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A new theorem on space-time singularities is presented which largely incorporates and 
generalizes the previously known results. The theorem implies that space-time singularities 
are to be expected if either the universe is spatially closed or there is an ‘object5 undergoing 
relativistic gravitational collapse (existence of a trapped surface) or there is a point p  whose 
past null cone encounters sufficient matter that the divergence of the null rays through p  
changes sign somewhere to the past of p  (i.e. there is a minimum apparent solid angle, as viewed 
from p  for small objects of given size). The theorem applies if the following four physical 
assumptions are made: (i) Einstein’s equations hold (with zero or negative cosmological con­
stant), (ii) the energy density is nowhere less than minus each principal pressure nor less 
than minus the sum of the three principal pressures (the ‘energy condition5), (iii) there are 
no closed timelike curves, (iv) every timelike or null geodesic enters a region where the curva­
ture is not specially alined with the geodesic. (This last condition would hold in any sufficiently 
general physically realistic model.) In common with earlier results, timelike or null geodesic 
incompleteness is used here as the indication of the presence of space-time singularities. 
No assumption concerning existence of a global Cauchy hypersurface is required for the 
present theorem.

1. I n t r o d u c t i o n

An important feature of gravitation, for very large concentrations of mass, is that 
it is essentially unstable. This is due, in the first instance, to its 1 2 attractive 
character. But, in addition, when general relativity begins to play a significant 
role, other instabilities may also arise (cf. Chandrasekhar 1964). The instability 
of gravitation is not manifest under normal conditions owing to the extreme 
smallness of the gravitational constant. The pull of gravity is readily counteracted 
by other forces. However, this instability does play an important dynamical role 
when large enough concentrations of mass are present. In particular, as the work 
of Chandrasekhar (1935) showed, a star of mass greater than about 1.3 times that 
of the Sun, which has exhausted its resources of thermal and nuclear energy, 
cannot sustain itself against its own gravitational pull, so a gravitational collapse 
ensues. It has sometimes been suggested also that, on a somewhat larger scale, 
some form of gravitational collapse may be taking place in quasars, or perhaps in 
the centres of (some?) galaxies.'Finally, on the scale of the universe as a whole, 
this instability shows up again in those models for which the expansion eventually 
reverses, and the entire universe becomes involved in a gravitational collapse. In the 
reverse direction in time therels also the ‘ big bang ’ initial phase which is common
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to most relativistic expanding models. This again may be regarded as a manifesta­
tion of the instability of gravitation (in reverse).

But what is the ultimate fate of a system in gravitational collapse ? Is the picture 
that is presented by symmetrical exact models accurate, according to which a 
singularity in space-time would ensue? Or may it not be that any asymmetries 
present might cause the different parts of the collapsing material to miss each 
other, so possibly to lead to some form of bounce ? It seems that until comparatively 
recently many people had believed that such an asymmetrical bounce might 
indeed be possible to achieve, in a manner consistent with general relativity (cf. 
particularly, Lindquist & Wheeler 1957; Lifshitz & Khalatnikov 1963). However, 
some recent theorems']' (Penrose 1965 a; Hawking 1966 a, 6 ; H; Geroch 1966) have 
ruled out a large number of possibilities of this kind. The present paper carries 
these results further, and considerably strengthens the implication that a singu­
larity-free bounce (of the type required) does not seem to be realizable within the 
framework of general relativity.

In the first theorem (referred to as I; see Penrose 1965 a; cf. also Penrose 1966; 
P ; Hawking 1966 c) the concept of the existence of a trapped surface% was used as a 
characterization of a gravitational collapse which has passed a ‘point of no return \  
On the basis of a weak energy condition, % the intention was to establish the existence 
of space-time singularities from the existence of a trapped surface. Unfortunately, 
however, theorem I required, as an additional hypothesis, the existence of a non­
compact global Cauchy hypersurface. Although ‘reasonable’ from the point of 
view of classical Laplacian determinism, the assumption of the existence of a 
global Cauchy hypersurface is hard to justify from the standpoint of general 
relativity. Also, it is violated in a number of exact models. Furthermore, the non­
compactness assumption used in theorem I applies only if the universe is ‘open’.

The second theorem (Hawking 1966 a), and its improved version (referred to as 
II, see H; cf. also Hawking (1966c) and P), required the existence of a compact 
spacelike hypersurface with everywhere diverging normals. Thus it applies to 
‘closed’, everywhere expanding, universe models. For such models II implies the 
existence of an initial (e.g. ‘ big bang ’ type) singularity. However, this condition 
on the normals may well not be applicable to the actual universe (particularly if 
there are local collapsing regions), even if the universe is ‘closed’. Also, the con­
dition is virtually unverifiable by observation.

The third and fourth results (referred to as III and IV ; see Geroch (1966) and 
Hawking (19666), respectively) again apply to ‘closed’ universe models (i,e. 
containing a compact, spacelike hypersurface), but which do not have to be 
assumed to be everywhere expanding. However, III required the somewhat 
unnatural assumption of the non-existence of ‘horizons’, while IV required that 
the given compact hypersurface be a global Cauchy hypersurface. Thus, III and 
IV could be objected to on grounds similar to those of I.

f  We use H  for referring to Hawking (1967) and P  for referring to Penrose (1968).
% The precise meanings of these terms will be given in §3.
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The fifth theorem (referred to as V; see H, also Hawking (1966c) and P) does 
not suffer from objections of this kind, but the requirement on which it was 
based—namely that the divergence of all timelike and null geodesics through some 
point p  changes sign somewhere to the past of p—is somewhat stronger than one 
would wish. Theorem V would be considerably more useful in application if the 
above requirement referred only to null geodesics.

In this paper we establish a new theorem, which, with two reservations, effec­
tively incorporates all of I, II, III, IV and V while avoiding each of the above 
objections. In its physical implications, our theorem falls short of completely 
superseding these previous results only in the following two main respects. In the 
first instance we shall require the non-existence of closed time like curves. Theorem II 
(and II alone) did not require such an assumption. Secondly, in common with II, 
III, IV and V, we shall require the slightly stronger energy condition given in 
(3.4), than that used in I. This means that our theorem cannot be directly applied 
when a positive cosmological constant A is present. However, in a collapse, or ‘ big 
bang’, situation we expect large curvatures to occur, and the larger the curva­
tures present the smaller is the significance of the value of A. Thus, it is hard to 
imagine that the value of A should qualitively affect the singularity discussion, 
except in regions where curvatures are still small enough to be comparable with A. 
We may take I as a further indication (though not a proof) of this. In a similar way, 
II may be taken as a strong indication that the development of closed timelike 
curves is not the ‘answer’ to the singularity problem. Of course, such causality 
violation would carry with it other very serious problems, in any case.

