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Abstract

This tutorial provides an intuitive connection between many standard 3D geometric concepts used
in computer graphics and their higher-dimensional counterparts. We begin by answering frequently
asked geometric questions whose resolution, though obvious in hindsight, may be obscure to those
who have never ventured beyond the third dimension. We then develop methods for describing,
transforming, interacting with, and displaying geometry in arbitrary dimensions. We discuss sev-
eral examples directly relevant to ordinary 3D graphics, including the treatment of quaternion
frames as 4D geometric objects, and the application of generalized lighting models to 4D repre-
sentations of 3D volumetric density data.
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General Information on the Tutorial

Course Syllabus

Summary: This tutorial will bridge the gap between the familiar geometric methods of 3D com-
puter graphics and their generalizations to higher dimensions. Participants will learn techniques for
describing, transforming, interacting with, and displaying geometric objects in dimensions greater
than three. Examples with direct relevance to graphics will include quaternion geometry and 3D
scalar fields viewed as 4D elevation maps.

Prerequisites: Participants should be comfortable with and have an appreciation for conven-
tional mathematical methods of 3D computer graphics used in polygon rendering, ray-tracing, and
illumination models. Some knowledge of volume rendering would be helpful. These methods will
form the assumed common language upon which the tutorial is based.

Objectives: Participants will learn basic methods of high-dimensional geometry as intuitive gen-
eralizations of 3D graphics techniques. Specific concepts such as projection, normal determination,
and generalized lighting will be applied to examples such as the visualization of quaternions and
3D scalar fields.

Outline: This is a two-hour tutorial and the material will be arranged approximately as follows:

I. Introduction to N-dimensional geometry.

A. (45 min) Develop formulas and techniques of N-dimensional geometry as general-
izations that clarify standard 3D geometric methods such as normals, cross-products,
inside-outside tests, proximity calculations, and barycentric coordinates. Approaches
to treating N-dimensional data points as geometry.

B. (25 min)Rotations in N dimensions and natural interfaces for N-dimensional orienta-
tion control. Quaternion representations of orientation.

II. Applications in low dimensions.

A. (25 min)Moving 3D frames as 4D quaternion differential equations; the Frenet and
Bishop frame equations; visualizing quaternion frames as 4D geometric objects.

B. (25 min)Displaying 4D geometric objects. Example: viewing 3D scalar fields as 4D
elevation maps. Approaches to display, virtual lighting, and interaction withD >= 4
objects in 3D virtual reality environments.
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1 Overview

Practitioners of photorealistic computer graphics use many mathematical tools that have origins
in linear algebra, analytic and differential geometry, and the geometric constructs of classical and
even quantum physics. Another growing specialty in graphics is the representation, interactive ma-
nipulation, and display of multi-dimensional data. However, the relationships between the methods
used by these two graphics applications are not widely understood or exploited. The purpose of
this Tutorial is to construct an intuitive bridge between many standard 3D geometric concepts and
their higher-dimensional counterparts.

The Tutorial will begin with the answers to frequently asked geometric questions whose form,
though obvious in hindsight, may be obscure to those who have never ventured beyond the third
dimension. By exploring and generalizing core techniques used throughout ray-tracing, anima-
tion, and photorealistic applications, we will expose powerful arbitrary-dimensional concepts that
help establish geometric interpretations and methods applicable to multi-dimensional data. At the
same time, we will point out how arbitrary-dimensional generalizations of geometry provide new
insights into familiar 3D problem domains. Finally, we will briefly note a number of very useful
special cases that occur in “low” dimensions, particularly in 4D, that are directly relevant to ordi-
nary 3D graphics; these topics will include simple intuitions about quaternions as 4D geometric
objects, the multifaceted relation of moving quaternions to time-dependent 3D orientation frames,
and the generalization of classical lighting models to create intuitive 4D representations of 3D
volumetric density data.

2 Fundamental Concepts

In computer graphics, we begin with a certain family of geometric ideas and mathematical im-
plementations that allow us to generate images by simulating the physical interaction of materials
and light. These ideas are taught for the most part with very little emphasis on their generality,
and many of the terms and techniques are very specific to three dimensions. The specificity to
3D is of course reasonable, since that is the exclusive target of photorealistic graphics problems.
However, there are fascinating issues involved in generalizing the computations involved to higher
dimensions: for one thing, the intrinsic nature of the geometry is sometimes clarified by working
in a general dimension and then reducing it back to 3D to clarify which properties are general
and which are specific to 3D; for another, there are numerous classes of data relevant to graphics,
including, for example, quaternion representations of rotations, that are intrinsically of dimension
greater than three. Other areas such as those involvingN -dimensional data points from statisti-
cal surveys and such are relevant to this tutorial in a peripheral sense: while we are concerned
mainly withgeometry, that is, theconnectionsamong points to create curves, surfaces, and higher-
dimensional manifolds, there will be certain parts such as rotation control interfaces that are also
useful for projections of high-dimensional point sets lacking any other geometry.

The basic material covered in these notes will begin with notions that allow one to easily discuss
geometry in many dimensions from a unified viewpoint, and then we will keep dropping back to
3D to see where the familiar specializations come from.
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3 Geometry for N-Dimensional Graphics

(This section of the lecture notes closely follows the author’s Graphics Gems IV article [37].)
Textbook graphics treatments commonly use special notations for the geometry of 2 and 3

dimensions that are not obviously generalizable to higher dimensions. Our purpose here will be to
study a family of geometric formulas frequently used in graphics that are easily extendible toN

dimensions as well as being helpful alternatives to standard 2D and 3D notations.
What use are such formulas? In mathematical visualization, which commonly must deal with

higher dimensions — 4 real dimensions, 2 complex dimensions, etc. — the utility is self-evident
(see, e.g., [5, 31, 44, 65]). The visualization of statistical data also frequently utilizes techniques
of N -dimensional display (see, e.g., [64, 25, 26, 42]). We hope that maing some of the basic tech-
niques more available will encourage further exploitation ofN -dimensional graphics in scientific
visualization problems.

We classify the formulas we will study into the following categories: basic notation and theN -
simplex; rotation formulas; imaging inN -dimensions;N -dimensional hyperplanes and volumes;
N -dimensional cross-products and normals; clipping formulas; the point-hyperplane distance;
barycentric coordinates and parametric hyperplanes;N -dimensional ray-tracing methods. An ap-
pendix collects a set of obscure Levi-Civita symbol techniques for computing with determinants.
For additional details and insights, we refer the reader to classic sources such as [75, 18, 52, 3, 22].

4 Rotations for N-Dimensional Graphics

(This section of the lecture notes closely follows the author’s Graphics Gems V article [38].)
In the previous article [37], “Geometry forN -Dimensional Graphics,” we described a family

of techniques for dealing with the geometry ofN -dimensional models in the context of graphics
applications. In this section, we build on that framework to look in more detail at rotations in
N -dimensional Euclidean space. In particular, we give a naturalN -dimensional extension of the
3D rolling ball technique described in Graphics Gems III [35], “The Rolling Ball,” along with the
corresponding analog of the Virtual Sphere method [16]. Next, we touch on practical methods
for specifying and understanding the parameters ofN -dimensional rotations. Finally, we give the
explicit 4D extension of 3D quaternion orientation splines.

5 Quaternion Frames

In this section of the lecture notes, we study the nature of quaternions, which are effectively points
on a 4D object, the three-sphere; the three-sphere (S3) is analogous to an ordinary ball or two-
sphere (S2) embedded in 3D, except that the three-sphere is a solid object instead of a surface. To
manipulate, display, and visualize rotations in 3D, we may convert 3D rotations to 4D quaternion
points and treat the entire problem in the framework of 4D geometry. The methods in this section
follow closely techniques introduced in Hanson and Ma [45, 46] for representing families of coor-
dinate frames on curves in 3D as curves in the 4D quaternion space. The extension to coordinate
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frames on surfaces and the corresponding induced surfaces in quaternion space are introduced in
“Constrained Optimal Framings of Curves and Surfaces using Quaternion Gauss Maps” [39].

6 Displaying and Lighting 4D Objects

A natural testing ground for the concept of graphics in higher dimensions is to consider volumetric
objects in 4D: then we imitate the usual projection of surface patches from 3D to 2D film by
projecting volumetric patches from 4D to “3D film.” This has been worked out for a number of
natural application domains in mathematics [41, 42, 40, 19, 6, 8].

A visual introduction to the techniques for rendering 4D solid objects projected to a 3D imaging
space is available in the video animation, “FourSight,” available inSiggraph Video Reviewvolume
85 [43].

While these techniques may seem a little esoteric, in fact they should be quite familiar: any
volume-renderable 3D scalar field such as a CT scan, MR image, or 3D pressure density is indis-
tinguishable mathematically from a 4D elevation map [42]. To make the analogy clear, consider a
continuous single-valued functionz = f(x; y) giving, say, the elevationz at each point(x; y) on
a small patch of the earth. We can represent this graphically in many ways, but one of the options
is to create an alternative 2D image in which we view the data obliquely as a smoothly varying 3D
mountain range lit by the sun. A 3D scalar field is just a similar functionw = f(x; y; z), and thus
can be analogously viewed as an alternative 3D volume rendering created by a oblique 4D view
with 4D lighting.

Going beyond four dimensions is of course much harder. Nevertheless, the mathematical meth-
ods involved in trying to create images of various sorts of higher-dimensional data should now be
relatively straightforward. Our readers should now be able to deal with many low-level mathe-
matical problems presented by the manipulation of geometry in dimensions greater than three, and
to focus their energies on the much more difficult question of trying to figure out which display
methods communicate such material effectively to the human viewer.
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Computer Graphics

beyond the Third Dimension

Andrew J. Hanson
Computer Science Department

Indiana University

SIGGRAPH ’98 TUTORIAL

1

Outline

� Part I(A): N-Dimensional Geom-
etry for Computer Graphics

� Part I(B): N-Dimensional Rotations
for Computer Graphics

� Part II(A): Quaternion Frames

� Part II(B): Four-Dimensional Ren-
dering and 3D Scalar Fields

2

Methodology

� Background: Knowledge of geometric concepts
underlying 3D graphics: transformations, projec-
tions, rays, proximity, inside-outside tests, normals,
lighting and shading heuristics, volume rendering.

� What we will do: Start from 3D graphics:

Graphics = simulation of the physics of

light interacting with matter in 3D

and imagine we live in a different world:

ND Graphics= simulation of the physics

of hypothetical light interacting with hypo-

thetical matter in ND

� Practical 4D applications: Quaternion frame fields;
3D data as mountains on 4D terrain.

3

Key Concepts

� Vectors: A list ofN numbers; homogeneous form
for projection uses (N +1) numbers.

� Matrix Algebra: Vectors are acted on by
N � N matrix multiplication to perform needed
operations such as rotations.

� Determinants: Almost every extension from
ungeneralizable 3D graphics geometry to ND
graphics geometry makes use of determinants.

� Polytopes: A systematic extension of geometry
from dimension to dimension: (point, line seg-
ment, triangle, tetrahedron, . . . )
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FINAL SUMMARY

Let’s pick four major ideas to take home:

� Cross Product in ND is a determinant of vectors
with empty last column, direction is the normal to
hyperface, size gives face’s (N � 1)-volume.

� Rolling Ball Rotations in ND take (N � 1)-dim
tan vector as input, but adding (N�1)(N�2)=2
subplanes of motion gives full N(N � 1)=2 rota-
tional degrees of freedom.

� Quaternions generalize half-angle formula for 2D
rotations to 3D, obey a “square-root-like” angular
differential equation, become 4D curves describ-
ing twisting of ordinary 3D curve.

� 4D Light creates volume-rendered shadings that
should be just as interpretable as a newspaper
photo, and you can render 3D scalar fields this
way as 4D mountain ranges.
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Part I(A): N-Dimensional
Geometry for Computer

Graphics

Andrew J. Hanson
Computer Science Department

Indiana University

1

Outline

� The Simplex: A simple basis for N-Dim objects

� Cross Product: Frequently Asked!

� Ray casting and projection

� Hyperplanes

� Barycentric coordinates, clipping, etc.

� Volumes and subvolumes

2

Motivation

� Usual 3D graphics treatments of geometry are
customized to 3D.

� General-dimension formulas aren’t really harder,
but give additional insight.

� N dimensional formulas for: normals, cross prod-
ucts, ray-tracing, barycentric coordinates, etc., are
essential for high-dimensional applications.

3

Basic Ideas: the simplex

1 2 3 4

2D projections of simplexes with dimension 1–4.
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Basic Ideas: the simplex

� Simplex generalizes line segment, triangle, etc.,
to ND.

� N-simplex has (N +1) points.

� Standard coordinates: f(0;0; : : : ;0); (1;0; : : : ;0);
(0;1;0; : : : ;0); : : : ; (0;0; : : : ;0;1)g.

