying mathematical operations used in the 3D rendering pro-

,

h

cess extend effortlessly to four dimensions. The rotation and cross-product operations

owever, do not extend easily or intuitively; these are presented here before continuing

2

with the rest of this paper.

.1 Vector Operations and Points in Four-Dimensional Space

r

t

For the most part, vector operations in four space are simple extensions of thei

hree-space counterparts. For example, computing the addition of two four-vectors is a

c

matter of forming a resultant vector whose components are the sum of the pairwise

oordinates of the two operand vectors. In the same fashion, subtraction, scaling, and

.dot-products are all simple extensions of their more common three-vector counterparts

In addition, operations between four-space points and vectors are also simple ex-

t

tensions of the more common three-space points and vectors. For example, computing

he four-vector difference of four-space points is a simple matter of subtracting pair-
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v

wise coordinates of the two points to yield the four coordinates of the resulting four-

ector.

For completeness, the equations of the more common four-space vector opera-

tions follow. In these equations, U = <U , U , U , U > and V = <V , V , V , V >0 1 2 3 0 1 2 3

are two source four-vectors and k is a scalar value.

U + V = <U + V , U + V , U + V , U + V >
→

→ →
0 0 1 1 2 2 3 3

→
0 0 1 1 2 2 3 3>U − V = <U − V , U − V , U − V , U − V

kV = <kU , kU , kU , kU >
→

→
0 1 2 3

→
0 0 1 1 2 2 3 3

T

U ..V = U V + U V + U V + U V

he main vector operation that does not extend trivially to four-space is the cross

p

product. A three-dimensional space is spanned by three basis vectors, so the cross-

roduct in three-space computes an orthogonal three-vector from two linearly indepen-

dent three-vectors. Hence, the three-space cross product is a binary operation.

In N-space, the resulting vector must be orthogonal to the remaining N-1 basis

c

vectors. Since a four-dimensional space requires four basis vectors, the four-space

ross product requires three linearly independent four-vectors to determine the remain-

-

q

ing orthogonal vector. Hence, the four-space cross product is a trinary operation; it re

uires three operand vectors and yields a single resultant vector. In the remainder of

X

this paper, the four-dimensional cross product will be represented in the form

(U , V , W ).4
→ → →

To find the equation of the four-dimensional cross product, we must first estab-

lish criteria of the cross product. These are as follows:

(1) If the operand vectors are not linearly independent, the cross product
must be the zero vector.
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(2) If the operand vectors are linearly independent, then the resultant vec-
tor must be orthogonal to each of the operand vectors.

:(3) The four-space cross product preserves scaling, i.e. for any scalar k

k X (U , V , W ) = X (kU , V , W ) = X (U , kV , W ) = X (U , V , kW )

(

4
→ → →

4
→ → →

4
→ → →

4
→ → →

4) Changing the order of two of the operands results only in a sign

I

change of the resultant vector.

t turns out that a somewhat simple-minded approach to computing the four-

r

t

dimensional cross product is the correct one. To motivate this idea, we first conside

he three-dimensional cross product. The 3D cross product can be thought of as the

determinant of a 3x3 matrix whose entries are as follows:

X (U , V ) =
�
�
�
� V

U
i

V
U

j

V
U
k �

�
�
�

,

→

3
→ →

0

0

1

1

2

2

→
where U and V are the operand vectors, and i , j & k represent the unit components

of the resultant vector. The determinant of this matrix is

i (U V − U V ) − j (U V − U V ) + k (U V − U V )

w

→
1 2 2 1

→
0 2 2 0

→
0 1 1 0

hich is the three-dimensional cross product. Using this idea, we’ll form the analo-

gous 4×4 matrix, and see if it meets the four cross product properties listed above:

X (U , V , W ) =

�
�
�
�
� W
V
U
i

W
V
U

j

W
V
U
k

W
V
U
l �

�
�
�
�

.
3

3

3

2

2

2

1

1

1

0

0

0

4
→ → →

[2.1a]



The determinant of this matrix is

10

i

�
�
�
� W
V
U

W
V
U

W
V
U �

�
�
�

− j

�
�
�
� W
V
U

W
V
U

W
V
U �

�
�
�

+ k

�
�
�
� W
V
U

W
V
U

W
V
U �

�
�
�

− l

�
�
�
� W
V
U

W
V
U

W
V
U �

�
�
�

.2

2

2

1

1

1

0

0

0

3

3

3

1

1

1

0

0

0

3

3

3

2

2

2

0

0

0

3

3

3

2

2

2

1

1

1

[2.1b]

m

If the operand vectors are linearly dependent, then the vector rows of the 4×4

atrix will be linearly dependent, and the determinant of this matrix will be zero.

r

m

This satisfies the first condition. The third condition is also satisfied, since a scala

ultiple of one of the vectors yields a scalar multiple of one of the rows of the 4x4

s

a

matrix. This results in a determinant that is scaled by that factor, so condition three i

lso met.

The fourth condition falls out as a property of determinants, i.e. when two rows

H

of a determinant matrix are interchanged, only the sign of the determinant changes.

ence, the fourth condition is also met.

The second condition is proven by calculating the dot product of the resultant

f

t

vector with each of the operand vectors. These dot products will be zero if and only i

he resultant vector is orthogonal to each of the operand vectors.

UThe dot product of the resultant vector X (U , V , W ) with the operand vector4
→ → → →

is the following (refer to equation [2.1b]):

U ..X (U ,V ,W ) =

0

→
4

→ → →

1

1

1

2

2

2

3

3

3

1

0

0

0

2

2

2

3

3

3

2

0

0

0

1

1

1

3

3

3

3

0

0

0

1

1

1

2

2

2
.

U �
�
�
�

V
U

W
V

U

W
V

U �
�
�
�

− U

�
�
�
� W

V
U

W
V

U

W
V

U �
�
�
�

+ U

�
�
�
� W

V
U

W
V

U

W
V

U �
�
�
�

− U

�
�
�
� W

V
U

W
V

U

W
VU

�
�
�
� W
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This dot product can be rewritten as the determinant

�
�
�
�
� W
V

U
U

W
V

U
U

W
V

U
U

W
V

U
U

�
�
�
�
�

,
3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

which is zero, since the first two rows are identical. Hence, the resultant vector

-X (U , V , W ) is orthogonal to the operand vector U . In the same way, the dot pro4
→ → → →

d
→

4
→ → → →

4
→ → →

ucts of V .. X (U , V , W ) and W .. X (U , V , W ) are given by the determinants

W �
�
�
�
�

,
U
V

W

W

U
V

W

W

U
V

W

W

U
V

U
V �

�
�
�
�

and

�
�
�
�
� W

V
U
V

W
V

U
V

W
V

U
V

W
V

�
�
�
�
� W 0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

which are each zero.

Therefore, the second condition is also met, and equation [2.1a] meets all four of

the criteria for the four-dimensional cross product.

Since the calculation of the four-dimensional cross product involves 2×2 deter-

c

minants that are used more than once, it is best to store these values rather than re-

alculate them. The following algorithm uses this idea.
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o
Cross4 computes the four-dimensional cross product of the three vectors U, V and W, in that
rder. It returns the resulting four-vector.

)
A
function Cross4:Vector4 (U, V, W: Vector4

,B,C,D,E,F: Real Intermediate Values

b
result: Vector4 Result Vector

egin
Calculate intermediate values.

)A ← (V[0] W[1]) (V[1] W[0]* − *
B * − *← (V[0] W[2]) (V[2] W[0])

)C ← (V[0] W[3]) (V[3] W[0]* − *
*D * −← (V[1] W[2]) (V[2] W[1])

E ← (V[1] W[3]) (V[3] W[1])* − *
F * − *← (V[2] W[3]) (V[3] W[2])

.
r
Calculate the result-vector components
esult[0] ← (U[1] F) (U[2] E) (U[3] D)

−
* − * + *
* + * − * )

r
result[1] ← (U[0] F) (U[2] C) (U[3] B
esult[2] ← (U[0] E) (U[1] C) (U[3] A)

−
* − * + *
* + * − * )

r

result[3] ← (U[0] D) (U[1] B) (U[2] A

eturn result

2

endfunc Cross4

.2 Rotations in Four Dimensions

Rotation in four space is initially difficult to conceive because the first impulse is

b

to try to rotate about an axis in four space. Rotation about an axis is an idea fostered

y our experience in three space, but it is only coincidence that any rotation in three-

space can be determined by an axis in three-space.

For example, consider the idea of rotation in two space. The axis that we rotate

-

d

‘‘about’’ is perpendicular to this space; it isn’t even contained in the two space. In ad

ition, given an origin of rotation and a destination point in three space, the set of all

t

rotated points for a given rotation matrix lie in a single plane, just like the case for

wo space.

Rotations in three-space are more properly thought of not as rotations about an

c

axis, but as rotations parallel to a 2D plane. This way of thinking about rotations is

onsistent with both two space (where there is only one such plane) and three space
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(where each rotation ‘‘axis’’ defines the rotation plane by coinciding with the normal

ector to that plane).

Once this idea is established, it is easy to construct the basis 4D rotation ma-

D

b

trices, since only two coordinates will change for a given rotation. There are six 4

asis rotation matrices, corresponding to the XY , YZ , ZX , XW , YW and ZW planes.