The energy condition (3.4) used here (and in II, III, IV and V) has a very direct 
physical interpretation. It states, in effect, that ‘gravitation is always attractive’ 
(in the sense that neighbouring geodesics near any one point accelerate, on the 
average, towards each other). Our theorem will apply, in fact, in theories other 
than classical general relativity provided gravitation remains attractive. In par­
ticular, we can apply our results in the theory of Brans & Dicke (1961), using the 
metric for which the field equations resemble Einstein’s (cf. Dicke 1962). The 
gravitational constant could, in principle, change sign in this theory, but only via 
a region at which it becomes infinite. Such a region could reasonably be called a 
‘singularity’ in any case. On the other hand, gravitation does not always remain 
attractive in the theory of Hoyle & Narliker (1963) (owing to the effective negative 
energy of the C-field) so our theorem is not directly applicable in this theory. We 
note, finally, that in Einstein’s theory (with ‘reasonable’ sources) it is only A > 0 
which can prevent gravitation from being always attractive, the A term represent­
ing a ‘cosmic repulsion’.

In common with all the previous results I , . . . ,  V, our theorem will not give very 
much information as to the nature of the space-time singularities that are to be 
inferred on the basis of Einstein’s theory. If we accept that ‘ causality breakdown ’ 
is unlikely to occur (because of philosophical difficulties encountered with closed 
timelike curves and because theorem II suggests that such curves probably do not
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help in the singularity problem in any case), then we are led to the view that the 
instability of gravitation presumablyf results in regions of enormously large 
curvature occurring in our universe. These curvatures would have to be so large 
that our present concepts of local physics would become drastically modified. 
While the quantum effects of gravitation are normally thought to be significant 
only when curvatures approach IQ33 cm-1, all our local physics is based on the 
Poincare group being a good approximation of a local symmetry group at dimen­
sions greater than 10r13 cm. Thus, if curvatures ever even approach 1013 cm""1, 
there can be little doubt but that extraordinary local effects are likely to take place.

When a singularity results from a collapse situation in which a trapped surface 
has developed, then any such local effects would not be observable outside the 
collapse region. It is an open question whether physically realistic collapse situa­
tions, resulting in singularities, will sometimes arise without trapped surfaces 
developing (cf. Penrose 1969). If they do, it is likely that such singularities 
could (in principle) be observed from outside. Of course, the initial ‘big bang’ 
singularity of the Robertson-Walker models is an example of a singularity of 
the observable type. However, our theorem yields no information as to the 
observability of singularities in general. We cannot even rigorously infer whether 
the implied singularities are to be expected in the ‘past’ or the ‘future’. (In this 
respect our present theorem yields somewhat less information than I, II, or V.)

Our theorem will be directly applicable to any one of the following three situa­
tions. First, to the existence of a trapped surface; secondly, to the existence of 
of a compact space-like hypersurface; thirdly, to the existence of a point whose 
null-cone begins to ‘ converge again ’ somewhere to the past of the point. We assume 
the energy condition and the non-existence of closed timelike curves. On the basis 
of this (and another very minor assumption which merely rules out some highly 
special models) we deduce that singularities will develop in fully general situations 
involving a collapsing star, or in a spatially closed universe, or (taking the point 
in question in the third case to be the earth at the present time) if the apparent 
solid angle subtended by an object of a given intrinsic size reaches some minimum 
when the object is at a certain distance from us. We show, in an appendix, that 
this last condition is indeed likely to be satisfied in our universe, assuming the 
correctness of the normal interpretation of the 2.7 K background radiation. A 
similar discussion was given earlier by Hawking & Ellis (1968) in connexion with 
theorem V. Since we now have a stronger theorem, we can use somewhat weaker 
physical assumptions concerning the radiation.

In §2 we give a number of lemmas and definitions that will be needed for our 
theorem. The precise statement of the theorem will be given in § 3. This statement

f  We must always bear in mind that a local ‘energy-condition’ (cf. (3.4)) is being assumed 
here, which might be violated not only in a modified Einstein theory (e.g. ‘C-field’), but also 
in the standard theory if  we were allowed to have very ‘peculiar’ matter under extreme 
conditions. The quantum field-theoretic requirement of positive-definiteness of energy (in 
order that the vacuum remain stable) is o f great relevance here, but its status is perhaps not 
completely clear (cf. Sexl & Urbantke 1967 for example).
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is presented in a rather general form, which is somewhat removed from the actual 
applications. The main applications are given in a corollary to the theorem. One 
slight advantage of the form of statement that we have chosen will be that it 
enables a small amount of information to be extracted about the actual nature of 
the singularities. This is that (at least) one timelike or null geodesic must enter 
(or leave) the singularity not only in a finite proper (or affine) time, but also in 
such a way that none of the neighbouring initially parallel geodesics has time to 
be focused towards it before the singularity is encountered.

2. D e f in it io n s  and  lemmas

A four-dimensional differentiable (Hausdorff and paracompactf) manifold if f  
will be called a space-time if it possesses a pseudo-Riemannian metric of hyperbolic 
normal signature ( +  , —, —, —) and a time-orientation. (In fact the following 
arguments will apply equally well if iff has any dimension > 3; also, the time- 
orientability of iff need not really be assumed if we are prepared to apply the 
arguments to a twofold covering of iff .)  There will be no real loss of generality in 
physical applications if we assume that i f f  and its metric are both C00. However, 
the arguments we use actually only require the metric to be G%.

We shall be concerned with timeliJce curves and causal curves on if f . (When we 
speak of a * curve ’, we shall, according to context, mean either a continuous map 
into i f f  of a connected closed portion of the real line, or else the image in i f f  of such 
a map.) For definiteness we choose our timelike curves to be smooth, with future- 
directed tangent vectors everywhere strictly timelike, including at its end-points. 
A causal curve is a curve obtainable as a limiting case of timelike curvesj (cf. 
Siefert 1967; Carter 1967); it is continuous but not necessarily everywhere smooth; 
where smooth, its tangent vectors are either timelike or null. A timelike or causal 
curve will require end-points if it can be extended as a causal curve either into the 
past or the future (cf. P, p. 187). If it continues indefinitely into the past 
future] it will be called past-inextendible ]. If both past-
and future-inextendible it is called inextendible.