� (N + 1) linearly independent points of simplex
define a hyperplane.

� Last vector in standard coordinates defines posi-
tive direction of oriented (N � 1) subspace.

5

MOST FREQUENTLY ASKED QUESTION

. . . turns out to be this:

What is the 4D cross product?

This picture of the 3D cross product is well known:

^

^

z

y= det
^

x

B

A

C BA

Analog for higher dimensions is confusing . . .

6

Finding the 4D cross product . . .

� 3D cross product: intuition doesn’t generalize.

� Rotation of two vectors leaves plane, not vector
fixed.

� Solution: Analog of right-hand rule comes from
Simplex:

) Need (N � 1) vectors, not 2, to make Cross
Product.

7

Generalize Cross Product

Correct generalization comes from these simple concepts:

� Preserve Simplex Hierarchy. Dot ofN -th basis vector with
(N � 1)-simplex’s cross product should give positive value
in each dimension.

� Relate ND Cross Product to measure: magnitude should
be related to (N � 1) volume (e.g., area in 3D).

� Relate to N -volume: N -th basis vector dotted with Cross
Product should give N -volume.

� Cross product defines normal vector. This is how we
determine signed hyperface normals by analogy to 3D.

8



Cross Product Equations

This definition obeys the given rules (violated by many people,
including Mathematica and me in my early papers!):

� Given: ordered set of (N � 1) edge vectors (~xk � ~x0):
(the edges of one of the (N � 1)-simplexes in an object’s
tessellation.)

� Normal Vector is then the generalized cross-product whose
components are cofactors of the last column in the following
(notationally abusive!) determinant:

~n = nxx̂+ nyŷ+ nzẑ+ � � �+ nwŵ =

det

2
6664

(x1 � x0) (x2 � x0) � � � (xN�1 � x0) x̂

(y1 � y0) (y2 � y0) � � � (yN�1 � y0) ŷ

(z1 � z0) (z2 � z0) � � � (zN�1 � z0) ẑ
... ... . . . ... ...

(w1 � w0) (w2 � w0) � � � (wN�1 � w0) ŵ

3
7775

9

Magnitude of Cross Products

We note a remarkable combinatorial formula, the gen-
eralization to ND of the 3D formula

( ~A� ~B) � ( ~A� ~B) = ( ~A � ~A)( ~B � ~B)� ( ~A � ~B)2

The magnitude as well as the direction of a normal is
important:

~n � ~n=

det

2
6664

v(1;1) v(1;2) � � � v(1; N � 1)
v(2;1) v(2;2) � � � v(2; N � 1)

... ... . . . ...
v(N � 1;1) v(N � 1;2) � � � v(N � 1; N � 1)

3
7775

=
�
(N � 1)! VN�1

�2 :

Here v(i; j) = (~xi�~x0) � (~xj�~x0), and VN�1 is the
volume of the (N � 1) simplex (more later).

10

Rays and Perspective

x̂(1)

û(1)

x̂
(N)

x

u

Origin

f(N)

(N)
d

Image

Camera

Projection process for an N -dimensional pinhole camera.

nearnear

far

near

far
far

Perspective projections of a wire-frame square, a cube, and a
hypercube in 2D, 3D, and 4D, respectively.

11

ND Projection Procedures

� Orthographic Projections: Throw out the N -th
coordinate x(N) of each point.

� 3D example:
Project (x; y; z) to (xf=(d� z); yf=(d� z)).

� ND Perspective Scaling. Divide first (N � 1)

coordinates by (dN � x(N))=fN

� Repeat Recursively down to 2D image. Hierar-
chy of up to (N � 2) parameter sets
f(fN ; dN); : : : ; (f3; d3)gmay be used.

12



Relate Hyperplane to Simplex

n

x1

x0

xc

c

x

Origin

^

The 2D line from ~x0 to ~x1 obeying the equation
n̂ � (~x� ~x0) = 0. The constant c is just n̂ � ~x0

Generalization to ND requiresN points (~x0; : : : ; ~xN�1

and their normalized cross-product n̂:

� Hyperplane through ~x0 perpendicular to n̂:

n̂ � (~x� ~x0) = 0

� Point closest to origin: ~xc = cn̂.

13

Volumes and subvolumes

The volume of an N -simplex is the determinant of its (N + 1)
defining points (� magnitude of its normal in (N + 2) dimen-
sions!):

VN =
1

N !
det

2
6664

x1 x2 � � � xN x0
y1 y2 � � � yN y0
... ... . . . ... ...
w1 w2 � � � wN w0

1 1 � � � 1 1

3
7775 :

� Bottom row of 1’s: homogeneous coordinates.

� This is a SIGNED volume: implicitly defines theN -dimensional
generalization of the Right-Hand Rule.

� Disastrous sign inconsistencies unless ~x0 is in the last
column as shown (typically ~x0 = (0;0; : : : ;0;0; 1)) .

14

Tricks for volumes

In 3D, cross-product gives volume of parallelepiped:

[(~x1 � ~x0)� (~x2 � ~x0)] � (~x3 � ~x0) ;

Tetrahedron with vertices at the points (~x0; ~x1; ~x2; ~x3)
has one-sixth the volume of the parallelepiped.

N dimensional simplex volume is 1=N ! times the vol-
ume of the parallelepiped whose edges are given by
the matrix columns.

15

Invariant Subspace Forms

Properties of determinants give squared volume as:

(VN)
2 =

�
1

N !

�2
det jXt �Xj

=

�
1

N !

�2
det

2
6664
v(1;1) v(1;2) � � � v(1; N)
v(2;1) v(2;2) � � � v(2; N)

... ... . . . ...
v(N;1) v(N;2) � � � v(N;N)

3
7775 ;

where v(i; j) = (~xi � ~x0) � (~xj � ~x0).

This formula is the key to a trick for volume forms
of subspaces of N -dimensional spaces: cannot form
square matrices!

16



Invariant Subspace Forms
� VK, volume for K < N , is not expressible in terms of a

square matrix of coordinate differences like VN .

� But VK is the determinant of a square matrix in one partic-
ular coordinate frame (e.g, rotate triangle to (x; y plane)).

� Multiply by transpose: frame-independent quadratic form.

� Thus VK is written in terms of its K basis vectors (~xk�~x0)
of dimension N as:

(VK)
2 =

�
1

K!

�2

det

2
664

~x1 � ~x0
~x2 � ~x0

...
~xK � ~x0

3
775 �

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xK � ~x0

�

=

�
1

K!

�2

det

2
664

v(1;1) v(1;2) � � � v(1;K)
v(2;1) v(2;2) � � � v(2;K)

... ... . . . ...
v(K;1) v(K;2) � � � v(K;K)

3
775

17

Summary: Invariant Subvolumes

To compute a volume of dimension K in N dimen-
sions:

� Find the K independent basis vectors spanning
the subspace.

� Form a square K �K matrix of dot products re-
lated to V 2

K by multiplying the N � K matrix of
column vectors by its transpose on the left.

When K = 1, we have simply the squared Euclidean
distance in N dimensions
v(1;1) = (~x1 � ~x0) � (~x1 � ~x0).

18

Point-Hyperplane Distance

� General formula: parallelepiped volume = base
times height. But height h = distance to hyper-
plane.

� Solve for h using ratio of volumes:

h =
WN

WN�1
=

N !VN
(N � 1)!VN�1

=
N VN
VN�1

:

Note! Here one must use the trick above to ex-
pressWN�1 in terms of the square root of a square
determinant given by the product of two non-square
matrices.

19

Point-Hyperplane Distance

x

p

h
n̂

1x

x0

� Intersection Point. Line from ~x to the base hy-
perplane along the normal n̂ to the hyperplane as
~x(t) = ~x+tn̂, writing the implicit equation for the
hyperplane as n̂ � (~x(t) � ~x0) = 0, and solving
for the mutual solution tp = n̂ � (~x0 � ~x) = �h.
Thus

~p = ~x+ n̂(n̂ � (~x0 � ~x))

= ~x� hn̂ :

20



Distances . . .

x
0

x+

N
x

1

x-

A
h

L

p

1
x0

x

x
2

N

x

x

+

-

A

V

h

p

Basic idea: distances to hyperplanes vanish, h = 0, if test point
is on hyperplane, i.e., volume vanishes.

Signed volumes divide plane into two regions, one with h > 0,
the other with h < 0.

The pictures show how the distance h from a point to a hyper-

plane is computable from the ratio of the simplex volume to the

lower-dimensional volume of its base, i.e., 2A=L or 3V=A.

21

Barycentric Coords in ND

x 0 x 1

x 1

x 0

x

x2

x

Any point maybe parameterized relative to an origin
~x0 using the edges of an N -simplex and N parame-
ters ti:

~x(t) = ~x0+ t(~x1 � ~x0)

~x(t1; t2) = ~x0+ t1(~x1 � ~x0) + t2(~x2 � ~x0)

~x(t1; t2; t3) = ~x0+ t1(~x1 � ~x0) + t2(~x2 � ~x0) +

t3(~x3 � ~x0)

� � �

22

Barycentric Coords in ND

� The interpolated point lies in the N -simplex pro-
vided

0 � t � 1

0 � t1 � 1; 0 � t2 � 1; 0 � (1� t1 � t2) � 1

0 � t1 � 1; 0 � t2 � 1; 0 � t3 � 1;

0 � (1� t1 � t2 � t3) � 1

: : :

� Values of parameters ti are just ratios of volume
determinants coming from Kramer’s rule:

t1 =
V (x; x0; x1)

V (x0; x1; x2)
; t2 =

V (x; x2; x0)

V (x0; x1; x2)

and similarly in higher dimensions.

23

Clipping Test from Signed Volumes

If the line to be clipped is given parametrically as ~x(t) =
~xa + t(~xb � ~xa) , where ~xa and ~xb are on opposite
sides of the clipping hyperplane so 0 � t � 1, then
we simply plug ~x(t) into V (~x) = 0 and solve for t:

t =
det

h
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~x0

i

det
h
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~xb

i

=
n̂ � (~xa � ~x0)

n̂ � (~xa � ~xb)
:

Here n̂ is the normal to the clipping hyperplane.
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Are Normals Vectors?

Almost!

� Transform a Vector: x0(i) =
PN

j=1Rijx(j)

� Transform a Normal:

N 0(i) =
X

all indices
except i

�i1i2:::iN�1iRi1j1x
(j1)
1 Ri2j2x

(j2)
2 � � �RiN�1jN�1x

(jN�1)
N�1

=

NX
j=1

RijN
(j) det [R] :

� This is a pseudotensor : ~N is seen to behave as a vec-
tor for ordinary rotations (which have det [R] = 1), but
changes sign if [R] contains an odd number of reflections.
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Part I(B): N-Dimensional
Rotations for Computer

Graphics

Andrew J. Hanson
Computer Science Department

Indiana University

1

Outline

� What is a rotation? Idea of Rotation Plane

� The Rolling Ball: Context-free interaction

� Alternate controls.

� Quaternions in 3D and 4D

2

What is a Rotation?

x1

x2

3D rotation

It’s NOT defined by a fixed axis!

� Familiar idea of rotating “about axis” is 3D ONLY.

� Better generalization: pick two directions ~x1 and ~x2, rotate
one into the other .

� Remaining (N � 2) axes are the ND analog of familiar
“fixed axis” in 3D.

3

Rolling Ball Rotations

  

^

0v̂

v̂

n

To ROLL, tilt the “north pole” vector v̂0 in the direction of the

tangent vector n̂.

4



Rolling Ball Rotations

-1

θ

0θ

θcos

-sin +1

0v̂

v̂

n̂

Action of a right-handed 2� 2 rotation M2 in the plane of v̂0 =
(0;1) and n̂= (�1;0).

v̂ =M2 � v̂0 = n̂ sin �+ v̂0 cos � = (� sin �; cos �) ;

5

Rolling Ball Rotations

The rotation matrix M2 can be written

M2 =

�
cos � � sin �
+sin � cos �

�
=

�
c �s
+s c

�

=

�
c +nxs

�nxs c

�
:

If we choose a right-handed overall coordinate frame, the sign of

n̂ will automatically generate the correct sign convention.

6

Rolling, contd

Synopsis: Qualitatively speaking, if we
imagine looking straight down at the north
pole, the rolling ball pulls the unseenN-th
component of a vector along the direction
n̂ of the (N � 1)-dimensional controller
motion, bringing the unseen component
gradually into view.

7

Rolling Rotations in ND

r

D
R

  

θ

� Let R be “ball radius,” rotate North vector v̂0 = (0;0;1)
into x̂ using

R0 =

2
4 c 0 +s

0 1 0
�s 0 c

3
5

� Here D2 = r2 + R2, so c = cos � = R=D and s =
sin � = r=D .