These are given by:

XY Plane

�
�
�
�

0
0

−sinθ
cosθ

0
0

cosθ
sinθ

0
1
0
0

1
0
0
0 �

�
�
�

YZ Plane

�
�
�
�

0
0
0
1

0
−sinθ
cosθ

0

0
cosθ
sinθ

0

1
0
0
0 �

�
�
�

ZX Plane

�
�
�
�

0
sinθ

c
0
osθ

0
0
1
0

0
cosθ

−
0

sinθ

1
0
0
0 �

�
�
�

�
�
�
�

0
0

θ−sin
θ

0
0

cos
θcos
θ

�
�
�
� 0

0
0
1

0
0
1
0

sin

e

0 �
�
�
�

ZW Plan

θ−sin
0

θ

0

0
1
0
0

cos

θcos
0

θ

�
�
�
� 0

0
0
1

sin

e

sinθ �
�
�
�

YW Plan

0
0

θ

cosθ

0
0
1
0

0
1
0
0

cos

0
0

θ

�
�
�
� −sin

eXW Plan



Chapter 3

e

B

Overview of Visualization in Three and Four Spac

efore describing the rendering methods for four-space visualization, we need to

s

v

establish a viewing model that adequately describes a view of and in four space. Thi

iew needs to account for position of the viewpoint, direction of view, and the orienta-

tion of the scene from the viewpoint (or, conversely, the orientation of the viewer).

This chapter contains only the concepts of viewing in three- and four-space; the

3

mathematical and implementation details are presented in chapters 4 and 5.

.1 Viewing in Three-Space

Before attacking the four dimensional viewing model, let’s review the viewing

model for three dimensions (presented in [Foley 87]).

The first thing to establish is the viewpoint, or viewer location. This is easily

s

i

done by specifying a 3D point in space that marks the location of the viewpoint. Thi

s called the from-point or viewpoint.

The next thing to establish is the line of sight (where we’re looking). This can
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i

be done by either specifying a line-of-sight vector, or by specifying a point of interest

n the scene. The point-of-interest method has several advantages. One advantage is

t

that the person doing the rendering usually has something in mind to look at, rather

han some particular direction. It also has the advantage that you can ‘‘tie’’ this point

s

p

to a moving object, so we can easily track the object as it moves through space. Thi

oint of interest is called the to-point.

Now that we’ve established the line of sight, we need to pin down the orientation

d

of the viewer/scene. This parameter will keep us from looking at a scene upside

own, for example. To do this, we specify a vector that will point straight up after be-

v

ing projected to the viewing plane. This vector is called the up-vector. Since the up-

ector specifies the orientation of the viewer about the line-of-sight, the up-vector must

e

not be parallel to the line of sight. The viewing program uses the up-vector to gen-

rate a vector orthogonal to the line of sight and that lies in the plane of the line of

-

t

sight and the original up-vector. See figure 3.1 for a diagram of the 3D viewing vec

ors.
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Figure 3.1

he 3D Viewing Vectors and From, To Points

T

Figure 3.2

he Resulting View From Figure 3.1
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If we’re going to use perspective projection, we need to specify the amount of

erspective, or ‘‘zoom’’, that the resultant image will have. This is done by specifying

t

the angle of the viewing cone, also known as the viewing frustum. The viewing frus-

um is a rectangular cone in three-space that has the from-point as its tip, and that en-

b

closes the projection rectangle, which is perpendicular to the cone axis. The angle

etween opposite sides of the viewing frustum is called the viewing angle. It is gen-

-

t

erally easier to let the viewing angle specify the angle for one dimension of the projec

ion rectangle, and then to tailor the angle of the perpendicular angle of the viewing

frustum to match the other dimension of the projection rectangle.

The greater the viewing angle, the greater the amount of perspective (wide-angle

-

t

effect), and the lower the viewing angle, the lower the amount of perspective (telepho

o effect). The viewing angle must reside in the range of 0 to π, exclusive.

m

i

Refer to figure 3.3 for a diagram of the viewing parameters and viewing frustu

n three dimensions. The angle from D to From to B is the horizontal viewing angle,

and the angle from A to From to C is the vertical viewing angle.

To render a three-dimensional scene, we use these viewing parameters to project

c

the scene to a two-dimensional rectangle, also known as the viewport. The viewport

an be thought of as a window on the display screen between the eye (viewpoint) and

c

the 3D scene. The scene is projected onto (or ‘‘through’’) this viewport, which then

ontains a two-dimensional projection of the three-dimensional scene.
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T

Figure 3.3

he 3D Viewing Vectors and Viewing Frustum
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3.2 Viewing in Four-Space

To construct a viewing model for four dimensions, we extend the three-

dimensional viewing model discussed in section 3.1 to four dimensions.

Three-dimensional viewing is the task of projecting the three-dimensional scene

t

onto a two-dimensional rectangle. In the same manner, four-dimensional viewing is

he process of projecting a 4D scene onto a 3D region, which can then be viewed with

a

regular 3D rendering methods. The viewing parameters for the 4D to 3D projection

re similar to those for 3D to 2D viewing.

As in the 4D viewing model, we need to define the from-point. This is concep-

s

tually the same as the 3D from-point, except that the 4D from-point resides in four-

pace. Likewise, the to-point is a 4D point that specifies the point of interest in the

4D scene.

The from-point and the to-point together define the line of sight for the 4D

-

t

scene. The orientation of the image view is specified by the up-vector plus an addi

ional vector called the over-vector. The over-vector accounts for the additional degree

o

of freedom in four-space. Since the up-vector and over-vector specify the orientation

f the viewer, the up-vector, over-vector and line of sight must all be linearly indepen-

dent.

The viewing-angle is defined as for three-dimensional viewing, and is used to

-

m

size one side of the projection-parallelepiped; the other two sides are sized to fit the di

ensions of the projection-parallelepiped. For this work, all three dimensions of the

projection parallelepiped are equal, so all three viewing angles are the same.

Figure 3.4 shows the projection of a 4D viewing frustum.
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T

Figure 3.4

he 4D Viewing Vectors and Viewing Frustum
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Chapter 4

ireframe Display of Four Dimensional Objects

4.1 High-Level Overview of 4D to 2D Projection

Projection from four-space to a two-space region involves an additional projec-

p

tion compared to the usual display of three-dimensional wireframe data. Both the 3D

rojection and the additional 4D projection can be governed by independent sets of

viewing parameters.

The first step of the 4D wireframe display process is to project the 4D vertices

e

f

from four-space to an intermediate three-dimensional region. This projection uses th

our dimensional viewing parameters discussed in section 3.2, and can be either a per-

spective projection or a parallel projection.

The next step is to take the projected vertices (now in three-space) and project

t

them once more to the 2D viewport rectangle. This projection is determined by the

hree dimensional viewing parameters presented in section 3.1, and can also be either

parallel or perspective. Once the vertices have been projected to screen coordinates,
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each edge of the wireframe is displayed.

.2 Description of 3D to 2D Projection

There are several methods of projecting three-space points to a two-dimensional

d

i

viewport. The method used and extended for this research is found in [Foley 87], an

nvolves a vector subtraction and a multiplication between a 3-vector and a 3×3 matrix

for each projected point.

The first step in projecting a 3D point is to convert its absolute ‘‘world’’ coordi-

t

nates to viewer-relative ‘‘eye’’ coordinates. In the left-handed eye coordinate system,

he eye-point is at the origin, the line-of-sight corresponds to the Z axis, the up-vector

.

R

corresponds to the Y axis, and the X axis is orthogonal to the resulting Y and Z axes

efer to figure 4.1 for a diagram of the eye-coordinate system.
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Figure 4.1

D Eye Coordinates
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To convert a 3D point to 3D eye coordinates, one must first establish the vector

rom the eye-coordinate origin to the point by subtracting the from-point from the 3D

f

t

vertex. Then the vector difference is rotated so that the to-point lies on the Z axis o

he eye-coordinate system, and the up-vector lies on the Y axis. This is accomplished

m

by multiplying the vector difference by the transformation matrix. The 3×3 transfor-

ation matrix has column vectors A , B and C , where A , B and C correspond to the

X

→ → → → → →

, Y , and Z axes in eye coordinates, respectively. The equations for these vectors are

������������ ,
mTo − Fro

�
C =

� � To − From �
→

→
→ →

→ →
d��������� , an

CUp ×
�

B

A =
� � Up × C �

= C × A ,
→ → →

→
l

w

where To is the to-point, From is the from-point, Up is the up-vector, and the origina

orld coordinates are supplied in the left-handed coordinate system. For the right-

dhanded coordinate system, the cross product order for column vectors A and B woul
→ →

be reversed.

The procedure for computing the transformation matrix is given in the following

a

algorithm. Note that Norm3 (V) returns the vector norm of the 3-vector parameter V,

nd Cross3 (U,V) returns the 3-vector cross product of the parameter vectors U and V.
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The parameters Va, Vb and Vc are the resulting transformation matrix column vectors.

rom3, To3: Point3 3D From and To Points

p

Up3: Vector3 3D Up Vector

rocedure Calc3Matrix (Va, Vb, Vc: Vector3)

b
norm: Real Vector Norm

egin
Get the normalized Vc column-vector.
Vc ← To3 From3−

)
i
norm ← Norm3 (Vc
f norm 0

E
=

rror (To3 point and From3 point are the same.)
Vc ← Vc norm/

Calculate the normalized Va column-vector.

n
Va ← Cross3 (Vc, Up3)
orm ← Norm3 (Va)

if norm 0=
Error (Up3 is parallel to the line of sight.)

Va ← Va norm/

Calculate the Vb column-vector.

e
Vb ← Cross3 (Va, Vc)

ndfunc Calc3Matrix

→ → →
Once the A , B and C vectors (corresponding to Va, Vb and Vc in the pseudo-

n

code above) are calculated, all 3D points can be transformed from 3D world coordi-

ates to 3D eye coordinates as follows:

P′ = [(P − F ) (P − F ) (P − F )]

�
�
�
� A

A
A

B

B
B

C

C
C

�
�
�
�

y

x

z

y

x

z

y

x

z

x

x x y y z z

y zwhere F , F and F are the X , Y and Z coordinates of the from-point, P is the origi-

c

nal data point in 3D world coordinates, and P′ is the transformed data point in eye

oordinates.