If p, q e if f , we write p< qif there is a timelike curve with past end-point p  
and future end-point q; we write p«< qif either or there is a causal curve
from p t o q  (cf. Kronheimer & Penrose 1967). but not 7)^ q, then there is
a null geodesic from p  to q, or else p  = q.If p  ̂ qand q < r ,  orifp  «< q and q <  r,
then p  r. We do not have p  <4 p  unless i f f  contains closed timelike curves. A 
subset of i f f  is called achronal if it contains no pair of points p, q with

t  Geroch (1968&) has shown that the assumption of paracompactness is not actually neces­
sary for a space-time, being a consequence of the other assumptions for a space-time manifold.

% Except for very minor parts of our discussion, the fact that we are allowing our causal 
curves not to be smooth plays no significant role in this paper, but it is useful for the general 
theory. A  continuous map of the connected closed interval JT c  R, into M , can be characterized 
as a causal curve by the fact that if  [a, 6] e rand if  A , B  and G are neighbourhoods in iff of 
the images of a, b and [a, 6], respectively, then there exists a timelike curve lying in G with 
one end-point in A  and another end-point in B.
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We shall, for the most part, use terminology, definitions and some basic results 
as given in P. (However we use ‘causal’ for curves referred to in P as ‘nonspace­
like’ and ‘achronal’ for sets referred to in P as ‘semispacelike’; cf. Carter 1967.) 
As in Kronheimer & Penrose (1967), we write I +(p) for the open future of a point 
p  g M, i.e. I +(p) = {x :p and /+[$] for the open future of a set 8 c: i.e.
J+[S] = (The sets /+[$] are open in the manifold topology for M.)

Similarly, J +(p) = {x:p<  x}\J+[$] = Uj)€s^ +(p)- These are not always closed 
sets.) We define #+(£) = J+[S. (2.1)

Then E+(8) is part of the boundary /+[$] of /+[$] but not necessarily all of it. The 
sets J~(p), /"[$], J~(p), J~[S] and E~(S) are defined similarly, but with future and 
past interchanged.

For any set S e M  we can define the ( domain of dependence and
Cauchy horizon H+(S) by

D+(S) = {#: every past-inextendible timelike curve through meets $} (2.2)

and H+(S) = {a;: a g !>+(£), n D+(S) = 0 }
= D+(£)-/-[!)+ (£ )]. (2.3)

The sets D~(S) and H~(S) are correspondingly defined. (These definitions are 
chosen to agree with P ; they differ somewhat from those of H.) We shall be con­
cerned only with the cases when S  is an achronal closed . Then D+(S) is a closed 
set and H+(S) is an achronal closed set. One easily verifies:

I+[H+(8)] = (2.4)

Define the edge of an achronal closed set S to be the set of points p e  S  such 
thatf if r <4 p  <4 q, with y  a timelike curve from r to q, containing p, then every 
neighbourhood of y  contains a timelike curve from to not meeting 8. It follows 
that edg6 (S) is in fact the set of points in whose vicinity 8 fails to be a C°—mani­
fold (8 achronal and closed). We have (cf. P, p. 191) edge (8)<^H+(S). (In fact 
edge($) = edge (H+(8)).) Furthermore:

Lemma (2.5). Every point of H+(8) — edge(S) is the future end-point of a null 
geodesic on H+(S) which can be extended into the past on H+(8) either indefinitely, or 
until it meets edge($).

For the proof, see P, p. 217 (compare H).
A similar result (which follows at once from P, p. 216; H) is (with 8 closed and 

achronal).

Lemma (2.6). Every point p  e  i +[$] — S is the future end-point of a null geodesic 
on /+[$] which can be extended into the past on /+[$] either indefinitely (if 
p  g 1+[S] — E+(S)) or until it meets edge(8) (whence p  g E+(S)).

We say that strong causality holds at p  if arbitrarily small neighbourhoods of p  
exist, each intersecting no timelike curve in a disconnected set. (Roughly speaking,

f  This replaces the definition of edge (S) given in P , which was not quite correctly stated.
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this means that timelike curves cannot leave the vicinity of and then return to 
i t ; i.e. M  does not ‘almost ’ contain closed timelike curves.) We must say ‘ arbitrarily 
small’, rather than ‘every’, in the above definition because of the existence of 
‘hour-glass shaped’ (or even ‘ball shaped’) neighbourhoods of any point in any 
space-time, which are left and re-entered by a timelike curve. To avoid this feature, 
let us call an open set Q causally convex (P, p. 224) if Q intersects no timelike curve 
in a disconnected set. Thus, strong causality holds at p  if and only if p  possesses 
arbitrarily small causally convex neighbourhoods (in which case, the ‘Alexandrov 
neighbourhoods’ I +{q) fl I~{r) will suffice, with ^  A causally convex
open set which lies inside a convex normal coordinate ball with compact closuref 
will be called a local causality neighbourhood (H, p. 192). Strong causality holds at 
every point of a local causality neighbourhood. The only properties of a local 
causality neighbourhood that we shall in fact use, are that it is open and causally 
convex, that it contains no past- (or future) -inextendible null geodesic and that 
any point at which strong causality holds possesses such a neighbourhood.

A property of D+(S) we shall require is the following. Again, S  is to be achronal 
and closed.

Lemma (2.7). I f  peint D+(S), then J~(p) n J +[S] is compact.
This follows from H. (See also P, p. 227: if edge($) = 0 ,  and strong causality 

holds at each point $ of S, we have the stronger result that int D+(S) is precisely 
the set of p  e /+[$] for which J~(p) fl J +[S] is both compact and contains no 
point at which strong causality fails. Lemma (2.7) follows by similar reasoning.)

We shall require the concept of conjugate points on a causal (i.e. timelike or null) 
geodesic. Two points p  and qon a causal geodesic y  are said to be conjugate if a 
geodesic ‘ neighbouring ’ to y ‘ meets ’ y  at pand at q. Somewhat more precisely, the 
congruence of geodesics through p  in the neighbourhood of y  has q as a, focal point, 
that is, a point where the divergence of the congruence becomes infinite. (This focal 
point will in general be an ‘ astigmatic ’ focal point. It is a point of the ‘ caustic ’ 
of the congruence. Precise definitions of conjugate points will be found in Milnor 
(1963), Hicks (1965), Hawking (1966a).) The relation of conjugacy is symmetrical 
in p  and q. The above definition still holds if the roles of and q are reversed. The 
property of conjugate points that we shall require is the following (for the timelike 
case, see Boyer (1964), Hawking (1966a, c), cf. Milnor (1963); for the null case see 
Hawking (1966c) and also P, p. 215, for an equivalent result).