� ) Length and direction of control vector determine both
angle and a direction n̂.

8



Rolling Rotations in ND

D R

- Tangent + Tangent

+ North

θ

n̂

R 0v̂

r

v̂ v̂

� Already have: North vector v̂0 = (0;0;1) rotated into x̂

using R0(�).

� Now use conjugation by a second matrix Rxy that takes a
unit x̂ vector into the completely general tangent direction
(n̂x; n̂y; 0):

Rxy =

2
4 nx �ny 0
ny nx 0
0 0 1

3
5

to create M3 = RxyR0(Rxy)�1

9

Rolling Rotations in ND

The result is the 3D Rolling Ball Matrix :

M3 = RxyR0(Rxy)
�1

=

2
64
c+ (ny)2(1� c) �nxny(1� c) nxs

�nxny(1� c) c+ (nx)2(1� c) nys
�nxs �nys c

3
75

=

2
64
1� (nx)2(1� c) �nxny(1� c) nxs

�nxny(1� c) 1� (ny)2(1� c) nys
�nxs �nys c

3
75

10

4D case

The 4D case uses, e.g., 3D mouse input = ~r = (x; y; z;0) =
(r nx; r ny; r nz;0), with n2x + n2y + n2z = 1.

� First: transform (ny; nz) into a pure y-component.

� Rotate that to a pure x-component

� Rotate by � in the (x; w)-plane, and reverse the first two
rotations.

This gives

M4 = RyzRxyR0(Rxy)
�1(Ryz)

�1

2
64
1� (nx)2(1� c) �(1� c)nxny �(1� c)nxnz snx

�(1� c)nxny 1� (ny)2(1� c) �(1� c)nynz sny

�(1� c)nxnz �(1� c)nynz 1� (nz)2(1� c) snz

�snx �sny �snz c

3
75

11

3D / 4D case

x

y

x

z

y

3D cube: “rolling” in x or y direction exposes hidden
surfaces — the planes at x = �1 and y = �1.

Contrast with 4D hypercube: “rolling” a 3D mouse in
the x or y or z direction exposes hidden blocks —
the hyperplanes at x = �1, and y = �1, and and
z = �1.

12



ND case

Controller provides (N � 1)-dimensional vector

~r= (r n1; r n2; : : : ; r nN�1;0)

with ~r � ~r = r2 and n̂ � n̂ = 1. Then with c = cos �, s = sin �,
and d = (1� cos �),

MN =

RN�2;N�1RN�3;N�2 � � �R1;2R0(R1;2)
�1 � � �

� � � (RN�3;N�2)
�1(RN�2;N�1)

�1 =2
66664

1� (n1)2d �dn2n1 � � � �dnN�1n1 sn1
�dn1n2 1� d(n2)2 � � � �dnN�1n2 sn2

... ... . . . ... ...
�dn1nN�1 �dn2nN�1 � � � 1� d(nN�1)

2 snN�1

�sn1 �sn2 � � � �snN�1 c

3
77775

13

Summary of ND Rolling

The controller input ~r = rn̂ that selects the direction
to “pull” can also determine c = cos � = R=D, s =
sin � = r=D , with D2 = R2 + r2, or, alternatively,
� = r=R.

Then the hidden vector (like the ẑ vector in 3D) is
mixed with the n̂ vector; remember, a rotation is just a
mixing of two vectors in a single plane.

14

What about the rest?

We have not said how to control the rest of the orientation:

� Full freedom ! N(N � 1)=2 rotational parameters (one
for N = 2, 3 for N = 3, 6 for N = 4, . . . ).

� Only N � 1 rolling parameters so far!

� Commutation relation trick. In dimensions N > 2, ro-
tations are order dependent. If Rij rotates in the plane
(x̂i; x̂j), and the x̂N direction is perpendicular to the other
(N � 1) directions, there are (N � 1) possible rotations
RiN ; i 6= N parameterized by n̂.

� Creating new rotations.
Defining [A; B] = AB � BA, one can prove the matrices
RiN obey�
RiN ; RjN

�
= �ijRNN � �jNRiN + �iNRjN � �NNRij

= �Rij

All other rotations can be derived

from repeated rolling rotations!!

15

Columns are Axes

� Default frame: x̂1 = (1;0; : : : ;0),
x̂2 = (0;1;0; : : : ;0), . . . , x̂N = (0; : : : ;0;1)

� Desired frame:
â1 = (a

(1)
1 ; a

(2)
1 ; : : : ; a

(N)
1 ); â2; : : : ; âN,

� Rotation matrix then just has the new axes as its
columns:

M =
h
â1 â2 � � � âN

i
:

16



Concatenated subplane rotations

Rotations in the plane of a pair of coordinate axes
(x̂i; x̂j), i; j = 1; : : : ; N can be written as the block
matrix

Rij(�ij) =

2
6666666666666664

1 � � � 0 0 � � � 0 0 � � � 0
... . . . ... ... . . . ... ... . . . ...
0 � � � cos �ij 0 � � � 0 � sin �ij � � � 0

0 � � � 0 1 � � � 0 0 � � � 0
... . . . ... ... . . . ... ... . . . ...
0 � � � 0 0 � � � 1 0 � � � 0

0 � � � sin �ij 0 � � � 0 cos �ij � � � 0
... . . . ... ... . . . ... ... . . . ...
0 � � � 0 0 � � � 0 0 � � � 1

3
7777777777777775

17

concatenation, contd

The N(N � 1)=2 distinct Rij(�ij) may be concate-
nated in some order to produce a rotation matrix such
as

M =
Y
i<j

Rij(�ij)

with N(N � 1)=2 degrees of freedom parametrized
by f�ijg.

The matrices Rij do not commute, so different order-
ings give different results.

As for 3D Euler angles, one may even repeat some
matrices (with distinct parameters) and omit others,
and still not miss any degrees of freedom.

18

Quotient Space of Spherical Rotations

Exploit classic quotient property of the topological spaces
of the orthogonal groups

SO(N)=SO(N � 1) = SN�1

where SK is a K-dimensional topological sphere.

) Fill out N(N � 1)=2 parameters of SO(N), (N -
dimensional orthogonal rotations), as a nested family
of points on spheres.

(See paper for details.)

19

Interpolating on Sphere

Classic building block of uniform-angular-velocity in-
terpolation is a constant angular velocity spherical in-
terpolation, the “Slerp” between two directions, n̂1 and
n̂2:

n̂12(t) = Slerp(n̂1; n̂2; t)

= n̂1
sin((1� t)�)

sin(�)
+ n̂2

sin(t�)

sin(�)

where cos � = n̂1 � n̂2.

(This formula is simply the result of applying a Gram-
Schmidt decomposition while enforcing unit norm in
any dimension.)

20



Quaternion form in 3D
Quaternions allow geodesic approach to paths more
complex than single Slerp, which is the same in either
3� 3 or quaternion form.

If n̂ is a unit 3-vector, define quaternion

q0 = cos(�=2); ~q = n̂ sin(�=2)

This is automatically a point on S3 due to the con-
straint (q0)2 + (q1)

2 + (q2)
2 + (q3)

2 = 1. Then
each point q on S3 corresponds to an SO(3) rotation
matrix R3:

2
64
q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3+2q0q2
2q1q2+2q0q3 q20 + q22 � q21 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3+2q0q1 q20 + q23 � q21 � q22

3
75
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Quaternion form in 4D

4D rotation group SO(4) and the spin group Spin(4) that is
its double covering may be computed by extending quaternion
multiplication to act not just on 3-vectors (“pure” quaternions)
v = (0; ~V), but on full 4-vector quaternions v� in the following
way:

3X
�=0

R�
�v

� = q � v� � p�1 :

Double quaternion parameterization of 4D rotations takes the
form of the following matrix R4:2

64
q0p0+ q1p1+ q2p2+ q3p3 q1p0 � q0p1 � q3p2+ q2p3
�q1p0+ q0p1 � q3p2+ q2p3 q0p0+ q1p1 � q2p2 � q3p3
�q2p0+ q0p2 � q1p3+ q3p1 q1p2+ q2p1+ q0p3+ q3p0
�q3p0+ q0p3 � q2p1+ q1p2 q1p3+ q3p1 � q0p2 � q2p0

q2p0 � q0p2 � q1p3+ q3p1 q3p0 � q0p3 � q2p1+ q1p2
q1p2+ p1q2 � p0q3 � q0p3 q1p3+ p1q3+ p0q2+ q0p2
q0p0+ q2p2 � q1p1 � q3p3 q2p3+ q3p2 � q0p1 � q1p0
q2p3+ q3p2+ q1p0+ p0q1 q0p0+ q3p3 � q1p1 � q2p2

3
75

Analogs of the N = 3 and N = 4 approaches for general N

involve computing Spin(N) geodesics and thus are quite com-

plex.

22

Arcball and Virtual Sphere Controls

� 4D roll. Elegant user interface for all 6 DOF using
3D position of wand, flying mouse, etc.

� 4D virtual sphere. 4D roll at center, 3D roll at
boundaries of solid sphere.

� 3D roll/sphere pairs. Using the decomposition
of a 4D rotation into two 3D rotations, one can
perform a pair of 3D rotations in turn.

� 3D Arcball pairs. Shoemake 3D arcball is sim-
ilarly generalizable by picking two pairs of points
instead of one pair; compose two ordinary rota-
tions into one.

� N > 4 Problems. Extending to N > 4 will re-
quire finding elegant ways of computing geodesics
in the spin groups corresponding to each orthog-
onal group. Clifford algebras appear to handle the
group properties, but explicit geodesic-like splines
in these variables are unknown at present.
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Part II(A): Quaternion
Frames

Andrew J. Hanson
Computer Science Department

Indiana University

1

Outline

� Motivation

� 2D Curves: A simple “frame”-work

� 3D Curves: Frenet and Parallel Transport Frames

� Quaternion Frames for Curves and Surfaces

2

Motivating Problems: Curves

The (3,5) torus knot.

� Line drawing � useless.

� Tubing based on parallel transport, not periodic.

� Closeup of the non-periodic mismatch.

3

Motivating Problems: Curves

Closeup of the non-periodic mismatch.
Can’t apply texture.

4



Motivating Problems: Curves

Tubings based on Frenet, Geodesic Reference, and
Parallel Transport frames.

5

Motivating Problems: Surfaces

A smooth 3D surface patch: two ways to get bottom
frame.

No unique orthonormal frame is derivable from the pa-
rameterization.

6

Motivating Problems: Surfaces

Spherical surface patch.
Frames from Polar, Geodesic Reference, and Projec-
tive coordinates.

7

Frames in 2D

d

g
^

^f

N
Tb

c
e ^

T h T
^^

^
^

^
N^

N

^
N

a

T

T
N

Tangent and normal of 2D curve x(t).

T(t) = dx(t)=dt = x0x̂+ y0ŷ

N(t) = y0x̂� x0ŷ :

Unit length vector notation: v̂ = v=kvk.

The column vectors N̂ and T̂ then represent a moving orthonor-

mal coordinate frame.

8



Frame Evolution in 2D

Demonstrate concepts of 3D frames in simpler 2D context: show
how the 2D coordinate frames evolve:

�
N̂ T̂

�
=

�
cos � � sin �
sin � cos �

�
:

Differentiate to find frame equations:

N̂0(t) = +�T̂

T̂0(t) = ��N̂ ;

where �(t) = d�=dt is the curvature .

This is 2D analog of 3D Parallel Transport Frame.

9

2D “Quaternion” Frames

We are not done yet: we can express this SO(2) frame equa-
tion in terms of the spin group Spin(2). Guess a double-valued
quadratic form in (a; b):

�
N̂ T̂

�
=

�
cos � � sin �
sin � cos �

�
=

�
a2 � b2 �2ab
2ab a2 � b2

�
;

where imposing the constraint a2+b2 = 1 guarantees orthonor-
mality of the frame.

Solution: double-angle formulas:

a = cos(�=2); b = sin(�=2)

10

2D Quaternions . . .

The matrix equation�
a0

b0

�
=

1

2

�
0 ��
+� 0

�
�

�
a
b

�

in the two variables with one constraint contains both the frame
equations T̂0 = ��N̂ and N̂0 = +�T̂.

This is square root of frame equations.

But if we let (a+ ib) = exp (i �=2)we see that
rotation is complex multiplication and quaternion frames in 2D
are just complex numbers, with

evolution eqns = derivative of exp (i �=2)!

11

3D Curves: Frenet and PT Frames

Classic Moving Frame:2
4T

0(t)
N0(t)
B0(t)

3
5=

2
4 0 k1(t) k2(t)
�k1(t) 0 �(t)
�k2(t) ��(t) 0

3
5
2
4T(t)N(t)
B(t)

3
5 :

Serret-Frenet frame: k2 = 0, k1 = �(t) is the curvature, and
�(t) = �(t) is the classical torsion. LOCAL.