We can now use the resulting 3D eye coordinates to project the 3D points to a

e

i

two-dimensional rectangle. What we want is a projection that maps 3D points that li

n the 3D viewing frustum to the [−1,+1] × [−1,+1] rectangle. This rectangle will later

be mapped to the viewport on the display device.
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The projection from three-space to the 2D rectangle can be either a parallel pro-

ection or a perspective projection.

Parallel projection maps objects to the viewport in such a way that distant ob-

-

p

jects appear the same size as near objects. This is the effect that you’d get if the eye

oint was infinitely far away from the object to be viewed. In the simple case where

y

d

the projection plane is parallel to the XY plane, parallel projection can be achieved b

ropping the Z coordinate (this is the case for eye coordinates). Scaling the projection

v

to fit the [−1,+1] × [−1,+1] rectangle makes it easy to project the image to the

iewport.

Perspective projection is the more natural of the two projections. With perspec-

t

tive projection, objects that are far away appear smaller than objects that are near. In

he simple case, perspective projection is achieved by dividing by the Z coordinate.

e

[

Perspective projection should map all data points that lie in the viewing frustum to th

−1,+1] × [−1,+1] rectangle.

When using parallel projection, the equation of the data point’s normalized

:screen coordinates (from eye coordinates) is given by the following pair of equations

T =
R

P′���� and T =
R

P′���� ,x
3

x
y

3

y

[4.2a]

where P′ is the 3D point in eye coordinates, R is the radius of the set of 3D points3

e

[

centered at the 3D to-point, and T is the 2D parallel projection of P′ to th

−1,+1] × [−1,+1] rectangle. Dividing by R ensures that the parallel projection fills3

.the viewport as much as possible without extending past the viewport boundaries

For the perspective projection of point P′ , consider figure 4.2.
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Figure 4.2

D Perspective Projection in Eye Coordinates
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t

To calculate the perspective projection of point P′ , we need to project the point

o the viewplane and then to normalize the values so that points on the Z axis are pro-

X

jected to X (or Y ) = 0, and so that the values of X (or Y ) range from −1 to +1. The

axis value from figure 4.2 is calculated by noting that
P ′
P ′���� =

T ′
T ′���� . We can let

x

z

x

z

x
x

z
T z x′ = 1 if the viewing angle is still preserved. Thus, T ′ =

P ′
P ′���� . To normalize T ′ ,

note that the maximum possible value of T ′ on the viewing plane occurs atx

x
3 x 3

zT ′
T ′���� = tan(θ /2), or T ′ = tan(θ /2). Thus, the equations for the normalized perspec-

tive projection T are given by

T =
P′ tan (θ /2)

P′������������� and T =
P′ tan (θ /2)

P′������������� ,
y

3

x
y

z3
x

z

[4.2b]

where θ is the 3D viewing angle and T is the normalized perspective projection of P′3

to the [−1,+1] × [−1,+1] rectangle. Note that in the equations presented in this

l

p

chapter, the viewport is assumed to be square, so the viewing angle for the horizonta

lane and the viewing angle for the vertical plane are the same. This assumption will

also be held and extended for the 4D to 3D projection covered later.

Now that we have the points in the [−1,+1] × [−1,+1] rectangle, we’ll need to

p

map them to the viewport on the display device. This viewport is specified by the

arameters

C , C (the viewport center, in screen coordinates), and
x

x y

yL , L (the horizontal & vertical length of the viewport, in screen coordinates)

[

Given these viewport parameters, the mapping of the point T in the

−1,+1] × [−1,+1] rectangle to the display device viewport is given by the following

equations:
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���T
L

2
���T and S = C +
L

2
S = C +x x

x
x y y

y
x

[4.2c]

D

Putting this all together, we get the following algorithm. Note that the function

ot3 (U,V) returns the dot product of the two 3-vector parameters U and V.

R
NumVerts: Integer Number of 3D Vertices

adius3: Real Radius of Vertices About the To3 Point
s

V
Va,Vb,Vc: Vector3 Viewing-Transformation Column Vector

angle3: Radians 3D Viewing Angle
s

p

VertList: array of Vertex The Set of 3D Vertice

rocedure ProjectToScreen (Cx, Cy, Lx, Ly: Real)

V
S,T: Real Divisor Values

: Vector3 Scratch Vector
begin

if the 3D projection type is parallel
S ← 1 Radius3/

else
T ← 1 tan (Vangle3 2)/ /

sfor i ← 1 to NumVert
V ← VertList[i].Position3 From3−

eif the 3D projection type is perspectiv
S ← T Dot3 (V, Vc)/

+ * * )
V
VertList[i].Screen[x] ← Cx (Lx S Dot3 (V, Va)

ertList[i].Screen[y] ← Cy (Ly S Dot3 (V, Vb))

e
endloop

+ * *

ndproc ProjectToScreen

n4.3 Description of 4D to 3D Projectio

In this section, we extend the ideas and equations presented in section 4.2 to

cover the projection of points from four-space to the intermediate 3D region.

It is possible to combine the 4D to 3D and 3D to 2D projections into a single

e

t

step, but this approach lacks the flexibility of the following two-step approach. Th

wo-step approach allows the user to independently specify viewing parameters for

geach projection, and to view the 3D projection from different angles while maintainin
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a constant 4D view.

Since the 4D to 2D projection takes place in two discrete steps, we’ll need to

r

specify an intermediate 3D region for the projection to 3D coordinates. For this

esearch, the unit cube (edge length two) centered at the origin, with vertices

<±1, ±1, ±1> was chosen as the intermediate region.

As in the 3D to 2D projections, the 4D data points can be projected to 3D space

t

with either a perspective projection or a parallel projection. Neither of these projec-

ions are more ‘‘intuitive’’ than the other, but a perspective projection will yield small-

o

er 3D line segments for edges that are farther from the 4D viewpoint. As an example

f the differences between these projections, see section 4.6.

n

d

Changing the 3D projection type between perspective and parallel projectio

oes not produce as dramatic (or puzzling) a change as for the 4D projection. Howev-

p

er, switching back and forth can also provide a bit more understanding of the 4D-

rojected object.

The projection from 4D to 3D needs to be clipped at a minimum against the

-

p

W = 0 eye-coordinate plane. If both vertices have negative W eye-coordinate com

onents, the edge should not be displayed. If both vertices have non-negative W com-

g

ponents, then the edge can be displayed normally. If only one of the two vertices of a

iven edge has a negative W component, then the edge needs to be clipped to the W

d

s

plane. This can be done by finding the intersection of the edge with the W plane an

etting the vertex with the negative W component to the intersection point.

t

t

Since the 4D edges are projected to an arbitrary 3D region, it is not critical tha

hey be clipped against the 4D viewing frustum. Edges that lie outside of the viewing

frustum will lie outside the 3D region.
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Figure 4.3

D Eye Coordinates
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The first step of the 4D to 3D projection is to transform the vertices from their

D world coordinates to the 4D eye coordinates. Refer to figure 4.3 for an illustration

of the 4D eye coordinates.

As in the 3D to 2D projection, this transformation is accomplished with a

e

c

transformation matrix. The 4D viewing transformation matrix is composed of th

olumn vectors A , B , C and D , which correspond to the X , Y , Z and W eye-

c

→ → → →

oordinate axes, respectively. The equations for these column vectors are

������������ ,
mTo − Fro

�
D =

� � To − From �
→

→

4
→ → →

4
→ → →

,�����������������)X (Up , Over , D

�

B

A =
� � X (Up , Over , D ) �

=
� � X (Over , D , A ) � �

X (Over , D , A )��������������� , and
4

→ → →

→

→

→

4
→ →

4
→ → →

,

w

C = X (D , A , B )

here To is the to-point, From is the from-point, Up is the up-vector, and Over is the

Over vector (all of which reside in four-space).

→ →
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The routine to calculate the four-dimensional transformation matrix follows.

alc4Matrix calculates the four-dimensional viewing transformation matrix and places the result-

F

ing 4x4 matrix column vectors in Wa, Wb, Wc and Wd.

rom4, To4: Point4 4D From and To Points
s

p

Up4, Over4: Vector4 4D Up and Over Vector

rocedure Calc4Matrix (Wa, Wb, Wc, Wd: Vector4)

b
norm: Real Vector Norm

egin
Get the normalized Wd column-vector.
Wd ← To4 From4−

)
i
norm ← Norm4 (Wd
f norm 0

E
=

rror (To4 point and From4 point are the same.)
Wd ← Wd norm/

Calculate the normalized Wa column-vector.

n
Wa ← Cross4 (Up4, Over4, Wd)
orm ← Norm4 (Wa)

if norm 0=
Error (Invalid Up4 vector.)

Wa ← Wa norm/

Calculate the normalized Wb column-vector.

n
Wb ← Cross4 (Over4, Wd, Wa)
orm ← Norm4 (Wb)

if norm 0=
Error (Invalid Over4 vector.)

Wb ← Wb norm/

Calculate the Wc column-vector.

e
Wc ← Cross4 (Wd, Wa, Wb)

ndproc Calc4Matrix

The 4×4 matrix composed of these column vectors transforms the 4D world

g

p

coordinates to 4D eye coordinates. The full transformation is given by the followin

roduct:

V′ = [(V − F ) (V − F ) (V − F ) (V − F )]

�
�
�
�
�
�
�A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

�
�
�
�
�
�
�

,
y

x

z

y

x

w

z

y

x

w

z

y

x

w

z
x x y y z z w w

w
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where F , F , F and F are the coordinates of the from-point and V , V , V andx y z w x y z

Vw are the 4D world coordinates of the vertex. This equation yields the 4D eye-

coordinates of the vertex: V′ .

Now that the vertices have been transformed from 4D world coordinates to 4D

]

r

eye coordinates, we can project them to the normalized [−1,+1] × [−1,+1] × [−1,+1

egion in three-space. As for the 3D to 2D case, this projection can be either parallel

a

or perspective. The equations for these projections are extensions of equations [4.2a]

nd [4.2b].