Lemma (2.8). 7 / a causal geodesic y  fromp to q contains a pair of conjugate points 
between p  and q, then there exists a timelike curve from p  to q whose length exceeds that
of 7•

We use the term ‘length’ for a causal curve to denote its proper time integral. 
A timelike geodesic is locally a curve of maximum length. As a corollary of lemma 
(2.8) we have:

t  This condition was not explicitly included in the definition given in H. 
j  This condition should have been included in the conditions on in lemma V o f P .

The singularities of gravitational collapse and cosmology 535

 on October 22, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


536

Lemma (2.9). I f  y  is a null geodesic lying on /+[$] or on H+(S) for some 8 
then y  cannot contain a pair of conjugate points except possibly at its end-points.

Another consequence of lemma (2.8) is the following result:
Lemma (2.10). I f  M  contains no closed timelike curves and if  every inextendible 

null geodesic in M  possesses a pair of conjugate points, then strong causality holds 
throughout M.

Proof. The result has been given in Hawking (1966 c). We repeat the argument 
here since this reference is not readily available. Suppose strong causality fails 
at p. Let Bbe a normal coordinate neighbourhood of p  and Qt a nested sequence 
of neighbourhoods of p  converging on p. Now there is a timelike curve originating 
in Qi which leaves Bat a point qi e B, re-enters B  and returns to Qt. As -> 00 the 
qi have an accumulation point qon B (ftbeing compact). The geodesic pq in. B  
cannot be timelike (since otherwise I~(q) would contain some Qi} so closed timelike 
curves would result), nor spacelike. It must therefore be null. Furthermore, strong 
causality must also fail at q. Repeating the argument with q in place of p, we 
obtain a new null geodesic qr. In fact this must be the continuation of pq, since 
otherwise closed timelike curves would result. Continuing the process indefinitely 
both into the future and into the past we get an inextendible null geodesic y  at 
every point of which strong causality must fail. By hypothesis y  contains a pair 
of conjugate points. Thus by lemma (2.8) two of its points can be connected by a 
timelike curve. It follows that each point of some neighbourhood of one of these 
point can be joined by a timelike curve to each point of some neighbourhood of 
the other. This leads at once to the existence of closed timelike curves (because of 
strong causality violation), contrary to hypothesis. This establishes the lemma.

An important consequence of strong causality is the following result.
Lemma (2.11). Let p  q be such that the set J +(p) fl J~(g) is compact and contains 

no points at which strong causality fails. Then there is a timelike geodesic from p  to 
q which attains the maximum length for timelike curves connecting p  to q.

This result was proved by Siefert (1967). The result is, in effect, also contained 
in the earlier work of Avez (1963). (Unfortunately Avez’s analysis contains some 
errors owing to the fact that the possibility of strong causality breakdown is not 
duly taken into account.) Lemma (2.11) follows also from lemma in P (p. 227) 
in conjunction with VI of P (p. 228), as applied to the closed achronal set l~(q). 
In fact, lemma (2.11) can be generalized: if is a compact subset of M  containing 
no points at which strong causality fails, then the maximum length for all timelike 
curves contained in G is attained (though not necessarily by a geodesic). The essen­
tial feature of this situation is that the space of causal curves contained in is 
compact, the length of a causal curve being an upper semi-continuous function of 
the curve. For this, we need the appropriate topology on the space of causal 
curves. (See Seifert (1967); cf. also Avez (1963)). But it will not be necessary to 
enter into the general discussion here, as lemma (21.1) is all we shall need.

We define a future-trapped [resp. past-trapp] set to be a non-empty achronal

S. W. Hawking and R>. Penrose
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closedf set S ^ M  for which E+(S) \resp. is compact. (Note that E+(S)
\resp. E~(S)] must then be a closed achronal set.) Any future-trapped set 8 must 
itself be compact, since S <-E+(8).) An example of a future-trapped set is illustrated 
in figure 1. We now come to our main lemma.

L em m a  (2 .12). I f 8 is a future-trapped set for which strong causality holds at 
every point of / +[$], then there exists a future-inextendible timelike curve 
y ciint D+(E+(8)).

The singularities of gravitational collapse and cosmology 537

identify along — ^— 
identify along — —*

delete

E  =  E + (S ){Smmm\  F  _

----------  H  =  H+(E)

F ig ure  1. A future-trapped set S, together with the associated achronal sets E  =  E +(S), 
F  =  j+[$], H +(F), H  =  H +(E). (For the proof of lemma (2.12).) The figure is drawn
according to the conventions whereby null lines are inclined at 45°. The diagonally shaded 
portions are excluded from the space-time and some identifications are made. The symbol 
oo indicates regions ‘at infinity’ with respect to the metric. A future-inextendible timelike 
curve y  e D+(E) is depicted, in agreement with the conclusion of lemma (2.12).

Proof.% We first make some remarks concerning the relation between E = E+(S) 
and F =  /+[$] =  1+[E], and between their domains of dependence and their 
Cauchy horizons. We have E<=F, whence D+(E) c  D+(F). We have edge(i^) = 0 , 
so it follows from lemma (2.5) that each point of F-E  lies on a past-inextendible 
null geodesic on F-E. (These null geodesics extend into the future, while remaining

f  The condition that S  be closed could be omitted from this definition if  desired. For, if  S  
is achronal with E+(S) compact, then E +(S) =  E +(S). Another apparent weakening of the 
definition of ‘future-trapped’ for a closed achronal non-empty set S  would be to say that 
E+(S) has compact closure. ( E+(S) is not always a closed set, for general S.) This definition 
would be equivalent to the one we use, provided strong causality holds.

} This argument follows, to some extent, one given in H (pp. 198-9). I t  may also serve 
as a replacement for the final argument given in P  (on p. 230) which was not stated correctly.

35 Vol. 314. A.
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on F-E, perhaps reaching a future end-point on edge(-E'). We readily obtain
D+(F)-D+(E) = H+(F)-H+(E) = F-E, so int = int D+(F).)