Parallel Transport frame (Bishop): � = 0 to get minimal turning.
NON-LOCAL = an INTEGRAL.

12



3D curve frames, contd

Frenet frame is locally defined, e.g., by

B(t) =
x0(t)� x00(t)

kx0(t)� x00(t)k

but has problems on the “roof.”

N

N

B

T

T

B

B

NB

???

N
T

T

13

3D curve frames, contd

Bishop’s Parallel Transport frame is integrated over
whole curve, non-local, but no problems on “roof:”

N1

N1

N1
N1

N1

N2

N2

N2

N2

N2

T

T

T

T

T

14

Quaternion Frames
We can now repeat our trick of taking the square root
of the 2D frame using quaternions to generalize the
single 2D rotation angle.

Summary of Quaternion Frame properties:

� Unit four-vector. Take q = (q0; q1; q2; q3) = (q0;q) to
obey constraint q � q = 1.

� Multiplication rule. Let q � p be the quaternion product of
two quaternions q and p, where2

64
[q � p]

0

[q � p]1
[q � p]2
[q � p]

3

3
75 =

2
64

q0p0 � q1p1 � q2p2 � q3p3
q0p1 + q1p0 + q2p3 � q3p2
q0p2 + q2p0 + q3p1 � q1p3
q0p3 + q3p0 + q1p2 � q2p1

3
75

This = multiplication rule in the group SU(2), the double
covering of SO(3) rotation group.

15

Quaternion Frames . . .

Quaternion Frame properties, contd:

� Rotation Correspondence. The unit quaternions q and
�q correspond to a single 3D rotation:

R=

2
4q2

0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3 +2q0q2

2q1q2 +2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3 +2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
5

� Rotation Correspondence. Let q = (cos �

2
; n̂ sin �

2
), with

n̂ a unit 3-vector, n̂ � n̂ = 1. Then R(�; n̂) is usual 3D
rotation by � in the plane perpendicular to n̂.

� Inversion. Any 3 � 3 matrix R can be inverted for q up to
a sign. Carefully treat singularities! Can choose sign, e.g.,
by local consistency, to get continuous frames.

16



Quaternion Frames . . .

Now find square root of 3D frame eqns:

Tait (1890) derived a quaternion equation that makes all 9 3D
frame equations reduce to :

2
64

q0

0

q0

1

q0

2

q0

3

3
75 =

1

2

2
64

0 �� �k2 �k1
� 0 k1 k2
k2 �k1 0 �
k1 �k2 �� 0

3
75 �

2
64

q0
q1
q2
q3

3
75

17

Quaternion Frames . . .

Properties of Tait’s quaternion frame equations:

� Antisymmetry ) q(t) � q0(t) = 0.

� Nine equations and six constraints become four equations
and one constraint, keeping quaternion on the 3-sphere. )
Good for computer implementation.

� Analogous treatment applies to Weingarten equations, al-
lowing a direct quaternion treatment of the classical differ-
ential geometry of surfaces as well.

18

Quaternion Frames, . . .
Example: torus knot and its (twice around) quaternion
Frenet frame:

-1
-0.5

0

0.5

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

see: Hanson and Ma, “Quaternion Frame Approach to Stream-

line Visualization,” IEEE Trans. on Visualiz. and Comp. Graphics,

1, No. 2, pp. 164–174 (June, 1995).

19

Geometric Construction of Space of Frames:

� R(�; T̂) leaves T̂ invariant, but doesn’t have T̂ as Last Col-
umn.

� Use Geodesic Reference to construct one instance of such
a frame: R(ẑ � T̂; ẑ� T̂).

� q(�; T̂) � q(ẑ � T̂; ẑ � T̂) generates the correct
family of quaternion curves

T

T
^

^^

^

x

z

z

20



Invariant Quaternion Frames . . .

Invariant frame for trefoil knot:

� Left: Red fan = tangents; Magenta arc = tangent map;
Green vectors = geodesic reference starting points for in-
variant spaces. Right: Short segment of invariant space.

� Full Space.

-1
-0.5

0
0.5

1
x

-1
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0.5
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y

-1

-0.5

0

0.5

1

z

-1
-0.5

0
0.5

1
x
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3-Manifold of Frames for a Patch

For surfaces, we simply replace a curve’s tangent by a surface’s
normal.

Basic patch with the available rings of frames for corners:

22

3-manifold of frames for a patch . . .

Each point on patch generates a ring in quaternion map:
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Minimizing Quaternion Length Solves Periodic
Tube

Quaternion space optimization of the non-periodic parallel trans-

port frame of the (3,5) torus knot.
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Likewise for Optimal Quaternion Frame on Patch

Quaternion frames for (a) Geodesic Ref. (b) One edge Parallel

Transport. (c) Random. (d) Minimal area result.
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Summary

� Quaternions can represent frames.

� Curve frames ) quaternion curves.

� Surface patch frames ) quaternion surface
patches.

� Minimizing quaternion length or area finds par-
allel transport “minimal turning” set of frames.
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Part II(B): 4D Rendering and
3D Scalar Fields

Andrew J. Hanson
Computer Science Department

Indiana University

1

Outline

� Shading volumetric objects embedded in 4D.

� Extensions: Rendering thin 4D objects by thick-
ening analogy.

� Video: “FourSight”

� 4D Terrain. Using 4D rotation and 4D lighting to
extend standard 3D volume rendering.

� Video: “4D Views of 3D Scalar Fields”

2

4D Shading
Need the following pieces:

� Tesselation. Describe volumes using tetrahedra
with 4D verts, or carefully subdivide a cubic lat-
tice.

� Normals. Compute 4D normals to tetrahedra (empty-
right-column determinant).

� Light and Camera. Dot product of light with 4D
versions of usual vectors give Gouraud and Phong
models. (Banks: Modulate power in Phong?)

� Projection. Film � volumetric retina of 4D cy-
clops.

� Volume Render. Splat, Shirley-Tuchman, texture
panels; motion very important. Stereo impossible
without volumetric texture.

3

Can You Believe 4D Shading?

Consider the Visualization Principle for testing the po-
tential of a visualization:

� Volume rendered projections of 4D lit hypersur-
faces to 3D contain information similar to 2D mag-
azine photo.

� Humans and smart machine vision programs can
reconstruct 3D info from magazine using 2D shape
from shading.

� Therefore it is possible to reconstruct significant
4D information from the proposed rendering meth-
ods: use 3D shape from shading.

4



Extensions to 4D Rendering

A 4D object need not be volumetric to be rendered!

� A wire in 3D can be made visible by attaching a
shiny tube.

� Imitate in 4D: Surfaces ) handled by “tubing”
with a shiny circle attached to each point, forcing
it to be volumetric and thus renderable.

� Curves have small spheres attached, and even
points can be made structurally visible in 4D by
making them tiny 3-spheres!

5

Efficient Approximations to 4D Surface
Rendering

A 4D surface can be rendered directly, without attach-
ing a tube to create a thickening.

� In 3D, the Kajiya-Kay “bear hair” algorithm sug-
gests how to replace an expensive shiny tube by
a physically plausible reflectance texture.

� Imitate in 4D: Calculate the light that would be
reflected from a surface if you attached shiny cir-
cles and shrunk them to a point.

� Can derive various heuristic lighting models for
both Phong and Gouraud (Banks, Cross, Han-
son).

� Render surface projected to 3D from 4D directly
by applying (possibly transparent) texture map.

� Avoids volume rendering altogether, yielding large
speedup.

6

Examples of 4D Rendering

4D “knotted surfaces,” thickened to make a volume,
then lit, projected to 3D “film,” and volume rendered.

The same 4D “knotted surfaces,” but “bear hair” ap-
proximation producing a transparent surface texture
simulating volume rendering 1000 times as fast.

7

3D Scalar Field Data

A 3D scalar field is a collection of single numbers
w = f(x; y; z) assigned throughout a spatial vol-
ume. Conventionally, some of the following methods
are used to display this data:

� Direct volume rendering: render pixels directly from the
screen, e.g., by splatting, or by forward or backward ray-
tracing.

� Pseudocolor scalar field values. — color code the interior
using the data values.

� Slicing: — Look at textured slices, preferably moving, at
various angles to the data.

� Isosurfaces, Marching Cubes: — Look at surfaces that
are computed by connecting the interior points that seem
to have have the same data value, stitch together the total.

� Break into tiny cubes. — to help see inside volume, leave
a little space instead of transparency

8



4D Extensions to 3D Scalar Field Methods
3D scalar fields are to 4D display meth-
ods as 2D elevation maps are to 3D ter-
rain display methods.

Thus the following new ideas arise:

� Rotate in 4D. — to “look obliquely” at the data values, as
though seeing mountains from an unfamiliar valley.

� New Cues: Ridges, occlusion edges, depth from occlusion.
Isosurface markings and colorization may be added.

� Illuminate data in 4D. — use methods just learned for
computing normals and lighting effects; rotate light and also
object to get motion parallax.

� New Cues: Shading gives constraints on direction of nor-
mal of the terrain surface. Shininess and lighting effects
make it easier to characterize the surface, materials, etc.
Lighting shows general directions of lights; lighting on ob-
jects produces strong depth using highly directional shini-
ness cues.

9

Remarks: Multiple cues

3D terrain models are often displayed in oblique views
with multiple cues such as contours:

� Multiple cues. Our 4D terrain models could also
be enhanced by multiple cues such as color, slices,
and isosurfaces.

� Cubic Lattice Grids. Just as secondary depth
cues such as lattices or checkerboard patterns
arise naturally on a 2D terrain, we could apply a
cubic checkerboard-like texture to the terrain.

� What else can we try? Quaternion forms of rota-
tions and the display of 3D scalar fields just hap-
pened to appear as useful application areas of
ND geometry; we would love to hear about other
such domains of research!

10
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Geometry for N-Dimensional
Graphics

Andrew J. Hanson
Computer Science Department
Indiana University
Bloomington, IN 47405
hanson@cs.indiana.edu

} Introduction }

Textbook graphics treatments commonly use special notations for the geometry of 2 and 3
dimensions that are not obviously generalizable to higher dimensions. Here we collect a family
of geometric formulas frequently used in graphics that are easily extendible toN dimensions
as well as being helpful alternatives to standard 2D and 3D notations.

What use are such formulas? In mathematical visualization, which commonly must deal
with higher dimensions — 4 real dimensions, 2 complex dimensions, etc. — the utility is self-
evident (see, e.g., (Banchoff 1990, Francis 1987, Hanson and Heng 1992b, Phillips et al. 1993)).
The visualization of statistical data also frequently utilizes techniques ofN -dimensional display
(see, e.g., (Noll 1967, Feiner and Beshers 1990a, Feiner and Beshers 1990b, Brun et al. 1989,
Hanson and Heng 1992a)). We hope that publicizing some of the basic techniques will encour-
age further exploitation ofN -dimensional graphics in scientific visualization problems.

We classify the formulas we present into the following categories: basic notation and the
N -simplex; rotation formulas; imaging inN -dimensions;N -dimensional hyperplanes and vol-
umes;N -dimensional cross-products and normals; clipping formulas; the point-hyperplane dis-
tance; barycentric coordinates and parametric hyperplanes;N -dimensional ray-tracing meth-
ods. An appendix collects a set of obscure Levi-Civita symbol techniques for computing with
determinants. For additional details and insights, we refer the reader to classic sources such as
(Sommerville 1958, Coxeter 1991, Hocking and Young 1961) and (Banchoff and Werner 1983,
Efimov and Rozendorn 1975).

} Definitions — What is a Simplex, Anyway? }

In a nutshell, anN -simplex is a set of(N + 1) points that together specify the simplest non-
vanishingN -dimensional volume element (e.g., two points delimit a line segment in 1D, 3
points a triangle in 2D, 4 points a tetrahedron in 3D, etc.). From a mathematical point of view,
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1 2 3 4
Figure 1. 2D projections of simplexes with dimension 1–4. AnN -simplex is defined by (N+1) linearly
independent points and generalizes the concept of a line segment or a triangular surface patch.

there are lots of differentN -dimensional spaces: here we will restrict ourselves to ordinary flat,
real Euclidean spaces ofN dimensions with global orthogonal coordinates that we can write as

~x = (x; y; z; : : : ; w)

or more pedantically as

~x = (x(1); x(2); x(3); : : : ; x(N)) :

We will use the first, less cumbersome, notation whenever it seems clearer.
Our first type of object inN -dimensions, the0-dimensionalpoint ~x, may be thought of as

a vector from the origin to the designated set of coordinate values. The next type of object is
the 1-dimensionalline, which is determined by giving two points(~x0; ~x1); the line segment
from ~x0 to ~x1 is called a1-simplex. If we now take three noncollinear points(~x0; ~x1; ~x2), these
uniquely specify aplane; the triangular area delineated by these points is a2-simplex. A 3-
simplex is a solid tetrahedron formed by a set of four noncoplanar points, and so on. In figure
1, we show schematic diagrams of the first few simplexes projected to 2D.