The equations for parallel 4D to 3D projection are extended from equation 4.2a

by one coordinate:

Q =
R

V′���� , Q =
R

V′���� , and Q =
R

V′���� ,x
4

x
y

4

y
z

4

z

[4.3a]

where R is the radius of the set of 4D vertices about the to-point. Dividing by this4

radius ensures that the vertices are projected to fill the intermediate region as much as

possible without extending past the boundaries.
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Figure 4.4

D Perspective Projection in Eye Coordinates
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In equation 4.2b, the X and Y eye coordinates are divided by the Z eye coordi-

ate to yield the perspective projection. In the 4D to 3D perspective projection, this

c

‘‘depth’’ is similarly achieved by dividing by the W eye coordinate (which

orresponds to the four-dimensional line-of-sight). Figure 4.4 contains a diagram of

-

s

the 4D normalized perspective projection. The derivation of the normalized 4D per

pective projection follows the same reasoning as for the 3D normalized perspective

projection. The equations are

Q =
V′ tan (θ /2)

V′������������� , Q =
V′ tan (θ /2)

V′������������� , and Q =
V′ tan (θ /2)

V′������������� ,
z

4

y
z

w4

x
y

w4
x

w

[4.3b]

where θ is the 4D viewing angle. These equations yield values in the range of4

[−1, +1] for vertices that lie in the 4D viewing frustum.

n

t

Mapping the projected points to a viewbox in three-space can be accomplished i

he same manner that we mapped normalized 2D coordinates to the 2D viewport.

Given the viewbox parameters

B , B , B (the center of the viewbox region) andx y z

x y zD , D , D (the length of the viewbox sides) ,

-

t

we can map the normalized 3D coordinates to the viewbox with the following equa

ions:

P = B +
2

�D���Q , P = B +
2

�D���Q , and P = B +
2

�D��Q .x x
x

x y y
y

y z z
z

z

[4.3c]

w

As mentioned earlier, the intermediate 3D region used in this research is the cube

ith vertices <±1, ±1, ±1>, centered at the three-space origin. For this particular re-

gion, B = B = B = 0, and L = L = L = 2, so the simplified equations arex y z x y z
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����′V

R
���� , and P =

′V

R
���� , P =

′V

R
P =x

4

x
y

4

y
z

4

z

for 4D to 3D parallel projection, and

P =
V′ tan (θ /2)

V′������������� , P =
V′ tan (θ /2)

V′������������� , and P =
V′ tan (θ /2)

V′�������������z

4

y
z

w4

x
y

w4

f

x
w

or 4D to 3D perspective projection.

The routine to project the four-dimensional vertices to the three-dimensional re-

f

gion is given by the following algorithm (the algorithm presented here does not per-

orm any type of 4D clipping):

Radius4: Real Radius of the 4D Vertices

V
NumVerts:Integer Number of Vertices

angle4: Radians 4D Viewing Angle

W
VertList: array of Vertex Vertex Array

a,Wb,Wc,Wd:Vector4 4D Transformation Matrix Column Vectors

S
procedure ProjectTo3D

,T: Real Divisor Values
r

b
V: Vector4 Scratch Vecto

egin
if the 4D projection type is parallel

S ← 1 Radius4/
else

T ← 1 tan (Vangle4 2)/ /

sfor i ← 1 to NumVert
V ← VertList[i].Position4 From4−

eif the 4D projection type is perspectiv
S ← T / Dot4 (V, Wd)

)VertList[i].Position4[x] ← S Dot3 (V, Wa)*
* )

V
VertList[i].Position4[y] ← S Dot3 (V, Wb)

ertList[i].Position4[z] ← S Dot3 (V, Wc))

e
endloop

*

ndproc ProjectTo3D
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4.4 Rotations of 4D Wireframes

Rotation of the 4D wireframe is a tremendous aid in understanding the funda-

-

t

mental structure of the displayed object. This rotation is best done by tying the rota

ion input to mouse movement. The wireframe program written for this research uses

p

the horizontal movement of the mouse only. Restricting the rotation input to a single

lane helps only somewhat for three-space rotation, but greatly helps with four-space

-

t

rotations, where it’s more difficult to figure out how to ‘‘undo’’ a particular pair of ro

ations of the four-space viewpoint.

Rotating the view of the object can be accomplished by rotating the viewpoint,

a

rather than rotating each of the object vertices. This way, it isn’t necessary to rotate

ll of the wireframe vertices; you only have to rotate the viewpoint. For rotation in

e

t

three-space, use the regular 3D rotation matrices, and for rotating in four-space, us

he rotation matrices presented in section 2.2. Another way to describe this is to say

that the 3D (or 4D) from-point is moved over a three- (or four-) sphere.

When rotating the three-space view, you don’t need to recompute the 4D to 3D

y

t

projections; it’s more efficient to save the projected 3D vertices and to recompute onl

he 3D to screen projections. The main steps for rotating the 3D viewpoint are:

2
1) Rotate the 3D from-point about the 3D to-point in some plane.
) Recalculate the 3D viewing transformation matrix.

4
3) Project all 3D points to viewport coordinates.
) Display each wireframe edge.

When rotating the four-space viewpoint, you also need to recompute the 4D to

3D projection. The main steps for rotating the 4D viewpoint are:

1) Rotate the 4D viewpoint about the 4D to-point in some plane.

3
2) Recalculate the 4D viewing transformation matrix.
) Project all 4D points to the 3D cube space.

.
5
4) Project all 3D points to viewport coordinates
) Display each wireframe edge.
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4.5 User Interaction and Visualization Aids

User interaction for the wireframe program should include several options to al-

t

low the user to experiment with the displayed object. One of the most important of

hese options is the interactive rotation of the object mentioned above, but there are

several other options that increase the understanding of the wireframe object.

The user should be able to switch between perspective and parallel projection of

S

the wireframe for both the 4D to 3D projection and the 3D to viewport projection.

witching from parallel projection to perspective projection sometimes gives the user a

better idea of the object’s perspective.

Another aid is the display of both the 3D and the 4D coordinate axes. This

s

t

display aids the user in orienting the object with the 3D or 4D world, and also help

he user to choose the desired object rotation; this is especially helpful when trying to

choose four-space rotations.

Displaying the edges of the <±1, ±1, ±1> cube (the intermediate three-

r

3

dimensional projection space) along with the object helps the user to select the prope

D and 4D viewing parameters in order to best fill the intermediate 3D cube and 2D

n

t

viewport. It also helps the user to identify rotations in four-space versus rotations i

hree-space without looking away from the object display.

e

a

Finally, a useful four-dimensional visual aid is the depthcueing of the wirefram

ccording to the four-dimensional depth of each vertex. In normal three-dimensional

a

depthcueing, the Z eye-coordinate is used to assign an intensity to the vertex. Edges

re then shaded by linearly interpolating the intensities of the two endpoint vertices.

-

s

Typically, vertices that are farther from the viewpoint are rendered with a lower inten

ity, and vertices closer to the viewpoint are rendered with greater intensity, so edges

dim in intensity as they extend away from the viewer.
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o

This analogy extends quite nicely to four-dimensional wireframes; the ‘‘depth’’

f a vertex is simply the 4D W eye-coordinate. As an example, when the four-cube is

t

rendered with 4D depthcueing, the ‘‘inner’’ cube is shaded with a lower intensity than

he ‘‘outer’’ cube, since it is farther away in four-dimensional space.

4.6 Example 4D Wireframe Images

In figures 4.5a through 4.5d, the hypercube with vertices of <±1, ±1, ±1, ±1> is

T

rendered with 4D parallel & perspective and 3D parallel & perspective projections.

he four-cube is displayed with the following viewing parameters:

=From =<4, 0, 0, 0>, To =<0, 0, 0, 0>, Up =<0, 1, 0, 0>, Over =<0, 0, 1, 0>, θ4 4 4 4 4

4 3 3 3 35 degrees, From =<3.00, 0.99, 1.82>, To =<0, 0, 0>, Up =<0, 1, 0>, and θ = 45

t

degrees. In figure 4.5a, the ‘‘inner’’ cube is actually farther away in four-space than

he ‘‘outer’’ cube, and hence appears smaller in the resulting projection. You can

e

a

think of the larger cube as the ‘‘front face’’ of the four-cube, and the the smaller cub

s the ‘‘rear face’’ of the four-cube. When rotating the four-cube in the proper plane,

r

the rear face gradually swings to the front, and the front face gradually swings to the

ear. In doing this, the cube appears to turn itself inside out, so that the originally

smaller cube engulfs the previously larger cube.

In figure 4.5c, the four-cube is displayed with 4D parallel projection and 3D per-

‘

spective projection. Because of the parallel projection from 4D, the ‘‘rear face’’ and

‘front face’’ are displayed as the same size, so the parallel projection from this point

-

e

in four-space looks like two identically-sized three-cubes superimposed over each oth

r.

Figures 4.6a through 4.6d are similar to figures 4.5a through 4.5d, except that the

four-dimensional viewpoint has changed. For these views, the four-dimensional view-
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ing parameters are: From =<2.83, 2.83, 0.01, 0.00>, To =<0, 0, 0, 0>,4 4

4U 4 4p =<−0.71, 0.71, 0.00, 0.00>, Over =<0.00, 0.00, 1.00, 0.02>, θ = 45 degrees,

-From =<3.29, 0.68, 1.40>, To =<0, 0, 0>, Up =<0.08, 1.00, 0.04>, and θ = 45 de3 3 3 3

-

d

grees. This vantage point occurs one eighth of the way though a complete four

imensional rotation. See figure 4.7a for an illustration of this rotation.

f

t

Figure 4.7a shows the sequence of one fourth of a four-dimensional rotation o

he hypercube (read the sequence from top to bottom, left to right) with 4D and 3D

D

p

perspective projection. Figure 4.7b shows the same sequence with 4D parallel and 3

erspective projection.