We shall show that H  = H+(E) is non-compact or empty. For, suppose H  is 
compact. Then we can cover H  with a finite number of local causality neighbour­
hoods Bt. If H  is non-empty, then D+(E) 4s 7+[$]. Let with p
near H  and suppose p  e Bk. Since p  e /+[$], a timelike curve i] exists connecting 
S  to p. Since p  $ D+(E), it follows that y meets at a point p 0, say. We wish to 
construct a point q e /+[$] — D+(E) with q <4 p, q $ Bk and q e Bt, say. If p 0 $ Bk 
we can achieve this by taking q just to the future of p 0 on rj. If p 0eB k we follow 
the past-inextendible null geodesic £ through p Q on (cf. (2.5)). Now £ must
leave Bk (since Bk is compact) and so contains a point p 1$B k on H+(F). We have 
p x< p 0 p, so p x p. Choosing q near with we have q $ B k and
q e B t, say, where q E l+(px) <= 7+[J0r+(jP)] = I +[S] — D+(E) as required (cf. (2.4)). 
Repeating the procedure, we can find r e I +[S] — D+(E) with r <4 q ,r£ B l and r e Bm 
say, etc. Since the Bi are finite in number, there must be two of . . . ,  in the 
same Bit hence violating causal convexity. Thus, H  if non-empty, must be non­
compact, as required.

Now by a well known theorem (cf. Steenrod 1951, p. 201) we can choose a 
smooth (future-directed) timelike vector field on M. Form the integral curves {/i} 
of this vector field. Then each p  which meets H  must also meet E  (since H <=■ D+(E)), 
but there must be some p  — p0which meets E but not H. Otherwise the p ’s would 
establish a homeomorphism between E  and H, which is impossible since E  is 
compact and non-empty, while H  is non-compact or empty. Choose y  = n I +[E].
Then y  c: int D+(E) and is future-inextendible as required.

3. T he theorem

We shall begin by giving a precise statement of our theorem. The form of state­
ment we adopt is made primarily for the sake of generality and for certain 
mathematical advantages. But in order that the theorem may be directly applied 
to physical situations, we single out the main special cases of interest in a corollary. 
This recasts our main result in a much more suggestive and immediately usable form. 
However, the generality of the statement given in the theorem will also yield some 
advantages as regards applications. It will enable a small amount of information 
to be extracted as to the actual nature of the space-time singularities. Also, it is by 
no means impossible that the theorem, as stated, may have relevance in physical 
situations other than precisely those which we have considered here. We shall follow 
the statement of the theorem with some explanations and interpretations.

Theorem. N o space-time M  can satisfy all of the following three requirements 
together:

(3.1) M  contains no closed timelike curve,
(3.2) every inextendible causal geodesic in M  contains a pair of conjugate points,
(3.3) there exists a future- (or past-) trapped set S  c  M.
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Let us examine each of these three conditions in turn. With regard to (3.1), the 
existence of closed timelike curves in any space-time model leads to very severe 
interpretative difficulties. It might perhaps be argued that the presence of a closed 
timelike world-line could be admissable, provided the world-line entered a region 
of such extreme physical conditions, or involved such large accelerations, that no 
physical observer could ‘ survive ’ making this trip into his own past, so that any 
‘memory’ of events would necessarily be destroyed in the course of the trip. 
However, it seems highly unlikely that the physical consequences of closed time­
like curves can be eliminated by considerations of this kind. The existence of 
such curves can imply serious global consistency conditions on the solutions of 
hyperbolic differential equations.W e are reassured by the theorem referred to 
as II in § 1 (cf. H) that the singularity problem of general relativity is not forcing 
us into consideration of closed timelike curves.

Condition (3.2) of the theorem—namely that for any timelike or null geodesic, 
there is a ‘neighbouring geodesic’ which meets it at two distinct points—may, at 
first sight appear to be a strong one. However, this is not so. The condition is in 
fact one that could be expected to hold in any physically realistic non-singular 
space-time. It is a consequence of three requirements: causal geodesic completeness, 
the energy condition and a generality assumption.

The requirement of causal geodesic completeness is simply that every timelike 
and null geodesic can be extended to arbitrarily large affine parameter value both 
into the future and into the past. (In the case of timelike geodesics we can use the 
proper time as such a parameter.) In crude terms we could interpret this condition 
as saying: ‘ photons and freely moving particles cannot just appear or disappear 
off the edge of the universe’. A completeness condition of this kind is sometimes 
used as virtually a definition of what is meant by a non-singular space-time (cf. 
Geroch 1968a). Since one must normally ‘delete’ any actual singular points from 
consideration as part of the space-time manifold, it is by some criterion such as 
‘incompleteness’ that the ‘holes’ left by the removal of the singularities may be 
detected.

The energy condition may be expressed as

tata = 1 implies Babtatb < 0. (3.4)

(We use a -1----------signature, with Riemann and Ricci tensor signs fixed by
2^[aSbA  =  hdRdaab, Rab = Rcacb.) With Einstein’s equations

Rab \R$ab~ (3-5)

(3.4) becomes tata =  1 implies Tabtatb ^ \T ec. (3.6)

(We have K  >0 . To incorporate a cosmological constant A, we would have to 
replace Tab in the above by Tab + XK^g^. Thus, (3.6), as it stands, would still

f  For example, 0  =  const, is the only solution of =  0, on the -torus,
for which (t,x) is identified with (t +  n ,x  +  mn) for each pair of integers n, m.

The singularities of gravitational collapse and cosmology 539

35-2

 on October 22, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


540

imply (3.4) so long as A ^ 0 .) [If, in an eigentetrad of E  denotes the energy 
density and p v p 2, p s denote the three principal pressures, then (3.6) can he written 
as

E-\-Epi ^  0, (3.7)

together with E + p t ^ 0, (3.8)

where i  — 1, 2, 3.
The weak energy condition is

lala — 0 imphes Bablalb < 0, (3.9)

which is a consequence of (3.4) (as follows by a limiting argument). This is equiva­
lent, assuming Einstein’s equations, to (3.8) {without (3.7)) and follows from the 
positive-definiteness of the energy expression Tabtatb, for tata =  1. (This is now 
irrespective of the value of A.)

The assumption of generality we require (compare Hawking 19666) is that every 
causal geodesic y contains some point for which

^ (3.10)

where ka is tangent to y. If y  is timelike, we can rewrite (3.10) as

Babcdkbk? *  0. (3.11)

(To see this, transvect (3.10) with kakf.)
In any physically realistic ‘generic’ model, we would expect (3.10) to hold for 

each y. For example, the condition can fail for a timelike geodesic y only if 
vanishes at every point on y, and then only if the Weyl tensor is related in a very 
particular way to y (i.e. Cabcdkbkc = 0) at every point on y. (For a generic space- 
time this would not even occur at any point of any y !) The condition can fail for 
a null geodesic y only if Rabkakb vanishes at every point of y and the Weyl tensor 
has the tangent direction to y as a principal null direction at every point of y  
(cf. P, p. 162). (In a generic space-time, there would not be any null geodesic y  
which is directed along a principal null direction at six or more of its points. 
This is because null geodesics form a five-dimensional system. It is n conditions 
on a null geodesic that it be directed along a principal null direction at n of its 
points, so such null geodesics form a (5 — w)-dimensional system in a generic space- 
time.) We can thus reasonably say that it is only in very ‘special’ (and therefore 
physically unrealistic) models that the condition will fail.