Starting with the(N + 1) points(~x0; ~x1; ~x2; : : : ; ~xN ) defining a simplex, one then connects
all possible pairs of points to form edges, all possible triples to form faces, and so on, resulting
in the structure of component “parts” given in table 1. The next higher object uses its predeces-
sor as a building block: a triangular face is built from three edges, a tetrahedron is built from
four triangular faces, a 4-simplex is built from 5 tetrahedra.

The general idea should now be clear:(N + 1) linearly independent points define ahy-
perplaneof dimensionN and specify the boundaries of anN -dimensional coordinate patch
comprising anN -simplex(Hocking and Young 1961). Just as the surfaces modeling a 3D ob-
ject may be broken up (ortessellated) into triangular patches,N -dimensional objects may be
tessellated into(N � 1)-dimensional simplexes that define their geometry.
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Table 1. Numbers of component structures making up an N -simplex. For example, in 2D, the basic
simplex is the triangle with 3 points, 3 edges, and one 2D face.

Dimension of Space

Type of Simplex N = 1 N = 2 N = 3 N = 4 . . . N

Points (0D) 2 3 4 5 . . .

�
N + 1

1

�
= N + 1

Edges (1D simplex) 1 3 6 10 . . .

�
N + 1

2

�

Faces (2D simplex) 0 1 4 10 . . .

�
N + 1

3

�

Volumes (3D simplex) 0 1 5 . . .

�
N + 1

4

�

...
...

...
...

...
.. .

...

(N � 2)D simplex . . .

�
N + 1

N � 1

�

(N � 1)D simplex . . .

�
N + 1

N

�
= N + 1

ND simplex 1 . . .

�
N + 1

N + 1

�
= 1

} Rotations }

In N Euclidean dimensions, there are
�
N
2

�
= N(N � 1)=2 degrees of rotational freedom

corresponding to the free parameters of the groupSO(N). In 2D, that means we only have one
rotational degree of freedom given by the angle used to mix thex andy coordinates. In 3D,
there are 3 parameters, which can be thought of as corresponding either to three Euler angles
or to the three independent quaternion coordinates that remain when we represent rotations in
terms of unit quaternions. In 4D, there are 6 degrees of freedom, and the familiar 3D picture of
“rotating about an axis” is no longer valid; each rotation leaves an entire plane fixed, not just
one axis.

General rotations inN dimensions may be viewed as a sequence of elementary rotations.
Each elementary rotation acts in the plane of a particular pair, say(i; j), of coordinates, leaving
an(N � 2)-dimensional subspace unchanged; we may write any such rotation in the form

x0(i) = x(i) cos � � x(j) sin �

x0(j) = �x(i) sin � + x(j) cos �

x0(k) = x(k) (k 6= i; j) :

It is important to remember thatorder matterswhen doing a sequence of nested rotations; for
example, two sequences of small 3D rotations, one consisting of a(2; 3)-plane rotation followed
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x̂(1)

û(1)

x̂
(N)

x

u

Origin

f(N)

(N)
d

Image

Camera

Figure 2. Schematic view of the projection process for an N -dimensional pinhole camera.

by a(3; 1)-plane rotation, and the other with the order reversed, will differ by a rotation in the
(1; 2)-plane. (See any standard reference such as (Edmonds 1957).)

We then have a number of options for controlling rotations inN -dimensional Euclidean
space. Among these are the following:

� (i; j)-space pairs.A brute-force choice would be just to pick a sequence of(i; j) planes
in which to rotate using a series of matrix multiplications.

� (i; j; k)-space triples. A more interesting choice for an interactive system is to provide
the user with a family of(i; j; k) triples having a 2D controller like a mouse coupled to
two of the degrees of freedom, and having the 3rd degree of freedom accessible in some
other way — with a different button, from context using the “virtual sphere” algorithm
of (Chen et al. 1988), or implicitly using a context-free method like the “rolling-ball” al-
gorithm (Hanson 1992). The simplest example is(1; 2; 3) in 3D, with the mouse coupled
to rotations about thêx-axis (2; 3) and theŷ-axis (3; 1), giving ẑ-axis (1; 2) rotations as
a side-effect. In 4D, one would have four copies of such a controller,(1; 2; 3), (2; 3; 4),
(3; 1; 4), and(1; 2; 4), or two copies exploiting the decomposition ofSO(4) infinitesimal

rotations into two independent copies of ordinary 3D rotations. InN dimensions,
�
N
3

�

sets of these controllers (far too many whenN is large!) could in principle be used.

} N -dimensional Imaging }

The general concept of an “image” is a projection of a point~x = (x(1); x(2); : : : ; x(N)) from
dimensionN to a point~u of dimension(N � 1) along a line. That is, the image of a 2D world
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nearnear

far

near

far
far

Figure 3. Qualitative results of perspective projection of a wire-frame square, a cube, and a hypercube
in 2D, 3D, and 4D, respectively.

is a projection to 1D film, 3D worlds project to 2D film, 4D worlds project to 3D film, and so
on. Since we can rotate our coordinate system as we please, we lose no generality if we assume
this projection is along theN -th coordinate axis. An orthographic or parallel projection results
if we simply throw out theN -th coordinatex(N) of each point. A pinhole camera perspective
projection (see figure 2) results when, in addition, we scale the first(N � 1) coordinates by
dividing by (dN � x(N))=fN , wheredN is the distance along the positiveN -th axis to the
camera focal point andfN is the focal length. One may need to project this first image to
successively lower dimensions to make it displayable on a 2D graphics screen; thus a hierarchy
of up to(N � 2) parameter setsf(fN ; dN ); : : : ; (f3; d3)g may be introduced if desired.

In the familiar 3D case, we replace a vertex(x; y; z) of an object by the 2D coordinates
(xf=(d� z); yf=(d � z)), so that more distant objects (in the negativez direction) are shrunk
in the 2D image. In 4D, entire solid objects are shrunk, thus giving rise to the familiar wire-
frame hypercube shown in figure 3 that has the more distant cubic hyperfaces actually lying
insidethe projection of the nearest cube.

As we will see a bit later when we discuss normals and cross-products, the usual shading
approaches allow only(N � 1)-manifolds to interact uniquely with a light ray. That is, the
generalization of a viewable “object” toN dimensions is a manifold of dimension(N � 1) that
bounds anN -dimensional volume; only this boundary is visible in the projected image if the
object is opaque. For example, curves in 2D reflect light toward the focal point to form images
on a “film line,” surface patches in 3D form area images on a 2D film plane, volume patches in
4D form volume images in the 3D film volume, etc. The image of this(N � 1)-dimensional
patch may be ray traced or scan converted. Objects are typically represented as tessellations
which consist of a collection of(N�1)-dimensional simplexes; for example, triangular surface
patches form models of the visible parts of 3D objects, while tetrahedral volumes form models
of the visible parts of 4D objects. (An interesting side issue is how to display meaningful
illuminated images of lower dimensional manifolds — lines in 3D, surfaces and lines in 4D,
etc.; see (Hanson and Heng 1992b) for further discussion.)
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n
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x0

xc

c

x

Origin

^

Figure 4. The line from ~x0 to ~x1 whose points obey the equation n̂ � (~x� ~x0) = 0. The constant c is
just n̂ � ~x0.

} Hyperplanes and Volume Formulas }

Implicit Equation of a Hyperplane. In 2D, a special role is played by the single linear
equation defining a line; in 3D, the analogous single linear equation defines a plane. InN -
dimensions, the following implicit linear equation describes a set of points belonging to an
(N � 1)-dimensional hyperplane:

n̂ � (~x� ~x0) = 0 : (1)

Here~x0 is any point on the hyperplane and conventionallyn̂ � n̂ = 1. The geometric interpre-
tation of this equation in 2D is the 1D line shown in figure 4. In general,n̂ is a normalized unit
vector that is perpendicular to the hyperplane, andn̂ � ~x0 = c is simply the (signed) distance
from the origin to the hyperplane. The point~xc = cn̂ is the point on the hyperplane closest to
the origin; the point closest to some other point~P is ~xc = ~P + n̂fn̂ � (~x0 � ~P )g.

Simplex Volumes and Subvolumes. The volume (by which we always mean theN -
dimensional hypervolume) of anN -simplex is determined in a natural way by a determinant of
its (N + 1) defining points (Sommerville 1958):

VN =
1

N !
det

2
6666664

x1 x2 � � � xN x0
y1 y2 � � � yN y0
...

...
. . .

...
...

w1 w2 � � � wN w0

1 1 � � � 1 1

3
7777775
: (2)
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The bottom row of 1’s in eq. (2) corresponds to the familiar homogeneous coordinate used with
4 � 4 projection matrices in 3D graphics. We will attempt to convince the reader in a mo-
ment that disastrous sign inconsistencies result unless the global origin~x0 of theN -simplex’s
coordinate system is in the last column as shown.

The expression for the volume in eq. (2) issigned, which means that it implicitly defines the
N -dimensional generalization of theRight-Hand Ruletypically adopted to determine triangle
orientation in 3D geometry. For example, we observe that if~x0 = (0; 0; : : : ; 0) is the origin
and we choose~x1 = (1; 0; : : : ; 0), ~x2 = (0; 1; 0; : : : ; 0), and so on, the value of the determinant
is +1. If we had put~x0 in the first row in eq. (2), the sign would alternate from dimension to
dimension! We will exploit this signed determinant shortly to defineN -dimensional normal
vectors, and again later to formulateN -dimensional clipping.

First, we use the standard column-subtraction identity for determinants to reduce the dimen-
sion of the determinant in eq. (2) by one, expressing it in a form that is manifestlytranslation-
invariant:

VN =
1

N !
det

2
6666664

(x1 � x0) (x2 � x0) � � � (xN � x0) x0
(y1 � y0) (y2 � y0) � � � (yN � y0) y0

...
...

. . .
...

...
(w1 � w0) (w2 � w0) � � � (wN � w0) w0

0 0 � � � 0 1

3
7777775

=
1

N !
det

2
6664

(x1 � x0) (x2 � x0) � � � (xN � x0)
(y1 � y0) (y2 � y0) � � � (yN � y0)

...
...

. . .
...

(w1 � w0) (w2 � w0) � � � (wN � w0)

3
7775 : (3)

These formulas forVN can be intuitively understood as generalizations of the familiar 3D triple
scalar product,

[(~x1 � ~x0)� (~x2 � ~x0)] � (~x3 � ~x0) ;

which gives the volume of the parallelepiped with sides((~x1� ~x0); (~x2� ~x0); (~x3� ~x0)). The
corresponding tetrahedron with vertices at the points(~x0; ~x1; ~x2; ~x3) has one-sixth the volume
of the parallelepiped. The analogous observation inN dimensions is that the factor of1=N ! in
eq. (3) is the proportionality factor between the volume of theN -simplex and the volume of
the parallelepiped whose edges are given by the matrix columns.

Invariance. The volume determinant is invariant under rotations. To see this explicitly, let
jXj be the matrix in eq. (3) and letjRj be any orthonormal rotation matrix (i.e., one whose
columns are of unit length and are mutually perpendicular, with unit determinant); then, letting
jX 0j = jRj � jXj, we find

det jX 0j = det(jRj � jXj) = det jRjdet jXj = det jXj = N !VN ;
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since the determinant of a product is the product of the determinants.
A manifestly translationand rotation invariant form for the square of the volume element is

(VN )2 =

�
1

N !

�2
det jXt �Xj

=

�
1

N !

�2
det

2
6664

v(1; 1) v(1; 2) � � � v(1; N)
v(2; 1) v(2; 2) � � � v(2; N)

...
...

. . .
...

v(N; 1) v(N; 2) � � � v(N;N)

3
7775 ; (4)

wherev(i; j) = (~xi � ~x0) � (~xj � ~x0).
This invariant form is not presented as an idle observation; we now exploit it to show how to

construct volume forms forsubspacesofN -dimensional spaces, for which the defining vertices
of the desired simplex cannot form square matrices!

The trick here is to note that whileVK , for K < N , is not expressible in terms of a square
matrix of coordinate differences the wayVN is, we may writeVK as the determinant of a square
matrix in one particular coordinate frame, and multiply this matrix by its transpose to get a form
like eq. 4, which does not depend on the frame. Since the form is invariant, we can transform
back to an arbitrary frame to find the following expression forVK in terms of itsK basis vectors
(~xk � ~x0) of dimensionN :

(VK)2 =

�
1

K!

�2

det

2
6664

~x1 � ~x0
~x2 � ~x0

...
~xK � ~x0

3
7775 �

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xK � ~x0

�

=

�
1

K!