In figure 4.9, the dual of the four-cube is rendered with all edges rendered the

c

same color. The dual of the four-cube is the wireframe of convex hull of the face

enters of the four-cube. In other words, the convex hull of the points < ±1, 0, 0, 0 >,

-

d

< 0, ±1, 0, 0 >, < 0, 0, ±1, 0 >, and < 0, 0, 0, ±1 >. One could also think of it as the four

imensional analog of the three-dimensional octahedron.

,

m

Figures 4.8 through 4.13 illustrate the differences in single edge-color rendering

ultiple edge-color rendering, and depth-cued edge rendering. Even with interactive

n

i

manipulation of the four-dimensional wireframe, single edge-color rendering yields a

mage that is difficult to interpret. Assigning different colors to the edges greatly aids

a

the user in identifying sub-structures of the four-dimensional wireframe, and serves as

structural reference when rotating the object. Depth-cueing the edges gives a spatial

sense of the object, but loses the structural cues.

Finally, figures 4.14 and 4.15 show generalized curves across the surface of a

w

four-sphere. The curve in figure 4.15 is given with poor uniform parameterization

hich yields the two ‘‘kinks’’ that are visible in the 4D image. For more information

on these particular curves and the choices of parameterization, refer to [Chen 90].
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(a) 4D Perspective and 3D Perspective Projection

Figure 4.5

sThe 4-Cube with Various 4D and 3D Projection
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(b) 4D Perspective and 3D Parallel Projection

Figure 4.5

continued
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(c) 4D Parallel and 3D Perspective Projection

Figure 4.5

continued
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(d) 4D Parallel and 3D Parallel Projection

Figure 4.5

continued
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(a) 4D Perspective and 3D Perspective Projection

Figure 4.6

sAnother View of The 4-Cube with Various 4D and 3D Projection
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(b) 4D Perspective and 3D Parallel Projection

Figure 4.6

continued
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(c) 4D Parallel and 3D Perspective Projection

Figure 4.6

continued
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(d) 4D Parallel and 3D Parallel Projection

Figure 4.6

continued
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(a) 4D Perspective and 3D Perspective Projection

Figure 4.7

e4D Rotation of the 4-Cub
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(b) 4D Parallel Projection and 3D Perspective Projection

Figure 4.7

continued



52

T

Figure 4.8

he 4-Cube With All Edges Rendered in One Color

T

Figure 4.9

he Dual of The 4-Cube With All Edges Rendered in One Color
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T

Figure 4.10

he 4-Cube Rendered With Multiple Edge Colors

T

Figure 4.11

he Dual of The 4-Cube Rendered With Multiple Edge Colors
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T

Figure 4.12

he 4-Cube Rendered With Depth-Cueing

T

Figure 4.13

he Dual of The 4-Cube Rendered With Depth-Cueing
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A

Figure 4.14

4D Curve on a 4-Sphere

A

Figure 4.15

4D Curve on a 4-Sphere with Poor Parameterization



R

Chapter 5

aytracing in Four Dimensions

5.1 General Description of the Raytracing Algorithm

Wireframe rendering has several advantages over other rendering methods, in-

H

cluding simplicity of representation, speed of display, and ease of implementation.

owever, it cannot render solid objects, or objects that obscure one another. In addi-

r

tion, it cannot model other aspects of light propagation, such as shadows and

eflections, which aid the user in understanding a given scene.

-

d

Other rendering techniques exist that solve the hidden surface problem and sha

ows by representing the objects with a tessellated mesh of polygons. These algo-

-

f

rithms map the polygons to the viewport in a particular order to solve for hidden sur

aces. These algorithms must also handle the cases of partially obscured polygons.

-

s

However, these techniques are not easily extended to four-dimensional rendering. In

tead of dealing only with planar polygons, the four-dimensional counterpart would

-have to deal with tessellating solids; thus, it would also have to properly handle inter
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i

secting solids with hidden volumes and solids that partially obscure one another. This

s at best a difficult task in three-space; the four-space extension would be even more

complex.

For these reasons, the raytracing algorithm was chosen to ‘‘realistically’’ render

d

m

four-space scenes. Raytracing solves several rendering problems in a straight-forwar

anner, including hidden surfaces, shadows, reflection, and refraction. In addition,

t

c

raytracing is not restricted to rendering polygonal meshes; it can handle any object tha

an be interrogated to find the intersection point of a given ray with the surface of the

m

object. This property is especially nice for rendering four-dimensional objects, since

any N-dimensional objects can be easily described with implicit equations.

D

r

Other benefits of raytracing extend quite easily to 4D. As in the 3D case, 4

aytracing handles simple shadows merely by checking to see which objects obscure

y

s

each light source. Reflections and refractions are also easily generalized, particularl

ince the algorithms used to determine refracted and reflected rays use equivalent vec-

tor arithmetic.

The main loop in the raytracing algorithm shoots rays from the viewpoint

t

r

through a grid into the scene space. The grid is constructed so that each grid elemen

epresents a voxel of the resulting image (see figure 5.1 for an illustration of a 2×2×2

-

f

ray grid). As a ray is ‘‘fired’’ from the viewpoint through the grid, it gathers light in

ormation by back-propagation. In this way raytracing approximates the light rays that

v

scatter throughout the scene and enter the eye by tracing the rays back from the

iewpoint to the light sources.
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A

Figure 5.1

2x2x2 4D Raytrace Grid
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p

The recursive nature of raytracing, coupled with the fact that every voxel is sam-

led, makes raytracing very time consuming. Fortunately, extending the raytracing al-

r

gorithm to four dimensions does not necessarily incur an exponential increase in

endering time. However, finding some ray-object intersections does entail a

a

f

significant increase in computation. For example, determining the intersection of

our-space ray with a four-space tetrahedron is much more expensive than computing

-

p

the intersection of a three-space ray with a three-space triangle. This increase of com

lexity does not necessarily occur with all higher-order object intersections, though.

m

a

The hypersphere, for example, can be intersected with essentially the same algorith

s for the three-sphere (although vector and point operations must handle an extra

5

coordinate).

.2 Generating the Four-Dimensional Ray Grid

o

e

The ray grid must be constructed so that each point on the grid corresponds t

ach pixel for 3D raytracing or voxel (volume element) for 4D raytracing. In four-

e

o

dimensional raytracing, the grid is a three-dimensional parallelepiped spanned by thre

rthogonal vectors. Note that although in figure 5.1 it seems that a scene ray would

e

s

pass through other voxels as it intersects each voxel center, scene rays do not lie in th

ame three-space (or hyperplane) as the ray grid. As a result, each scene ray intersects

the ray grid only at the voxel centers.

The ray grid is constructed from the viewing parameters presented in section 3.2.

w

These viewing parameters are the same as the viewing parameters used for the 4D

ireframe viewer.

The viewpoint is the point of origin for the scene rays, so it must be outside of

Dthe ray grid. Since the to-point is the point of interest, it should be centered in the 4
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ray grid.

Now that we have the center of the ray grid, we need to establish the basis vec-

g

tors of this grid. Once we do that, we can index a particular voxel in the grid for the

eneration of scene rays.

The up-vector and over-vector are used to form two of the grid basis vectors

e

c

(after proper scaling). Since the line of sight must be perpendicular to the ray grid, w

an generate the third basis vector by forming the four-dimensional cross product of

n

p

the line of sight with the up-vector and over-vector. Note that in four-space, a ray ca

ass through any point within the cube without intersecting any other point.

The grid basis vectors are computed as follows:

S =
� � From − To � �
From − To������������ ,

→

→

z
4

→ → →
4

→ → →

,����������������)X (Over , Up , S

�

B

B =
� � X (Over , Up , S ) �

=
� � X (B , S , Over ) � �

X (B , S , Over )��������������� , and

→ → →
z4

→→ →
z

→

→
y

4

x 4 y
→

z
→ →

.

A

B = X (B , B , S )

t this point, S is the unit line-of-sight vector, and B , B & B are the unit

b

→ →
x

→
y

→
z

asis vectors for the ray grid. What we need to do now is to to scale these vectors.

g

There are two additional sets of parameters that govern the construction of the ray

rid. These are the the number of voxels along each axis of the grid (the resolution of

i

the ray grid), and the shape of each voxel (the aspect ratios). In addition, we need to

ncorporate the viewing angle.

The resolution of the grid cube is given by the parameters R , R and R , whichx y z

-

l

specify the number of voxels along the width, height and depth of the cube, respective

y. The aspect ratio of each voxel is given by the parameters A , A and A . Thesex y z
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n

parameters specify the width, height and depth of each voxel in arbitrary units (these

umbers are used only in the ratio). For example, an aspect ratio of 1:4:9 specifies a

voxel that is four times as high as it is wide, and that is 4/9ths as high as it is deep.

The ray grid is centered at the to-point; we use the viewing angle to determine

.

T

the ray-grid size. As mentioned earlier, the viewing angle corresponds to the X axis

he other axes are sized according to the resolution and aspect ratios. Determining the

proper scale of the grid X axis is easily done from the viewing angle

L = 2 � � From − To � � tan (θ /2) ,

4

x 4

xwhere θ is the 4D viewing angle, and L is the width of the ray grid. The other di-

mensions of the ray grid are determined by L , the aspect ratios, and the resolutions:x

z
Ly x

x

y

x

y
z x

x

z

x
= L

R

R���
A

A��� and L = L
R

R���
A

A��� .

dThus, L , L and L are the lengths of each edge of the ray grid, and the grix y z

basis vectors are scaled with these lengths to yield

.G = (L )B , G = (L )B , and G = (L )Bx
→

x x
→

y
→

y y
→

z
→

z z
→

Z

o

The main ray loop will start at a corner of the ray grid and scan in X , Y and

rder, respectively. The origin of the grid (each basis vector zero) is given by

�������������
�
�
�

.
GG + G +

2
O = To −

�
�
�

x y z

.