We must now show why these three conditions together imply (3.2). The fact 
that they do is essentially a consequence of the Raychaudhuri effect (1955, cf. also 
P, p. 169; compare also Myers 1941). The idea here is to proceed so far along the 
causal geodesic y that we get beyond the focal length of the effective Tens system ’ 
due to the curvature along y (compare Penrose 19656). Consider a causal geodesic 
y belonging to a hypersurface orthogonal congruence of causal geodesics. We 
are interested in the members of JTonly in the immediate neighbourhood of y.
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When y is a null geodesic* we shall, for convenience, specify that all the other 
members of F  shall also be null. In this case we shall, in fact, be interested only in 
those members of r, near y, which generate a null hypersurface containing y. 
When y  is time-like we define the vector field ta to be the unit future-directed 
tangents to the curves of T. When y  is null, we choose a vector field la to be 
smoothly varying future-directed tangents to the curves of r, where la is parallelly 
propagated along each curve. We have

VJb = V6*0, tata =  1, DP  =  0, with D  =  t*Va (3.12)
and

l[cVa l ft =  0, lala =  0, Dla 0, with D — ZaVa (3.13)

respectively.
Let us first consider the timelike case. Ricci identities give, with (3.12),

Rabcd^^ — T>iyctf) + (Vc^) (Vd£a). (3.14)

Now RabcdtbF and Vctd each annihilate ta when transvected with it on any free 
index. Introduce an orthonormal basis frame, with ta as one of the basis elements. 
Let Qap and Ua/3 denote the symmetric (3x3) matrices of spatial components of 
R'abcd and Vatb,respectively. Then (3.14) becomes

Qocfi — DUap—UayUyp. (3.15)

The matrix Qaji defines the geodesic deviation (relative acceleration) o f / 7; the trace- 
free part of Uao defines the shear of F. We define the divergence of to be

0 = V j a  = _ ^ a. (3.16)
Taking the trace of (3.15), we get

Dd + ±d* = i  (lrafiUafidpJ ^ - U afldafiUp< 0 (3.17)

by Schwarz’s inequality and the energy condition (3.4) (which asserts Qyy 0). 
Equality holds only when Qyy = 0 and XJaft is proportional to dafi (so that the shear 
would have to vanish).

Suppose Rabcdtbtd 4= 0 at some point x of y, in accordance with (3.11). Then 
Qap =j= 0 at x.We shall show, first, that this implies that the strict inequality holds 
in (3.17) at some point yon ywith x ^ y .  For if it turns out that Qa/3 =  at x 
(for some fi), then clearly Qa/} 4= 0 at ximplies Qyy 4= 0 at so that strict inequality
holds at y — x.On the other hand, suppose Qafi is not of this form at x. Then by
(3.15) Uagcannot be proportional to 8̂  throughout any open segment of y  whose
closure includes x. Thus, the expression in parentheses in (3.17) must fail to vanish 
at some point y e 8 with x -< y,so the strict inequality in (3.17) must hold at y.

Let the real quantity W be defined along y  as a non-zero solution of

DW = \ 0W
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(so that Wz measures a spacelike 3-volume element orthogonal to 7 and Lie 
transported along the curves of F). Then (3.17) givesf

D2W < 0 (3.19)

along y, provided W remains positive. Furthermore the strict inequality holds at 
y. Choosing W >0 at x,we see from (3.18) and (3.19) that if ^ 0 at x, then W 
becomes zero at some point qon y  with x q. Furthermore, if 0 at x, then W
becomes zero at some p e y  with p  <4 x.This is provided we assume that 7 is a 
complete geodesic. (By (3.12), we can interpret the ‘D ’ in (3.17), (3.18), (3.19) as 
d/d5, where sis a proper time parameter on 7. The completeness condition ensures 
that the range of s is unbounded.) When W becomes zero, we have a, focal point 
of r  (point of the caustic) at which 6 becomes infinite (since 6 =  3 In W).

Now fix the causal geodesic 7 and fix a point x on it at which (3.11) holds: then 
allow the congruence jP to vary. Thus, we consider solutions of (3.15), where the 
matrix Qao is a given function of s. We shall be interested, in the first instance, in 
solutions for which 0 ^ 0 at x. Then by the above discussion there will be a first 
focal point qr on 7, for each r  (with x qr). Each solution of (3.15) is fixed once° O
the value of UaJ3 =  Uao is fixed at x (with £7aa > 0). Thus, qr is a function of the
nine Uao. Furthermore, it must be a continuous function. We note that if any com-
ponent of Uap is very large, then qr is very near x (since, in the limit Qap becomes
irrelevant and the solution resembles the flat space-time case). It follows that the
qr s must lie in a bounded portion £ of 7. (The one-point compactification of the 

0 0
space of Uap, with 'Uaa ^ 0 is mapped continuously into 7, with the point at 
infinity being mapped to x itself. Thus, the image must be compact.) Choose a 
point q e y ,  to the future of £ and let r  consist of the timelike geodesics (near 7) 
through q. If there were no conjugate point to q on 7, then the r  congruence would 
be non-singular to the past of q.We cannot have < 0 at since this would 
imply q e£. But we have seen that 6 >0 implies another focal point to the past of 
x. This establishes the existence of a pair of conjugate points on 7 in the timelike 
case.

When 7 is null, the argument is essentially similar. In place of (3.14) we can 
use the Sachs equations (cf. P, p. 167) which have a matrix form similar to (3.15). 
The components of the curvature tensor which enter into these equations are just 
the four independent real (or two independent complex) components of 
l[aRb]cd[eh]lcld- The analogue of 6is — 2p = Vala. In place of W we have a ‘lumino­
sity parameter’ L, satisfying DL = —pL and D 2L  ^ 0. The conclusion is the 
same: If (3.10) holds at some point on 7, if 7 is complete and if the energy condition 
holds (in this case the weak energy condition (3.9) will suffice), then 7  contains a 
pair of conjugate points.