�2

det

2
6664

v(1; 1) v(1; 2) � � � v(1;K)
v(2; 1) v(2; 2) � � � v(2;K)

...
...

. . .
...

v(K; 1) v(K; 2) � � � v(K;K)

3
7775 : (5)

That is, to compute a volume of dimensionK in N dimensions, find theK independent basis
vectors spanning the subspace, and form a squareK � K matrix of dot products related to
V 2
K by multiplying theN � K matrix of column vectors by its transpose on the left. When
K = 1, we see that we have simply the squared Euclidean distance inN dimensions,v(1; 1) =
(~x1 � ~x0) � (~x1 � ~x0).

} Normals and the Cross-Product }

A frequently asked question inN -dimensional geometry concerns how to define a normal vec-
tor as a cross-product of edges for use in geometry and shading calculations. To begin with,
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you must have an(N � 1)-manifold (a line in 2D, surface in 3D, volume in 4D) in order to
have a well-defined normalvector; otherwise, you may have a normalspace(a plane, a vol-
ume, etc.). Suppose you have an ordered set of(N � 1) edge vectors(~xk � ~x0) tangent to this
(N � 1)-manifold at a point~x0; typically these vectors are the edges of one of the(N � 1)-
simplexes in the tessellation. Then the normal~N at the point is ageneralized cross-product
whose components are cofactors of the last column in the following (notationally abusive!)
determinant:

~N = Nxx̂+Nyŷ +Nz ẑ+ � � � +Nwŵ

= det

2
6666664

(x1 � x0) (x2 � x0) � � � (xN�1 � x0) x̂

(y1 � y0) (y2 � y0) � � � (yN�1 � y0) ŷ

(z1 � z0) (z2 � z0) � � � (zN�1 � z0) ẑ

...
...

. . .
...

...
(w1 � w0) (w2 � w0) � � � (wN�1 � w0) ŵ

3
7777775
: (6)

As usual, we can normalize usingk ~Nk, the square root of the sum of the squares of the co-
factors, to form the normalized normaln̂ = ~N=k ~Nk. A quick check shows that if the vectors
(~xk � ~x0) are assigned to the first(N � 1) coordinate axes in order, this normal vector points
in the direction of the positiveN -th axis. For example, in 2D, we want the normal to the vector
(x1�x0; y1�y0) to be ~N = (�(y1�y0); (x1�x0)) so that a vector purely in thex direction
has a normal in the positivey direction; placing the column of unit vectors(x̂; ŷ; ẑ; : : : ; ŵ) in
the first column fails this test. The 3D case can be done either way because an even number
of columns are crossed! It is tempting to move the column of unit vectors to the first column
instead of the last, but one must resist: the choice given here is the one to use for consistent
behavior across different dimensions!

The qualitative interpretation of eq. (6) can now be summarized as follows:

� 2D: Given two points(~x0; ~x1) determining a line in 2D, the cross-product of asingle vector
is the normal to the line.

� 3D: Given three points defining a plane in 3D, the cross-product of the two 3D vectors
outlining the resulting triangle is the familiar formula(~x1�~x0)� (~x2�~x0) for the normal
~N to the plane.

� 4D: In four dimensions, we use four points to construct the three vectors(~x1 � ~x0); (~x2 �
~x0); (~x3 � ~x0); the cross product of these vectors is afour-vector that is perpendicular
to each vector and thus is interpretable as the normal to the tetrahedron specified by the
original four points.

From this point on, the relationship to standard graphics computations should be evident:
If, in N -dimensional space, the(N � 1)-manifold to be rendered is tessellated into(N � 1)-
simplexes, use eq. (6) to compute the normal of each simplex for flat shading. For interpolated
shading, compute the normal at each vertex (e.g., by averaging the normals of all neighboring
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simplexes and normalizing or by computing the gradient of an implicit function specifying the
vertex). Compute the intensity at a point for which you know the normal by taking the dot
product of the appropriate illumination vector with the normal (e.g, by plugging it into the last
column of eq. (6)). If appropriate, set the dot product to zero if it is negative (pointing away
from the light). Back face culling, to avoid rendering simplexes pointing away from the camera,
is accomplished in exactly the same way: plug the camera view vector into the last column of
eq. (6) and discard the simplex if the result is negative.

Dot Products of Cross Products. We conclude this section with the remark that some-
times computing the dot product between a normal and a simple vector is not enough; if we
need to know the relative orientation of two face normals (e.g., to determine whether a finer
tessellation is required), we must compute the dot products of normals. In principle, this can
be done by brute force directly from eq. (6). Here we note an alternative formulation that is the
N -dimensional generalization of the 3D formula for the decomposition of the dot product of
two cross products; in the 3D case, if one normal is given by the cross product~X = ~A� ~B and
the other by~Y = ~C � ~D, we can write

~X � ~Y = ( ~A� ~B) � ( ~C � ~D) = ( ~A � ~C)( ~B � ~D)� ( ~A � ~D)( ~B � ~C) : (7)

We note that the degenerate case for the square of a cross product is

( ~A� ~B) � ( ~A� ~B) = ( ~A � ~A)( ~B � ~B)� ( ~A � ~B)2 ;

which, if � is the angle between~A and~B, reduces to the identityk ~Ak2k ~Bk2 sin2 � = k ~Ak2k ~Bk2�

k ~Ak2k ~Bk2 cos2 �.
The generalization of this expression toN dimensions can be derived from the product of

two Levi-Civita symbols (see the Appendix). If~X and~Y are two cross products formed from
the sets of vectors~x1; ~x2; : : : ; ~xN�1 and~y1; ~y2; : : : ; ~yN�1, then

~X � ~Y =
X

all indices
x
(i1)
1 x

(i2)
2 : : : x

(iN�1)
N�1 y

(j1)
1 y

(j2)
2 : : : y

(jN�1)
N�1

det

2
6664

�i1j1 �i1j2 � � � �i1jN�1
�i2j1 �i2j2 � � � �i2jN�1

...
...

. . .
...

�iN�1j1 �iN�1j2 � � � �iN�1jN�1

3
7775 ; (8)

where the Kronecker delta,�ij , is defined as

�ij = 1 i = j
= 0 i 6= j :

It is easy to verify that forN = 3 this reduces to eq. (7).
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More remarkable, however, is the fact that this formula shows that the square magnitude of
the normal ~N of a hyperplane given in eq. (6) is thesubvolumeof the corresponding paral-
lelepiped specified by eq. (5). That is, not only does thedirectionof eq. (6) have an important
geometric meaning with respect to the(N � 1)-simplex specifying the hyperplane, but so does
its magnitude! We find

~N � ~N = det

2
6664

v(1; 1) v(1; 2) � � � v(1; N � 1)
v(2; 1) v(2; 2) � � � v(2; N � 1)

...
...

. . .
...

v(N � 1; 1) v(N � 1; 2) � � � v(N � 1; N � 1)

3
7775 = ((N � 1)! VN�1)

2 :

} Clipping Tests in N Dimensions }

Now we can exploit the properties of the volume formula to define clipping (“which side”) tests
in any dimension. If we replace(~xN � ~x0) by (~x � ~x0), eq. (3) becomes afunctionVN (~x).
Furthermore, this function has the remarkable property that it is an alternative form for the
hyperplane equation, eq. (1), whenVN (~x) = 0.

We can furthermore determineon which sideof the(N � 1)-dimensional hyperplane deter-
mined by(~x0; ~x1; : : : ; ~xN�1) an arbitrary point~x lies simply by checking the sign ofVN (~x).
That is,

� VN (~x) = 0 ) the point~x lies on a hyperplane and solves an equation of the form eq. (1).
� VN (~x) > 0 ) the point~x lies above the hyperplane.
� VN (~x) < 0 ) the point~x lies below the hyperplane.

Note: The special caseVN = 0 is of course just the general criterion for discoveringlinear
dependenceamong a set of(N +1) vector variables. This has the following elegant geometric
interpretation: In 2D, we use the formula to compute the area of the triangle formed by 3
points(~x0; ~x1; ~x); if the area vanishes, the 3 points lie on a single line. In 3D, if the volume
of the tetrahedron formed by 4 points(~x0; ~x1; ~x2; ~x) vanishes, all 4 points are coplanar, and
so on. VanishingN -volume means the points lie in a hyperplane of dimension no greater than
(N � 1).

These relationships between the sign ofVN (~x) and the relative position of~x are precisely
those we are accustomed to examining when weclip vectors (e.g., edges of a triangle) to lie on
one side of a plane in a viewing frustum or within a projected viewing rectangle. For example,
a 2D clipping line defined by the vector~x1 � ~x0 = (x1 � x0; y1 � y0) has a right-handed
(unnormalized) normal~N = (�(y1 � y0); (x1 � x0)). Writing the 2D volume as the areaA,
eq. (3) becomes

A(~x) =
1

2
det

�
(x1 � x0) (x� x0)
(y1 � y0) (y � y0)

�
=

1

2

h
~N � (~x� ~x0)

i
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Figure 5. In 2D, the line through ~x0 to ~x1 defined by n̂ � (~x � ~x0) = 0 partitions the plane into two
regions, one where this expression is positive (e.g., for~x+) and another where it is negative (e.g., for ~x�).
In 3D, the analogous procedure uses the plane defined by (~x0; ~x1; ~x2) to divide 3-space into two half
spaces. The same pictures serve to show how the distance h from a point to a hyperplane is computable
from the ratio of the simplex volume to the lower-dimensional volume of its base, i.e., 2A=L or 3V=A.

for some arbitrary point~x, and so we recover the form of eq. (1) as

n̂ � (~x� ~x0) =
2A

k~x1 � ~x0k
;

wheren̂ = ~N=k ~Nk; the relationship of~x to the clipping line is determined by the sign.
In 3D, when clipping a line against a plane, everything reduces to the traditional form, namely

the dot product between a 3D cross-product and a vector from a point~x0 in the clipping plane
to the point~x being clipped. The normal to the plane through(~x0; ~x1; ~x2) is

~N = (~x1 � ~x0)� (~x2 � ~x0) (9)

=

�
+det

�
(y1 � y0) (y2 � y0)
(z1 � z0) (z2 � z0)

�
;

�det

�
(x1 � x0) (x2 � x0)
(z1 � z0) (z2 � z0)

�
;+det

�
(x1 � x0) (x2 � x0)
(y1 � y0) (y2 � y0)

��
;

and we again find the same general form,

n̂ � (~x� ~x0) =
6V

k ~Nk
;

whose sign determines where~x falls. Figure 5 summarizes the relationship of the signed vol-
ume to the clipping task in 2D and 3D.
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Hyperplanes for clipping applications in any dimension are therefore easily defined and
checked by choosing~xN to be the test point~x and checking the sign of eq. (3). If~N and a
point ~x0 are easy to determine directly, then the procedure reduces to checking the sign of the
left hand side of eq. (1).

The final step is to find the desired point on the truncated, clipped line. Since the clipped
form of a triangle, tetrahedron, etc., can be determined from the clipped forms of the component
lines, we need only consider the point at which a line straddling the clipping hyperplane inter-
sects this hyperplane. If the line to be clipped is given parametrically as~x(t) = ~xa+t(~xb�~xa),
where~xa and~xb are on opposite sides of the clipping hyperplane so0 � t � 1, then we simply
plug~x(t) into V (~x) = 0 and solve fort:

t =
det

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~x0

�
det

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~xb

� =
n̂ � (~xa � ~x0)

n̂ � (~xa � ~xb)
: (10)

Heren̂ is of course just the normal to the clipping hyperplane, discussed in detail above.

} Point-Hyperplane Distance }

The general formula for the volume of a parallelepiped is the product of the base and the height,
W = Bh. In N dimensions, if we takeWN = N !VN to be the volume of the parallelepiped
with edges(~x1 � ~x0); (~x2 � ~x0); : : : ; (~xN�1 � ~x0); (~x� ~x0), this generalizes to

WN = hWN�1 ;

whereh is the perpendicular distance from the point~x to the(N�1)-dimensional parallelepiped
with volumeWN�1 = (N � 1)!VN�1 and edges(~x1 � ~x0); (~x2 � ~x0); : : : ; (~xN�1 � ~x0). We
may thus immediately compute the distanceh from a point to a hyperplane as

h =
WN

WN�1
=

N !VN
(N � 1)!VN�1

=
N VN
VN�1

: (11)

Note! Here one must use the trick of eq. 4 to expressWN�1 in terms of the square root of a
square determinant given by the product of two non-square matrices.