T

The incremental grid vectors are used to move from one grid voxel to another

hey are computed by dividing the grid-length vectors by the respective resolution:

��� .
G

R
���� , D =
G

R
���� , D =
G

R
D =x
→

x

x
→

y
→

y

y
→

z
→

z

z
→
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a

Finally, the grid origin is offset by half a voxel, in order that the voxel centers

re sampled.

O = O +
�
�
� 2

D + D + D�������������
�
�
�

→
z

→
y

→
x

:

D

The main raytracing procedure looks like this

x,Dy,Dz: Vector4 Grid-Traversal Vectors

O
From4: Point4 4D Viewpoint

: Point4 Grid Origin Corner

p

Rx,Ry,Rz: Integer Grid Resolutions

rocedure FireRays
s

T
i,j,k: Integer Grid Traversal Indice

: Vector4 Scratch Vector

b
ray: Ray4 4D View Ray

egin
for i ← 1 to Rx

yfor j ← 1 to R
for k ← 1 to Rz

T ← O i*Dx j*Dy k*Dz
r

+ + +
ay.origin ← From

nray.direction ← T ray.origi−
Recursively fire sample rays into the scene.
Raytrace (ray)

pendloo
pendloo

p
e

endloo
ndproc FireRays

m5.3 The General Raytrace Algorith

Each ray is propagated throughout the scene in the following manner:

h(1) For each point in the ray grid, fire a ray from the viewpoint throug
the grid point.

(2) Find the intersection of the ray with all objects in the scene. If the ray

(

intersects no objects in the scene, assign the background color to it.

3) The intersection point closest to the ‘‘launch point’’ (starting with the
-

b
viewpoint) is chosen, and the current color is determined by the am
ient color of the intersected object.
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(4) The intersection point is the new launch-point. Rays are fired from the
launch point to each of the light sources. If the ray does not intersect

t
any other object first, the current point is then further illuminated by
hat light source to yield the diffuse and specular components of the

(

object. This occurs for all light sources.

5) If the object has a reflective surface, then a ray is recursively reflected
o

s
from the current point and gathers color information by going back t
tep two above.

(6) If the object has a refractive surface, then a ray is recursively refracted
o

s
from the current point and gathers color information by going back t
tep two above.

(7) The color obtained by steps three through six is assigned to the voxel

5

that corresponds to the current grid point.

.4 Reflection and Refraction Rays

The reflection and refraction rays mentioned in the previous section are generated

-

m

in the same way as they are for 3D raytracing, with the exception that the vector arith

etic is of four dimensions rather than three. Since reflection and refraction rays are

d

r

confined to the plane containing the normal vector and the view vector, reflection an

efraction rays are given by the following equations for raytracing in any dimension

higher than one.

Refer to figure 5.2 for a diagram of the reflection ray.
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R

Figure 5.2

ay-Object Reflection
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The equation of the reflection ray is given by is

R = D − 2 (N ..D ) N
→

→

→ → → →

→
where R is the resulting reflection ray, D is the unit direction of the light ray towards

the surface, and N is the unit vector normal to the surface. Refer to [Foley 87] for a
→

derivation of the reflection equation.

yThe refraction ray T is given b
→

→ → →
)

C

T = δC + (1 − δ)(−N

=
� � N .. D � �
� D�������

→

→
→

→

1 2
2 → 2 → → 2	

δ
√																	

=
(ρ / ρ ) � � C � � − � � C + N � �

� 1������������������������

-where T is the refraction ray, D is the unit direction of the light ray towards the sur
→ →

→
1 e

m

face, N is the unit normal vector to the surface, ρ is the index of refraction of th

edium containing the light ray, and ρ is the index of refraction of the object. Note2

→ →
s

e

that this equation does not yield a unit vector for T ; T must be normalized after thi

quation. Refer to [Hill 90] for a derivation of this formula.
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5.5 Illumination Calculations

The illumination equations for four-dimensional raytracing are the same as those

s

for raytracing in three dimensions, although the underlying geometry is changed. A

imple extended illumination equation is as follows:

.I = I K + I
�
� K cosθ + K cos α �

� + K I + K IΣa a
λ=1

N

λ d s
n

s r t t

L

e

I

The values used in this equation ar

[RGB]: Global ambient light.a

λI [RGB]: Light contributed by light λ.

.I [RGB]: Light contributed by reflectionr

tI [RGB]: Light contributed by transmission (refraction).

K [RGB]: Object ambient color.a

dK [RGB]: Object diffuse color.

.K [RGB]: Object reflection colors

tK [RGB]: Object transparent color.

N

n [Real]: Phong specular factor.

[Integer]: Number of light sources.L
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C

Figure 5.3

omponents of Illumination
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T

Refer to figure 5.4 for a diagram of the illumination vectors and components.

he angle θ between the surface normal vector and the light direction vector deter-

e

b

mines the amount of diffuse illumination at the surface point. The angle α is the angl

etween the reflected light vector and the viewing vector, and determines the the

e

f

amount of specular illumination at the surface point. These angles are given by th

ollowing formulas.

cosθ = N ..L λ
→ →

λ
→ →

L

I

cosα = R ..

f cosθ is negative, then there is no diffuse or specular illumination at the surface

i

point. If cosθ is non-negative and cosα is negative, then the surface point has diffuse

llumination but no specular illumination.

In the summation loop, a ray is fired from the surface point to each light source

t

in the scene. If this shadow ray intersects any other object before the light source,

hen the contribution from that light source is zero; I for light source λ is set to zero.

λ

λ

t

s

If no object blocks the light source, then I is used according to the type of ligh

ource.

The raytracer developed for this research implements both point and directional

light sources. For directional light sources, the vector L is constant for all points inλ

t λhe scene. For point light sources, L is calculated by subtracting the point light

a

c

source location from the surface point. Both of these light sources are assigned

olor value (I ).λ



69

5.6 Intersection Algorithms

The fundamental objects implemented in the 4D raytracer include hyperspheres,

t

tetrahedra and parallelepipeds. The intersection algorithms for each of these objects

akes a pointer to the object to be tested plus the origin and unit direction of the ray.

o

If the ray does not intersect the object, the function returns false. If the ray hits the

bject, the function returns the intersection point and the surface normal at the inter-

section point.

Some objects, such as hyperspheres, can have zero, one or two intersection

-

t

points. More complex objects may well have many more intersection points. The in

ersection functions must return the intersection point closest to the ray origin (since

5

other intersection points would be obscured by the nearest one.)

.6.1 Ray - Hypersphere Intersection

The hypersphere is one of the simplest four-dimensional objects, just as the

e

f

three-sphere is among the simplest objects in 3D raytracers. Like the three-sphere, th

our-sphere is specified by a center point and a radius.

The implicit equation of the four-sphere is

(S − C ) + (S − C ) + (S − C ) + (S − C ) − r = 0 ,

w

x x
2

y y
2

z z
2

w w
2 2

here r is the radius of the four-sphere, C is the center of the sphere, and S is a point

on the surface of the sphere.

Obtaining the normal vector from the intersection point is a trivial matter, since

-

s

the surface normal of a sphere always passes through the center. Hence, for an inter

ection point I, the surface normal at I is given by N = I − C.
→
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f

Calculating the intersection of a ray with the sphere is also fairly straight-

orward. Given a ray defined by the equation r = P + tD , where P is the ray origin,

D
→

→ →

is the unit ray direction vector, and t is a parametric variable, we can find the inter-

section of the ray with a given hypersphere in the following manner:

(C − S ) + (C − S ) + (C − S ) + (C − S ) − r = 0x x
2

y y
2

z z
2

w w
2 2

2 2 0

S

� � C − S � � − r =

ubstitute the ray equation into the surface value to get

� � C − (P + tD ) � � − r = 0
→ 2 2

2�
→ 2� (C − P) − tD � � − r = 0

)� � V − tD � � − r = 0 (where V = C − P
→ → 2 2 →

2( x x
2

y y
2

z z
2

w w
2V − tD ) + (V − tD ) + (V − tD ) + (V − tD ) − r = 0

t (D + D + D + D )2
x
2

y
2

z
2

w
2

w− x x y y z z w2t (V D + V D + V D + V D )

+ (V + V + V + V ) − r = 0x
2

y
2

z
2

w
2 2

2T 2 → → → → → →
his simplifies to t (D ..D ) − 2t (V ..D ) + (V ..V − r ) = 0 .

oSince D is a unit vector, this equation further simplifies t
→

2 → → → → 2 .

T

t − 2t (V ..D ) + (V ..V − r ) = 0

he quadratic formula x − 2bx + c = 0 has roots b ± b − c .2 2√					

So, solving for t , we get
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t = (V ..D ) ± (V ..D ) − (V ..V − r ) .
→ → → → 2 → → 2	

T

√														

he intersection point is given by plugging the smallest non-negative solution for

r

t

t into the ray equation. If there is no solution to this equation (e.g., the quantity unde

he square root is negative), then the ray does not intersect the hypersphere.

.

f

The pseudo-code for the ray-hypersphere intersection algorithm follows

unction HitSphere: Boolean (ray: Ray4, sphere: Sphere4, intersect: Point4, normal: Vector4)

V
bb: Real Quadratic Equation Value

: Vector4 Vector from Ray Origin to Sphere Center

t
rad: Real Radical Value
1,t2: Real Ray Parameter Values for Intersection

begin
V ← sphere.center ray.origin−

)
r
bb ← Dot4(V,ray.direction
ad ← (bb bb) Dot4(V,V) sphere.radius
squared

i <

* − +

f rad 0 If the radical is negative, then no intersection.

r

return false

ad ← SquareRoot(rad)
t2 ← bb rad−

+ d

E

t1 ← bb ra

nsure that t1 is the smallest non-negative value (nearest point).

if t1 < 0 or (t2 > 0 and t2 < t1)
t1 ← t2

if t1 0 If sphere is behind the ray, then no intersection.<
return false

intersect ← ray.origin (t1 ray.direction)
−
+ *

/ s

r

normal ← (intersect sphere.center) sphere.radiu

eturn true

eendfunc HitSpher
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5.6.2 Ray - Tetrahedron Intersection

The tetrahedron is to the 4D raytracer what the triangle is to the 3D raytracer.