t  Equation (3.19), which follows from Rabkakb ^  0, is essentially the statement that 
‘gravitation is always attractive’ (cf. §1). It tells us that the geodesics of r ,  neighbouring to  
7, have a tendency to accelerate towards 7—in the sense that freely falling 3-volumes accelerate 
inwards.
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We now come to (3.3), the final condition of the theorem. A drawback of this 
condition, when it comes to applications, is that we may require considerable 
information of a global character concerning the space-time M, in order to decide 
whether or not a given set 8 is future-trapped. However, in certain special cases, 
we can invoke the weak energy condition and null-completeness, to enable us to 
infer, on the basis of these two properties, that a certain set should be future- 
trapped. An example of such a set $  is a trapped surface (Penrose 1965 ; P, p. 211), 
defined as a compact spacelike 2-surface with the property that both systems of 
null geodesics which intersect S orthogonally converge at S, as we proceed into the 
future. (For simplicity, suppose 8 to be achronal.) We expect trapped surfaces to 
arise when a gravitational collapse of a localized body (e.g. a star) to within its 
Schwarzschild radius takes place, which does not deviate too much from spherical 
symmetry. The significant feature of a trapped surface arises from the fact that 
the null geodesics meeting it orthogonally are the generators of E+(8). If these 
null geodesics start out by converging (p > 0) then by the earlier discussion 
(Raychaudhuri effect in the null case—weak energy condition and null complete­
ness assumed), they must continue to converge until they encounter a focal point. 
Either then, or before then, they must leave E+(S) (cf. P, p. 218). Since 8 is com­
pact and since the focal points must move continuously with the geodesic (being 
obtainable via integration of curvature), it follows that the geodesic segments 
joining 8 to the focal points must sweep out a compact set. Thus E+(8), being the 
intersection of this compact set with the closed set ./+[$], must also be compact— 
so 8 is future-trapped and the theorem applies.

Precisely the same argument will apply in more general situations. For example, 
if 8 is any compact achronal set whose edge is smooth and at which the null 
geodesics which form the local boundary of its future (these will be orthogonal 
to edge($)) converge at edge($) as we proceed into the future, then (again assuming 
null completeness and the weak energy condition) 8 will be future-trapped. More 
generally still, we need not require that the null geodesics which form the local 
boundary of the future of 8 actually converge at edge($). It is only necessary that 
we should have some reason for believing that they converge somewhere to the 
future of 8. In particular, 8 might contain but a single point p, located somewhere 
near the centre of a collapsing body, but at a time before the collapse has drastically 
affected the geometry at p. Then, under suitable circumstances the future null 
cone of p  can encounter sufficient collapsing matter that it (locally) starts con­
verging again. Thus every null geodesic through p  will encounter a point conjugate 
to p  in the future (assuming null completeness and the weak energy condition), so 
again these null geodesic segments sweep out a compact set. Its intersection with 
l+(p) is E+({p}), implying that E+({p}) is compact, so {p} is future-trapped and 
the theorem applies.

In its time-reversed form, this last example has relevance to cosmology. If the 
point p  refers to the earth at the present epoch, the null geodesics into the past, 
through p  sweep out a region which can be taken to represent that portion of the
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universe which is visible to us now. If sufficient matter (or curvature in general) 
encounters these null geodesics, then the divergence (—p) of the geodesics may be 
expected to change sign somewhere to the past of This sign change occurs where 
an object of given size intercepting the null ray subtends its maximum solid angle 
at p. Thus, the existence of such a maximum solid angle for objects in each direc­
tion, may be taken as the physical interpretation of this type of past-trapped set 
{p}. Again the theorem applies. In an appendix we give an argument to show that 
the required condition on p  seems indeed to be satisfied in our universe.

Another example of a future- (or past-) trapped set is any achronal set which is 
a compact spacelike hypersurface. (If we do not assume that the hypersurface is 
achronal, we can produce a ‘copy’ of it which is achronal by taking a suitable 
covering manifold of the entire space-time, cf. H. Thus, we actually lose no 
generality by assuming that S  is achronal.) In this case, since edge($) = we 
have E+(S) = S, so E+(8) is compact. Hence the theorem applies to ‘closed 
universe’ models. It is possible that still other situations of physical interest might 
arise in which a future- (or past-) trapped set S  would be inferred as existing 
(perhaps on the basis of completeness or energy assumptions).

We are now in a position to state the corollary to our theorem.
Co r o lla r y . A space-time M  cannot satisfy causal geodesic completeness if, together 
with Einstein’s equations (3.5), the following four conditions hold:
(3.20) M  contains no closed timelike curves.

(3.21) the energy condition (3.6) is satisfied at every point,

(3.22) the generality condition (3.10) is satisfied for every causal geodesic,

(3.23) M  contains either
(i) a trapped surface,

or (ii) a point p  for which the convergence of all the null geodesics through p  
changes sign somewhere to the past

or (iii) a compact spacelike hypersurface.

We may interpret failure of the causal geodesic completeness condition in our 
corollary as virtually a statement that any space-time satisfying (3.20)-(3.23) 
‘possesses a singularity’ (cf. Geroch 1968a and our earlier remarks). However, 
one cannot conclude, on the basis of the corollary, that such a singularity need 
necessarily be of the ‘infinite curvature’ type. Although one might infer that in 
some sense a ‘maximally extended’ space-time satisfying (3.20)-(3.23) should 
obtain arbitrarily large curvatures, there are, nevertheless, other possibilities to 
consider (cf. H). In fact, very little is known about the nature of the space-time 
singularities arising in general relativity other than in highly symmetrical situa­
tions. For this reason, it is worth pointing out the minor inference that can be 
made about the nature of these singularities if we revert back to our original 
statement of the theorem. The implication is, virtually, that a space-time satisfying
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(3.20)-(3.23) must contain a causal geodesic which possesses no pair of conjugate 
points. At a first guess, one might have imagined that causal geodesics entering 
very large curvature regions would be inclined to possess many pairs of conjugate 
points. Instead, we see that our theorem implies that some causal geodesic ‘enters 
a singularity’ (i.e. is compelled to be geodesically incomplete) before any repeated 
focusing has time to take place.