Thus in 2D, the area of a triangle(~x0; ~x1; ~x) is

A = V2 =
1

2
W2 =

1

2
det

�
(x1 � x0) (x� x0)
(y1 � y0) (y � y0)

�

and the length-squared of the base isL2 = (~x1 � ~x0) � (~x1 � ~x0) so, withA = (1=2)hL,
the height becomesh = 2A=L = W2=L = W2=W1. In 3D, the volume of the tetrahedron
(~x0; ~x1; ~x2; ~x) is V = V3 = (1=6)W3 and the areaA = (1=2)W2 of the triangular base may be
written

(2A)2 = (W2)
2 = det

�
(~x1 � ~x0) � (~x1 � ~x0) (~x1 � ~x0) � (~x2 � ~x0)
(~x2 � ~x0) � (~x1 � ~x0) (~x2 � ~x0) � (~x2 � ~x0)

�
:
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Figure 6. Barycentric coordinates in N dimensions.

We knowV = (1=3)hA, and soh = 3V=A = 6V=2A = W3=W2. (See figure 5.) We note
for reference that, as we showed earlier, the base(N � 1)-volume is related to its normal by
~N � ~N = W 2

N�1.
Here we also typically need to answer one last question, namelywhereis the point~p on the

base hyperplane closest to the point~x whose distanceh we just computed? This can be found
by parameterizing the line from~x to the base hyperplane along the normaln̂ to the hyperplane
as~x(t) = ~x+ tn̂, writing the implicit equation for the hyperplane asn̂ � (~x(t)� ~x0) = 0, and
solving for the mutual solutiontp = n̂ � (~x0 � ~x) = �h. Thus

~p = ~x+ n̂(n̂ � (~x0 � ~x))

= ~x� hn̂ :

} Barycentric Coordinates }

Barycentric coordinates (see, e.g., (Hocking and Young 1961), chapter 5) are a practical way to
parameterize lines, surfaces, etc., for applications that must compute where various geometric
objects intersect. In practice, the barycentric coordinate method reduces to specifying two
points (~x0; ~x1) on a line, three points(~x0; ~x1; ~x2) on a plane, four points(~x0; ~x1; ~x2; ~x3) in
a volume, etc., and parameterizing the line segment, enclosed triangular area, and enclosed
tetrahedral volume, etc., respectively, by

~x(t) = ~x0 + t(~x1 � ~x0) (12)

~x(t1; t2) = ~x0 + t1(~x1 � ~x0) + t2(~x2 � ~x0) (13)

~x(t1; t2; t3) = ~x0 + t1(~x1 � ~x0) + t2(~x2 � ~x0) + t3(~x3 � ~x0) (14)

� � � :
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The line and plane geometries are shown in figure 6. The interpolated point then lies within the
N -simplex defined by the specified points provided

0 � t � 1

0 � t1 � 1; 0 � t2 � 1; 0 � (1� t1 � t2) � 1

0 � t1 � 1; 0 � t2 � 1; 0 � t3 � 1; 0 � (1� t1 � t2 � t3) � 1

: : :

Center of What? However, this is really only half the story of barycentric coordinates. For
the other half, we seek a geometric interpretation of the parametersti when we aregiven the
value of~x.

First let us look at the simple case when~x lies on the line segment between~x0 and~x1.
Solving eq. (12) fort directly gives

t =
(~x� ~x0) � (~x1 � ~x0)

(~x1 � ~x0) � (~x1 � ~x0)
:

That is,t is the fraction of the distance that~x has traveled along the line, theratio between the
length from~x0 to ~x and the total length. But, since~x1 � ~x0 = ~x1 � ~x+ ~x� ~x0, we easily see
that an alternative parameterization would be to taket1 = t and

t0 =
(~x1 � ~x) � (~x1 � ~x0)

(~x1 � ~x0) � (~x1 � ~x0)

so that1 = t0 + t1 and eq. (12) for~x becomes

~x(t0; t1) = t0~x0 + t1~x1 :

If t0 = 1, then the entire fraction of the distance from~x1 to ~x is assigned tot0 and~x = ~x0. If
t1 = 1, then the entire fraction of the distance from~x0 to ~x is assigned tot1 and~x = ~x1.

Next, suppose we know~x in a plane and wish to compute its barycentric coordinates by
solving eq. (13) for(t1; t2). Once we realize that(~x1�~x0) and(~x2�~x0) form the basis for an
affine coordinate system for the plane specified by(~x0; ~x1; ~x2) in any dimension, we see that
we may measure the relative barycentric coordinates by taking the dot product with each basis
vector:

(~x� ~x0) � (~x1 � ~x0) = t1k~x1 � ~x0k
2 + t2(~x2 � ~x0) � (~x1 � ~x0)

(~x� ~x0) � (~x2 � ~x0) = t1(~x1 � ~x0) � (~x2 � ~x0) + t2k~x2 � ~x0k
2 :

Extending the previously introduced abbreviation to the formv(x; j) = (~x � ~x0) � (~xj � ~x0)
and solving this pair of equations by Cramer’s rule, we get

t1 =

det

�
v(x; 1) v(1; 2)
v(x; 2) v(2; 2)

�

det

�
v(1; 1) v(1; 2)
v(2; 1) v(2; 2)

�
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t2 =

det

�
v(1; 1) v(x; 1)
v(1; 2) v(x; 2)

�

det

�
v(1; 1) v(1; 2)
v(2; 1) v(2; 2)

� :

The denominator is clearly proportional to thesquareof the area of the triangle(~x0; ~x1; ~x2),
and the numerators have the form of squared areas as well. InN dimensions, the numerators
reduce to determinants of products of non-square matrices, and so maynot be expressed as
two separate determinants! However, if we transform to a coordinate system that contains the
triangle within the plane of two coordinate axes, or ifN = 2, an effectively square matrix is
recovered; one factor of area in the denominator then cancels out, giving the intuitively expected
result that the barycentric coordinates are ratios of two areas:t1 = A(~x; ~x0; ~x1)=A(~x0; ~x1; ~x2),
t2 = A(~x; ~x2; ~x0)=A(~x0; ~x1; ~x2). This leads us to introduce the generalized version oft0 for
the line, namely,

t0 = 1� t1 � t2 =
A(~x1; ~x2; ~x)

A(~x0; ~x1; ~x2)

=

det

�
(~x1 � ~x0) � (~x1 � ~x) (~x1 � ~x0) � (~x2 � ~x)
(~x2 � ~x0) � (~x1 � ~x) (~x2 � ~x0) � (~x2 � ~x)

�

det

�
v(1; 1) v(1; 2)
v(2; 2) v(2; 2)

� :

Here we used the squaring argument given above to extendt0 from its special-coordinate-
system interpretation as the fraction of the area contributed by the triangle(~x; ~x1; ~x2) to the
invariant form. This form obviously has the desired property thatt0 = 1 when~x = ~x0, and we
finally have the sought equation (with1 = t0 + t1 + t2)

~x(t0; t1; t2) = t0~x0 + t1~x1 + t2~x2 :

It is amusing to note that the determinant identity1 = t0+ t1+ t2 and its higher analogs, which
are nontrivial to derive, generalize the simple identity~x1� ~x0 = ~x1� ~x+ ~x� ~x0 that we used
in the 1D case.

Thus we can construct barycentric coordinates in any dimension which intuitively correspond
to fractions of hypervolumes; each barycentric coordinate is the hypervolume of anN -simplex
defined by the point~x and all but one of the other simplex-defining points divided by the volume
of the whole simplex. The actual computation, however, is best done using the squared-volume
form because only that form is independent of the chosen coordinate system.

Note: The volumes aresigned; even if~x lies outside theN -simplex volume, the ratios remain
correct due to the cancellation between the larger volumes and the negative volumes. We also
remark that the generalized formulas forti in any dimension, with1 =

PN
i=0 ti, give an elegant

geometric interpretation of Cramer’s rule as ratios of simplex volumes.
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Figure 7. Schematic diagram comparing an ordinary camera ray and a planar “thick ray” used in N -
dimensional ray-tracing methods.

} Ray Tracing }

It is often useful to compute the intersection of a ray passing through two points (typically the
camera focal point~C and an image point~P ) with a geometrical object. InN dimensions, this
object will typically be an(N � 1)-simplex defining an oriented visible “face” with a normal
vector computable as described above. We need to do several things: compute the intersection
of the ray with the hyperplane containing the “face,” check to see whether the point lies within
the simplex’s boundaries (observe that this is a clipping problem), and see whether the normal
vector points in the direction of the ray (making it visible).

We formulate this procedure by first writing

~X(t) = ~C + t(~P � ~C)

for the position of a point on the camera ray, as illustrated in figure 7. Then we consider a single
(N � 1)-simplex of the tessellation to be described either by a known normal or by using the
set ofN points giving its vertices to define its normal via eq. (6); in either case, we can write
the equation of anyotherpoint~x lying within the simplex as

n̂ � (~x� ~x0) = 0 :

Plugging in the parametric ray equation, we solve for the point~X(t) in the simplex that lies on
the ray:

t =
n̂ �

�
~x0 � ~C

�

n̂ �
�
~P � ~C

� :

A useful generalization of ray-tracing toN -dimensions follows from the observation that a
“thick ray” is cast into space by an open-ended simplex that is essentially a barycentric coordi-
nate form with the restriction0 � (1�t1�t2�: : :) � 1 relaxed (see, e.g., (Hanson and Cross 1993)).



166 }

A planar ray such as that shown in figure 7 then has two parameters,

~X(t1; t2) = ~C + t1(~P1 � ~C) + t2(~P2 � ~C) ;

with obvious generalizations to volume rays, etc. Intersecting such a planar ray with an(N�2)-
dimensional manifold (describable using(N�2) barycentric parameters) results inN equations
with N unknown parameters, and thus a uniquepoint is determined as the mutual solution. In
3D, a plane intersects a line in one point, in 4D two planes intersect in a single point, while in
5D a plane intersects a volume in a point. Other generalizations, including rays that intersect
particular geometries in lines and surfaces, can easily be constructed. For example, the inter-
section of a planar ray with the single hyperplane equation for a 3-manifold in 4D leaves one
undetermined parameter, and is therefore a line.

} Conclusion }

Geometry is an essential tool employed in the creation of computer graphics images of every-
day objects. Statistical data analysis, mathematics, and science, on the other hand, provide
many problems whereN -dimensional generalizations of the familiar 2D and 3D formulas are
required. TheN -dimensional formulas and insights into the nature of geometry that we have
presented here provide a practical guide for extending computer graphics into these higher-
dimensional domains.

} Appendix: Determinants and the Levi-Civita Symbol }

One of the unifying features that has permitted us throughout this treatment to extend formulas
to arbitrary dimensions has been the use ofdeterminants. But what if you encounter an expres-
sion involving determinants that has not been given here and you wish to work out its algebraic
properties for yourself? In this appendix, we outline for the reader a useful mathematical tool
for treating determinants, the Levi-Civita symbol. References for this are hard to locate; the
author learned these techniques by apprenticeship while studying general relativity, but even
classic texts like Møller (Møller 1972) contain only passing mention of the methods; somewhat
more detail is given in hard-to-find sources such as (Efimov and Rozendorn 1975).

First we define two basic objects, the Kronecker delta,�ij ,

�ij = 1 i = j
= 0 i 6= j

and the Levi-Civita symbol,�ijk:::, which is the totally antisymmetric pseudotensor with the
properties

�ijk::: = 1 i; j; k; : : : in an even permutation of cyclic order
= �1 i; j; k; : : : in an odd permutation of cyclic order
= 0 when any two indices are equal.
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All indices are assumed to range from1 to N , e.g.,i = f1; 2; : : : ; (N � 1); Ng, so that, for
example, (1234,1342,4132,4321), are even permutations and (1324,2134,1243,4312) are odd
permutations.

We can use the Kronecker delta to write the dot product between twoN -dimensional vectors
as a matrix product with the Kronecker delta representing the unit matrix,

~A � ~B =
NX
i=1

NX
j=1

Ai�ijBj =
NX
i=1

Ai

0
@ NX

j=1

�ijBj

1
A =

NX
i=1

AiBi ; (15)

and the Levi-Civita symbol to write the determinant of a matrixjM j as

det [M ] =
X

all ik indices
�i1i2:::iNM1;i1M2;i2 � � �MN;iN :

The fundamental formula for the product of two Levi-Civita symbols is:

�i1i2:::iN �j1j2:::jN = det

2
6664
�i1j1 �i1j2 � � � �i1jN
�i2j1 �i2j2 � � � �i2jN

...
...

. . .
...

�iN j1 �iN j2 � � � �iN jN

3
7775 :

(Note that if we setfj1j2 : : : jNg = f1; 2; : : : ; Ng, the second Levi-Civita symbol reduces to
+1, and the resulting determinant is an explicit realization of the antisymmetry of the Levi-
Civita symbol itself as a determinant of Kronecker deltas!)