-

a

Just as all 3D objects can be approximated by an appropriate mesh of tessellating tri

ngles, 4D objects can be approximated with an appropriate mesh of tetrahedra. Of

h

course, the tessellation of 4D objects is more difficult (e.g. how do you tessellate a

ypersphere?), but it does allow for the approximation of a wide variety of objects.

l

v

In the fourth dimension, the tetrahedron is ‘‘flat’’, i.e. it has a constant norma

ector across its volume. Any vector embedded in the tetrahedron is perpendicular to

the tetrahedron normal vector.

The tetrahedron is specified by four completely-connected vertices in four-space.

a

A tetrahedron in which the four vertices are coplanar is a degenerate tetrahedron; it is

nalogous to a triangle in three-space with colinear vertices. The 4D raytracer should

ignore degenerate tetrahedra as invisibly thin.

Since the tetrahedron normal is constant, pre-compute this vector and store it in

fi

the tetrahedron description before raytracing the scene. The normal is computed by

nding three independent vectors on the tetrahedron and crossing them to compute the

orthogonal normal vector.

B = V1 − V0 ,
→

1

2B
→ = V2 − V0 ,

dB = V3 − V0 , an3

→

→

4 1
→

2
→

3

4
→

1
→

2
→

3
→

,���������������)X (B , B , B

�

w

N =
� � X (B , B , B ) �

here V0, V1, V2, and V3 are the tetrahedron vertices and N is the unit normal vec-

tor.

→
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t

Finding the intersection point of a ray and tetrahedron is much more difficult

han for the hypersphere case. This is primarily because it requires the solution of a

t

system of three equations and three unknowns to find the barycentric coordinates of

he intersection point.

Once the barycentric coordinates of the intersection point are known, they can be

c

used to determine if the point lies inside the tetrahedron, and also to interpolate vertex

olor or vertex normal vectors across the hyperface of the tetrahedron (Gouraud or

o

[

Phong shading, respectively). For further reference on barycentric coordinates, refer t

Farin 88] and [Barnhill 84] (particularly the section on simplices and barycentric coor-

dinates).

The method used to find the barycentric coordinates of the ray-hyperplane inter-

b

section with respect to the tetrahedron is an extension of the algorithm for computing

arycentric coordinates of the ray-plane intersection with respect to the triangle,

presented in [Glassner 90].

Again, the ray is specified by the equation P + tD , where P is the ray origin, D
→→

e

t

is the unit direction vector, and t is the ray parameter. For each point Q on th

etrahedron, Q .. N is constant. Let d = −V0 .. N . Thus, the hyperplane is defined by

N
→

→ →

..Q + d = 0, where the tetrahedron is embedded in this hyperplane.

s�������� . If N ..D i
Pd + N ..

D
First compute the ray-hyperplane intersection with t = −

N ..→ →

→
→ →

e

t

zero, then the ray is parallel to the embedding hyperplane; it does not intersect th

etrahedron. If t < 0, then the embedding hyperplane is behind the ray, so the ray

does not intersect the tetrahedron.
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T

Now compute the ray-hyperplane intersection with relation to the tetrahedron.

he barycentric coordinates of the intersection point Q is given by the equation

						 .3						 + γV0 V2						 + βV0 V1					 = α V0 VQV0

[5.5.2a]

γ

The ray-hyperplane intersection point Q is inside the tetrahedron if α ≥ 0, β ≥ 0,

≥ 0, and α + β + γ ≤ 1.

Equation 5.5.2a can be rewritten as

�
�
�
�
�
�
�

Q − V 0

Q − V 0

Q − V 0

Q − V 0 �
�
�
�
�
�
�

= α

�
�
�
�
�
�
� V 1 − V 0

V 1 − V 0

V 1 − V 0

V 1 − V 0 �
�
�
�
�
�
�

+ β

�
�
�
�
�
�
� V 2 − V 0

V 2 − V 0

V 2 − V 0

V 2 − V 0 �
�
�
�
�
�
�

+ γ

�
�
�
�
�
�
� V 3 − V 0

V 3 − V 0

V 3 − V 0

V 3 − V 0 �
�
�
�
�
�
�

.

x x
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w

x x

w

yy
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w

x x

w

yy

zz

w

x x

w
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zz

ww

[5.5.2b]

o

To simplify the solution for these coordinates, we project the tetrahedron to one

f the four primary hyperplanes (XYZ , XYW , XZW or YZW ). To make this projection

g

i

as ‘‘large’’ as possible (to ensure that we don’t ‘‘flatten’’ the tetrahedron by projectin

t to a perpendicular hyperplane), find the dominant axis of the normal vector and use

m

the hyperplane perpendicular to the dominant axis. In other words the normal to the

ajor hyperplane is formed by replacing the normal coordinate that has the largest ab-

i

solute value with zero. For example, given a normal vector of <3, 1, 7, 5>, the dom-

nant axis is the third coordinate, and the hyperplane perpendicular to <3, 1, 0, 5> will

c

yield the largest projection of the tetrahedron. Once again, since the normal vector is

onstant, the three non-dominant coordinates (X, Y, and W for the above example)

-

t

should be stored for future reference. Refer to the intersection algorithm for an illus

ration of this.
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The hyperplane equation is then reduced to three coordinates, i , j , and k (X, Y

W for the previous example), so equation [5.5.2b] is reduced to

�
�
�
�
�V 3 − V 0

0V 3 − V

0

V 2 − V 0 �
�
�
�
�

+ γ

�
�
�
�
� V 3 − V

0V 2 − V

0

V 1 − V 0 �
�
�
�
�

+ β

�
�
�
�
� V 2 − V

0V 1 − V

0

Q − V 0 �
�
�
�
�

= α

�
�
�
�
� V 1 − V

0Q − V

0

�
�
�
�
� Q − Vk k

j j

i i

k k

j j

i i

k k

j j

i i

k k

j j

i i

[5.5.2c]

n

Now find α, β, and γ by solving the system of three equations and three unk-

owns; these are the barycentric coordinates of the intersection point Q relative to the

tetrahedron. The fourth barycentric coordinate is given by (1 − α − β − γ).

In order for the tetrahedron to contain the ray-hyperplane intersection point, the

following equations must be met:

α ≥ 0, β ≥ 0, γ ≥ 0

α

and

+ β + γ ≤ 1

-

n

If any of the barycentric coordinates are less than zero, or if the barycentric coordi

ates sum to greater than one, then the ray does not intersect the tetrahedron.

-

t

Once α, β and γ are known for the point of intersection, the ray-hyperplane in

ersection point Q can be found by the following equation:

VQ = (1 − α − β − γ) V + α V + βV + γ0 1 2 3
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rithm.

The following pseudo-code implements the ray-tetrahedron intersection algo-

function HitTet: Boolean (ray: Ray4, tet: Tetrahedron, intersect: Point4, normal: Vector4)

A
A11,A12,A13: Real Equation System Matrix Values

21,A22,A23: Real
l

b
A31,A32,A33: Rea
1, b2, b3 : Real Equation System Results

n
x
rayt: Real Ray Parameter Value for Intersectio

1, x2, x3 : Real Equation System Solution
begin

Compute the intersection of the ray with the hyperplane containing

r

the tetrahedron.

ayt ← Dot4 (tet.normal,ray.direction)
if rayt 0<

return false

rayt ← (tet.HPlaneConst Dot4 (tet->normal,ray.origin)) rayt
<
− + /

0if rayt
return false

Calculate the intersection point of the ray and embedding hyperplane.

intersect ← ray.origin (rayt ray.direction)+ *

Calculate the equation result values. Note that the dominant axes are

b

precomputed and stored in tet.axis1, tet.axis2, and tet.axis3.

1 ← intersect[tet.axis1] tet.V0[tet.axis1]
−
−

]
b
b2 ← intersect[tet.axis2] tet.V0[tet.axis2
3 ← intersect[tet.axis3] tet.V0[tet.axis3]

C

−

alculate the matrix of the system of equations. Note that the vectors
e

s
corresponding to V1-V0, V2-V0, and V3-V0 have been precomputed, and ar
tored in the fields tet.vec1, tet.vec2, and tet.vec3.

A
A11 ← tet.vec1[tet.axis1]

12 ← tet.vec1[tet.axis2]
]

A

A13 ← tet.vec1[tet.axis3

21 ← tet.vec2[tet.axis1]
]

A
A22 ← tet.vec2[tet.axis2

23 ← tet.vec2[tet.axis3]

]
A
A31 ← tet.vec3[tet.axis1

32 ← tet.vec3[tet.axis2]
]

S

A33 ← tet.vec3[tet.axis3

olve the system of three equations and three unknowns.
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i

SolveSys3 (A11,A12,A13, A21,A22,A23, A31,A32,A33, b1,b2,b3, x1,x2,x3)

f x1 0 or x2 0 or x3 0 or (x1 x2 x3) 1
r
< < < + + >
eturn false

tet.bc1 ← x1 Set the intersection barycentric coordinates.

t
tet.bc2 ← x2
et.bc3 ← x3

normal ← tet.normal The tetrahedron normal is precomputed.

e

return true

ndfunc HitTet

The tetrahedron can be rendered with Flat, Gouraud or Phong shading, since the

w

barycentric coordinates of the intersection points are known. For Gouraud shading

ith vertex colors C , C , C and C corresponding to V0, V1, V2 and V3, respec-

i

0 1 2 3

ntersecttively, the color C of the intersection point is given by

.C = (1 − α − β − γ) C + α C + βC + γCintersect 0 1 2 3

30 1 2 d

t

Phong shading can be used to interpolate the normals N , N , N and N to fin

he interpolated normal N of the intersection point with this equation:

→

→
intersect

intersect 0
→

1
→

2
→

3
→

.