Proof of the theorem:
Take S  as future-trapped. Then, by lemma (2.12), there is a future-inextendible 

timelike curve y c: int D+(E+(S)). (That strong causality holds for M  follows from 
lemma (2.10).) Define T =  J~[y] n E+(S). We shall show that T  is past-trapped. 
(That T  is closed and achronal follows at once since J_[y] is closed and E+(S) is 
closed and achronal.) Now, since y <= D+(E every past-inextendible timelike 
curve with future end-point on y must cross E+(S). More particularly, it must 
cross T.Also,I~[T] <= J-[y]. Thus I~[T] is simply a portion of J~[y] ‘cut off’ by T. 
Examining the boundaries of these sets, we see 1~[T] <= U Z~[y]. We are interested
in E~(T) — T. This is generated by null geodesics {/?} on I~[T] with future end-point 
on T  (at edge(T)). These null geodesics can be continued on 7~~[y] inextendibly 
into the future. (For, by lemma (2.6), each point of l~[y] is the past end-point of 
a null geodesic on jf~[y] which continues future-inextendibly unless it meets y. 
But it clearly cannot meet y, since y is timelike and future-inextendible.) But, by 
(3.2), every generator /? of 1~[T] must, when maximally extended, contain a pair 
of conjugate points p, q, with p < q ,  say. By lemma (2.9), p  cannot lie on /~[y] 
(so p  e /-[y]). Thus /? must contain a past end-point either at p, or to the future 
of p. Now T  and edge(T) are compact (being closed subsets of the compact set 
E+(S)). Since /? meets edge(T) and since conjugate points vary continuously, 
(being obtainable as integrals of curvature, cf. Hicks 1964, H) we can choose p  
and q, for each /?, so that the segment of the extension of /? from to sweeps out 
a compact region. Thus, the segment of the extension of /? from p  to edge(T) also 
sweeps out some compact region C of M. We have E~(T) =  ] fl ((7 U T),
showing that E~(T)is a closed subset of the compact set C U and is therefore 
itself compact. Thus, T  is past-trapped, as required.

By lemma (2.12) there exists a past-inextendible timelike curve"a e int D~(E~(T). 
Choose a point a0 e a. We have a0 e /~[y], so we find cfle y  with a0 <  c0. Choose 
the sequence a0, ax, a2,. .  . , ey ,  receding intojthe past indefinitely (i.e. with no limit
point). Similarly choose c0, cvc................... proceeding into the future indefinitely. We
have at<4 c{ for all i. Now a{ e int D~(E~{T)) and e int D+(E+(S)). Thus by 
lemma (2.7) J+(aJ n J~[T] is compact (with strong causality holding throughout) 
and so is J _(ci) n J +[S]- If is easily seen that J +(ai) n J “(ĉ ), is a closed subset of 
{ / “(c*) n J+[$]} U H J~[T]} and so is also compact with strong causality
holding throughout. Thus, by lemma (2.11) there is a maximal causal geodesic p i 
from 0q to ci. Now Pi must meet T, which is compact, at qi} say. As i -> 00, there will 
be an accumulation point qin Tand an accumulation causal direction at q.
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Choose the causal geodesic jtt, through T, in this direction, so fi is approached 
by fa. By (3.2), [i contains a pair of conjugate points, u and v, say, with u -^ v .
Since conjugate points vary continuously, we must have as a limit point of some 
{fa} and vas a limit point of some {vj} where fa and vi are conjugate points on the
maximal extension of fa,the {fa} being chosen to converge on ft. But {aj and {cj 
cannot accumulate at any point of the segment uv of Hence, for some large 
enough j ,  fa  will lie to the past of fa in fa and fa to the future of vi on This 
contradicts lemma (2.8) and the maximality of fa. The theorem is thus established.

The authors are grateful to C. W. Misner and to R. P. Geroch for valuable 
discussions.
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A p p e n d ix

We wish to show that there is enough matter on the past light-cone of our 
present location p  to imply that the divergence of this cone changes sign some­
where to the past of p. A sufficient condition for this to be so is that there should 
be (affine) distances R1 and R2 such that along every past-directed null geodesic 
from p,

%Kr A R' TablHbd r > \ .  (Al)
JRi

(This formula can be obtained by using a variational approach similar to that 
used in Hawking (1966a).) As in (3.5), K = 8nG, where G (=  7.41 x 10~29 cm g_1) 
is the gravitational constant. (Length and time units are related via c = 1 ,  
i.e. 3 x 1010 cm = 1 s.)

In this integral, the vector la is a future-directed tangent to the null geodesic 
and ris a corresponding affine parameter (Z°Var = — 1). Here la is parallelly pro­
pagated along the null geodesic and is such that 0 at and laUa = 1, where

Uais the future-directed unit timelike vector representing the local standard of 
rest at p.

In a recent paper (Hawking & Ellis 1968) it was shown that, with certain 
assumptions, observations of the microwave background radiation indicate that 
not only do the past directed null geodesics from us start ‘ converging again ’ but 
so also do the timelike ones. As we are concerned only with the null geodesics, 
the assumptions we shall need will be weaker.

The observations show that between the wavelengths of 20 cm and 2 mm the 
background radiation is isotropic to within 1 % and has a spectrum close to that of 
a black body at 2.7 K. We shall assume that this spectrum and its isotropy indicate 
not that the radiation was necessarily created with this form, but that it has 
undergone repeated scattering. (We do not assume that the radiation is necessarily 
primeval.) Thus there must be sufficient matter on each past directed null geodesic 
from p  to make the optical depth large in that direction. We shall show that this 
matter will be sufficient to cause the inequality (Al) to be satisfied.

The smallest ratio of density to opacity at these wavelengths will be obtained 
if the matter consists of ionised hydrogen in which case there would be scattering 
by free electrons. The optical depth to distance would be

CR cr
J o  S ' * * * * '

where cr is the Thomson scattering cross-section, m the mass of a hydrogen atom, 
p the density, measured in g cm-3, of the ionised gas and Va the local velocity of 
the gas. The red-shift Z of the gas is given by (ZaVa — 1). We assume that this in­
creases down our past-light cone. As galaxies are observed with red-shifts of 0.46 
most of the scattering must occur at red-shifts greater than this (in fact if the 
quasars really are at cosmological distances, the scattering must occur at red-shifts
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of greater than 2). With a Hubble constant of 100 km s_1 Mpc-1, a red-shift of 
0.4 corresponds to a distance of about 3 x 1027 cm. Taking to be this distance, 
the contribution of the gas density to the integral in (Al) is

As laVa will be greater than 1.4 for r > Rxit can be seen that the inequality 
(Al) will be satisfied at an optical depth of about 0.1. If the optical depth of the 
Universe were less than this, one would not expect either a black body spectrum 
or a high degree of isotropy, as the photons would not suffer sufficient collisions. 
Even if the radiation arose from an isotropic distribution of black-body emitters 
at a higher temperature but covering less than ^  of the sky, what one would see 
would then be a dilute * grey ’ body spectrum which could agree with the observations 
between 20 and 2 cm but which would not fit those at 9 and 2 mm. Thus we can be 
fairly certain that the required condition is satisfied in the observed Universe.

2.6 p (?a V0)2 dr

while the optical depth of gas at red-shifts greater than 0.4 is
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