5

N = (1 − α − β − γ) N + α N + βN + γN

.6.3 Ray - Parallelepiped Intersection

The parallelepiped was included in the 4D raytracer because of the similarities

l

between the parallelepiped and the tetrahedron. Like the tetrahedron, the paral-

elepiped is specified with four vertices. The intersection algorithm for the paral-

e

i

lelepiped differs from the algorithm for the tetrahedron in a single comparison; henc

ts inclusion in the set of fundamental objects is relatively free if the tetrahedron is al-

ready provided.
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g

Like the tetrahedron, the normal vector for the parallelepiped is constant and is

iven by the 4D cross product of the three vectors V1V0					, V2V0					, and V3V0					.

,

w

The intersection point is computed in the same manner as for the tetrahedron

ith the exception that the barycentric coordinates α, β and γ must meet slightly

different criteria:

α ≥ 0, β ≥ 0, γ ≥ 0

α

and

≤ 1, β ≤ 1, γ ≤ 1

-

t

If the tetrahedron and parallelepiped data structures are defined properly, the in

ersection routine for the tetrahedron can also solve for ray-parallelepiped intersections.

γ

The only difference is that for the parallelepiped, the barycentric coordinates α, β, and

can sum to greater than one, whereas the tetrahedron requires that their sum does not

5

exceed one.

.7 Display of 4D Raytrace Data

The output of the 4D raytracer is a 3D grid of voxels, where each voxel is as-

s

signed an RGB triple. This data can be thought of as set of scanplanes, or as a 3D

calar field of RGB data.

One way to display this data is to present it in slices, either individually, or as a

i

tiled display of scanplanes. Producing an animation of the data a scanplane at a time

s also a good method for displaying the image cube, although it would be best

e

c

displayed this way under user interaction (e.g. by slicing the voxel field under mous

ontrol).
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a

[Drebin 88] also suggests a method of visualization that would be very appropri-

te for this sort of data, where the voxel field is presented as a field of colored tran-

r

t

sparent values. Although the algorithm as presented takes real-valued voxels, rathe

han RGB voxels, the RGB output data can be converted to greyscale (one common

.

T

equation is Intensity = 0.299 Red + 0.587 Green + 0.114 Blue , as given in [Hall 89])

he resulting single-valued scalar field can then be visualized with a variety of algo-

rithms, including also [Chen 85], [Kajiya 84], and [Sabella 88].

It’s also possible to produce single scanplanes from the 4D raytracer, and use

e

o

two of these as the left and right eye images for stereo display, although the presenc

f an extra degree of parallax makes this method less helpful than might initially be

5

thought.

.8 Example Ray4 Images

Several 4D raytraced images are included in this section. Figure 5.4 is the ray-

t

traced image of a random distribution of four-spheres. All of the four-spheres have

he same illumination properties; only the colors and positions are different. Notice

c

that the Phong specular illumination manifests itself at different slices of the image

ube.

One way to explain this phenomena is that just as the 3D to 2D projection of a

e

s

shiny sphere yields a 2D phong spot embedded somewhere in the 2D projection of th

phere, a shiny four-sphere is projected to 3D with a 3D phong region embedded

somewhere in the 3D projection of the four-sphere.

Figure 5.5 is the sliced image cube of sixteen four-spheres of radius 0.5 posi-

tioned at the vertices of a four-cube at locations <±1.25, ±1.25, ±1.25, ±1.25>.
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v

Figure 5.6 is similar to figure 5.5, except that four-tetrahedrons are placed at the

ertices rather than four-spheres. The four-tetrahedrons are oriented so that the normal

t

of each four-tetrahedron is aimed at the center of the four-cube, and the four-

etrahedron vertices lie on the four-cube edges.
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(a) Resulting Image Cube Slices

b) Single Slice From Figure 5.4a

S

Figure 5.4

liced 4D Image Cube of Random 4-Sphere Distribution
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S

Figure 5.5

liced Image of 16 4-Spheres Placed at 4-Cube Vertices

S

Figure 5.6

liced Image of 16 4-Tetrahedrons Placed at 4-Cube Vertices
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Chapter 6

onclusion

-

d

The previous chapters explored two approaches to the task of rendering four

imensional images: wireframe display and raytracing. Both techniques have advan-

n

t

tages and disadvantages over the other; e.g. wireframe display is the only real solutio

o rendering four-space curves. It also allows for rapid display of a four-dimensional

structure.

Raytracing, on the other hand, allows the user to view surfaces and solids in and

h

of four dimensions. It also provides other important visual cues, such as shadows,

ighlights, and reflections. In addition, the output images make it clear which parts

n

t

are solids projected from four-space; the wireframe approach is subject to ambiguity i

he projected image.

s6.1 Research Conclusion

This research began with the goal of visualizing four-dimensional structures in

gfour dimensions. While several techniques exist (and many more are currently bein
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n

developed) to visualize four dimensional data as 3D scalar fields, there are few tech-

iques that exist to visualize four-space geometry.

-

e

There are, in fact, several 4D wireframe display programs; the earliest document

d was written around 1967. The wireframe display program presented in this paper

w

combines the wireframe display with the viewing model presented in [Foley 87],

hich is a simple and efficient method of projection. In addition, the program written

m

for this research allows for the 4D depth-cueing of the display data, the interactive

anipulation of the 4D object, and the interactive selection of the projection modes.

C

The most promising field of application for this research is the field of

omputer-Aided Geometric Design, for the use of displaying curves and surfaces in

d

h

four dimensions. The wireframe viewer has been used to view 4D spline curves an

as displayed artifacts that were not obvious with other methods (see figure 4.15).

t

The raytracer written for this research implements the four-sphere, the four-

etrahedron, and the four-parallelepiped. It handles point & directional lighting,

reflection, refraction, plus ambient, diffuse and specular lighting.

The primary catch with four-dimensional raytracing is the fact that the resulting

a

c

image is a three-dimensional voxel field, which (for ‘‘interesting’’ images) will have

omplex internal structure that is difficult to visualize with current techniques.

6.2 Future Research Areas

There’s a lot of room for expansion of the 4D raytracer. One obvious area is the

4

inclusion of additional fundamental objects for the raytracer. As mentioned earlier, all

D objects can be represented with a mesh of tessellating tetrahedra, but this is quite

-

d

expensive in terms of both storage and time. All that is really needed for a new four

imensional object is an implicit equation of its hypersurface. The four-dimensional
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t

ray equation can be plugged into the implicit object equation to yield the equation for

he intersection points. In the case of multiple intersections, the closest intersection

point is selected.

In addition, the display of the resulting voxel field could well bear some

d

b

research. Most visualization techniques work on a 3D space of scalar data; it woul

e useful if some techniques existed to display a 3D field of RGB data.

s

m

The voxel field generated by the raytracer is somewhat different from other field

ore often associated with four-dimensional visualization, which are often amorphous

t

fields of scalar values. The output voxel fields of the raytracer are characterized by

he following properties:

1) Internal boundaries are well-defined, corresponding to projected objects.

3

2) There can be quite a lot of different internal solids, often intersecting.

) Each voxel is assigned an RGB triple.

h

t

In order to further understand the 4D images, stereo display techniques for bot

he wireframe display and the raytrace output may prove useful. There are problems

t

with stereo displays of higher dimensions, primarily the extra degree of parallax, but

here may be ways to solve these. See [Brisson 78] for an example of 4D stereo-

grams.
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Appendix A

sImplementation Note
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The programs written for this research are:

wire4 4D Wireframe Display Program

r

ray4 4D Raytracer

4toiff Ray4 to Amiga Interchange File Format

T

r4tosgi Ray4 to Silicon Graphics Iris Display

he wire4 Program

The wire4 program runs on the Silicon Graphics Iris 3130 workstation and uses

:the Silicon Graphics GL display language. The input file specifies the following data

3D Viewing Parameters: From, To, Up, View-Angle

e

V

4D Viewing Parameters: From, To, Up, Over, View-Angl

ertex List

E

Edge List

dge Color Palette

Depthcue Parameters: Minimum & Maximum Distance

s

w

Depthcue Parameters: Near & Far Colors, Depthcue Level

ire4 reads the input file and displays the wireframe with the initial viewing

e

f

parameters. Since only the viewpoints are rotated, the 4D and 3D distances from th

rom-point to the to-point are constant. The user has interactive control over the fol-

lowing:

Rotation in 3D — 3 Planes
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4

Rotation in 4D — 6 Planes

D Projection Type — Parallel or Perspective

e

D

3D Projection Type — Parallel or Perspectiv

epthcue On/Off

3D Projection Cube Display On/Off

The ray4 Program

ray4 runs on both the Commodore Amiga and most Unix platforms. Since the

output is sent to a file, this program is device independent.

The input file contains the following information:

B

Global Ambient Light

ackground Color

h

4

Maximum Raytrace Dept

D Viewing Parameters:

T
From Point,

o Point,
,

O
Up Vector

ver Vector,
eViewing-Angl

:Light Sources
Point,
Directional

sAttribute Description
Ambient Color,

S
Diffuse Color,

pecular Color,
,

P
Transparent Color

hong Specular Exponent,

R
Index of Refraction,

eflection

Object Definitions
Hyperspheres,
Tetrahedrons,
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I

Parallelepipeds

n addition to the scene description, ray4 takes the following command-line argu-

ments which govern the resolution of the output image:

Aspect Ratios (X:Y:Z)

)

S

Image Resolution (X:Y:Z

can Range (Xmin-Xmax:Ymin-Ymax:Zmin-Zmax)

O

Scene Description Filename

utput Image Filename