With this notation, the generalized cross product~N of eq. (6), simplified by setting~x0 = 0,
can be written

~N =
X

all indices
�i1i2:::iN�1iNx

(i1)
1 x

(i2)
2 � � � x

(iN�1)
N�1 x̂

(iN ) ;

wherex̂(iN ) are the unit vectors(x̂; ŷ; : : : ; ŵ) of the coordinate system. The dot product be-
tween the normal and another vector simply becomes

~N � ~L =
X

all indices
�i1i2i3:::iN�1iNx

(i1)
1 x

(i2)
2 x

(i3)
3 � � � x

(iN�1)
N�1 L(iN ) :

The reader can verify that, in 2D,Nk =
P2

i=1 x
(i)�ik = (�y; +x), and so on. We conclude

with two examples of applications:
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Rotations of Normals. Is the normal~N a vector?Almost. To check this, we must rotate
each column vector in the cross product formula usingx0(i) =

PN
j=1Rijx

(j) and compute the

behavior of~N . Using the identity ((Efimov and Rozendorn 1975), p. 203),

�i1i2:::iN�1iN det [R] =
X

all jk indices
�j1j2:::jN�1jNRj1i1Rj2i2 � � �RjN�1iN�1RjN iN ;

we find

N 0(i) =
X

all indices
excepti

�i1i2:::iN�1iRi1j1x
(j1)
1 Ri2j2x

(j2)
2 � � �RiN�1jN�1x

(jN�1)
N�1

=
NX
j=1

RijN
(j) det [R] :

Therefore ~N is a pseudotensor, and behaves as a vector for ordinary rotations (which have
det [R] = 1), but changes sign if[R] contains an odd number of reflections.

Contraction Formula. The contraction of two partial determinants of(N�K)N -dimensional
vectors can expanded in terms of products of Kronecker deltas as follows:

X
iN�K+1:::iN

�i1i2:::iN�K iN�K+1:::iN �j1j2:::jN�K iN�K+1:::iN =

K! det

2
6664

�i1j1 �i1j2 � � � �i1jN�K
�i2j1 �i2j2 � � � �i2jN�K

...
...

. . .
...

�iN�Kj1 �iN�K j2 � � � �iN�K jN�K

3
7775 :

The expression eq. (8) for the dot product of two normals is a special case of this formula.
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Rotations for N-Dimensional
Graphics

Andrew J. Hanson
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Bloomington, IN 47405
hanson@cs.indiana.edu

} Introduction }

In a previous Gem (Hanson 1994), “Geometry forN -Dimensional Graphics,” we described a
family of techniques for dealing with the geometry ofN -dimensional models in the context
of graphics applications. Here, we build on that framework to look in more detail at rotations
in N -dimensional Euclidean space. In particular, we give a naturalN -dimensional extension
of the 3D rolling ball technique described in an earlier Gem (Hanson 1992), along with the
corresponding analog of the Virtual Sphere method (Chen et al. 1988). Next, we touch on
practical methods for specifying and understanding the parameters ofN -dimensional rotations.
Finally, we give the explicit 4D extension of 3D quaternion orientation splines.

For additional details and insights, we refer the reader to classic sources such as (Som-
merville 1958,Coxeter 1991,Hocking and Young 1961,Efimov and Rozendorn 1975).

} The Rolling Ball in N Dimensions }

Basic Intuition of the Rolling Ball. The basic intuitive property of a rolling ball (ortan-
gent space) rotation algorithm in any dimension is that it takes a unit vectorv̂0 = (0; 0; : : : ; 0; 1)
pointing purely in theN -th direction (towards the “north pole” of the ball) and tips it in the di-
rection of an arbitrary unit vector̂n = (n1; n2; : : : ; nN�1; 0) lying in the(N�1)-plane tangent
to the ball at the north pole, thus producing a new, rotated unit vectorv̂, where

v̂ = MN � v̂0 = n̂ sin � + v̂0 cos � ;

as indicated schematically in Figure 1a. (Note: for notational simplicity, we choose to write the
components of column vectors as horizontal lists.)

If we choose the convention that positive rotations are right-handed and progress counter-
clockwise, a positive rotation of the north pole actually tilts it into the negative direction of the
remaining axis of the rotation plane. That is, if the 2D “rolling circle” acts onv̂0 = (0; 1) and
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n̂

(a) (b)
Figure 1. Tilting the “north pole” vector v̂0 in the direction of the tangent vector n̂, as though rolling a
ball by placing one’s finger directly on the north pole and pulling in the direction n̂.

n̂ = (�1; 0) as shown in Figure 1b, then

v̂ = M2 � v̂0 = n̂ sin � + v̂0 cos � = (� sin �; cos �) ;

where the rotation matrixM2 can be written

M2 =

�
cos � � sin �
+sin � cos �

�
=

�
c �s
+s c

�

=

�
c +nxs

�nxs c

�
: (1)

If we choose a right-handed overall coordinate frame, the sign ofn̂ will automatically generate
the correct sign convention.

Synopsis:Qualitatively speaking, if we imagine looking straight down at the north
pole, the rolling ballpulls the unseenN -th component of a vector along the direc-
tion n̂ of the(N � 1)-dimensional controller motion, bringing the unseen compo-
nent gradually into view.

Implementation.In practice, we choose a radiusR for the ball containing the object or scene
to be rotated and move our controller (slider, 2D mouse, 3D mouse, . . . ) a distancer in the
tangent direction̂n, as indicated in Figure 2a. Working from the simplified diagram in Figure
2b, we defineD2 = R2 + r2 and choose the rotation parametersc = cos � = R=D and
s = sin � = r=D.

For interactive systems, this choice has the particular advantage that, however rapidly the
user moves the controller,0 � (r=D) < +1, so0 � � < �=2. Depending upon the desired
interface behavior, an alternative choice would be to take� = r=R. This requires comput-
ing a trigonometric function instead of a square root, and may cause large discontinuities in
orientation for large controller motion.

3D. The explicit 3D rolling ball formula can be derived starting from an arbitrary 2D mouse
displacement~r = (x; y; 0) = (rnx; rny; 0), wheren2x + n2y = 1. Then one replaces Equation
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D R
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+ North

θ

n̂

R 0v̂
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θ

(a) (b)
Figure 2. The notation used in implementing the rolling ball rotation model for N dimensions.

(1) with nx = +1 by the analogous 3�3 matrixR0 for (x; z) rotations and encloses this in
a conjugate pair of rotationsRxy that transform the 2D mouse displacement~r into the strictly
positivex-direction and back. Since even~r = (�1; 0; 0) is rotated to the positivex-direction
beforeR0 acts, all signs are correct. With the explicit matrices

Rxy =

2
4 nx �ny 0
ny nx 0
0 0 1

3
5 ; R0 =

2
4 c 0 +s

0 1 0
�s 0 c

3
5 ;

we find an alternative derivation of the formula in our earlier Gem (Hanson 1992):

M3 = RxyR0(Rxy)
�1

=

2
4 c+ (ny)

2(1� c) �nxny(1� c) nxs
�nxny(1� c) c+ (nx)

2(1� c) nys
�nxs �nys c

3
5

=

2
4 1� (nx)

2(1� c) �nxny(1� c) nxs
�nxny(1� c) 1� (ny)

2(1� c) nys
�nxs �nys c

3
5 : (2)

4D. The 4D case takes as input a 3D mouse motion~r = (x; y; z; 0) = (rnx; rny; rnz; 0), with
n2x + n2y + n2z = 1. Then one first transforms(ny; nz) into a purey-component, rotates that
result to yield a purex-component, performs a rotation by� in the (x;w)-plane, and reverses
the first two rotations. Defining the required matrices as

Ryz =

2
6664

1 0 0 0
0

ny
ryz

� nz
ryz

0

0 nz
ryz

ny
ryz

0

0 0 0 1

3
7775 ; Rxy =

2
664

nx �ryz 0 0
ryz nx 0 0
0 0 1 0
0 0 0 1

3
775 ; R0 =

2
664

c 0 0 +s
0 1 0 0
0 0 1 0
�s 0 0 c

3
775 ;

(3)
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wherer2yz = n2y + n2z, we find

M4 = RyzRxyR0(Rxy)
�1(Ryz)

�1

=

2
664

1� (nx)
2(1� c) �(1� c)nxny �(1� c)nxnz snx

�(1� c)nxny 1� (ny)
2(1� c) �(1� c)nynz sny

�(1� c)nxnz �(1� c)nynz 1� (nz)
2(1� c) snz

�snx �sny �snz c

3
775 : (4)

ND. The extension of this procedure to any dimension is accomplished by having the con-
troller interface supply an(N � 1)-dimensional vector~r = (rn1; rn2; : : : ; rnN�1; 0) with
~r �~r = r2 andn̂ � n̂ = 1 and applying the rotation

MN = RN�2;N�1RN�3;N�2 � � �R1;2R0(R1;2)
�1 � � � (RN�3;N�2)

�1(RN�2;N�1)
�1

=

2
6666664

1� (n1)
2(1� c) �(1� c)n2n1 � � � �(1� c)nN�1n1 sn1

�(1� c)n1n2 1� (n2)
2(1� c) � � � �(1� c)nN�1n2 sn2

...
...

.. .
...

...
�(1� c)n1nN�1 �(1� c)n2nN�1 � � � 1� (nN�1)

2(1� c) snN�1
�sn1 �sn2 � � � �snN�1 c

3
7777775

(5)

Recall that the controller input~r = rn̂ that selects the direction to “pull” also determines
c = cos � = R=D, s = sin � = r=D, with D2 = R2 + r2, or, alternatively,� = r=R.

} Controlling the Remaining Rotational Degrees of Freedom }

There areN(N � 1)=2 parameters in a generalN -dimensional orthogonal rotation matrix, one
parameter for each possible pair of axes specifying aplane of rotation(the 3D intuition about
“axes of rotation” does not extend simply to higher dimensions). The matrixMN in Equation
(5) has only(N � 1) independent parameters: we must now understand what happened to the
other(N � 1)(N � 2)=2 degrees of freedom needed for arbitrary rotations.

In fact, the non-commutativity of the rotation group allows us to generate all the other ro-
tations bysmall circular motionsof the controller in the(N � 1)-dimensional subspace of
~r = rn̂. Moving the controller in circles in the(1; 2)-plane,(1; 3)-plane, etc., of the(N � 1)-
dimensional controller space exactly generates the missing(N�1)(N�2)=2 rotations required
to exhaust the full parameter space. In mathematical terms, the additional motions are generated
by the commutation relations of theSO(N) Lie algebra fori; j = 1; : : : ; N � 1,

[RiN ; RjN ] = �ijRNN � �jNRiN + �iNRjN � �NNRij

= �Rij :
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The minus sign in the above equation means thatclockwisecontroller motions in the(i; j)-plane
inevitably producecounterclockwiserotations of the object, and vice-versa. Thus the philoso-
phy (Hanson 1992) of achieving the full set of context-free rotation group transformations with
a limited set of controller moves extends perfectly toN -dimensions.Implementation Note: In
practice, the effectiveness of this technique varies considerably with the application; the size of
the counter-rotation experienced may be relatively small for parameters that give appropriate
spatial motion sensitivity with current 3D mouse technology.

Alternative Context Philosophies. The rolling ball interface is acontext-freeinterface
that allows the user of a virtual reality application to ignore the absolute position of the con-
troller and requires no supplementary cursor context display; thus one may avoid distractions
that may disturb stereography and immersive effects in a virtual reality environment. However
some applications are better adapted tocontext-sensitiveinterfaces like the Arcball method
(Shoemake 1994) or the Virtual Sphere approach (Chen et al. 1988). The Virtual Sphere
approach in particular can be straightforwardly extended to higher dimensions by using the
rolling ball equations inside a displayed spatial context (typically a sphere) and changing over
to an(N � 1)-dimensional rolling ball outside the context; that is, as the controller approaches
and passes the displayed inner domain context sphere, the rotation action changes to one that
leaves theN -th coordinate fixed but changes the remaining(N � 1) coordinates as though an
(N � 1)-dimensional rolling ball controller were attached to the nearest point on the sphere.
Similar flexibility can be achieved by using a different controller state to signal a discrete rather
than a continuous context switch to the(N � 1)-dimensional controller.

} Handy Formulas for N -Dimensional Rotations }

For some applications the incremental orientation control methods described above are not as
useful as knowing a single matrix for the entireN -dimensional orientation frame for an object.
We note three ways to represent such an orientation frame:

Columns are new axes. One straightforward construction simply notes that if the default
coordinate frame is represented by the orthonormal set of unit vectorsx̂1 = (1; 0; : : : ; 0),
x̂2 = (0; 1; 0; : : : ; 0), . . . , x̂N = (0; : : : ; 0; 1), and the desired axes of the new (orthonormal)
coordinate frame are known to bêa1 = (a

(1)
1 ; a

(2)
1 ; : : : ; a

(N)
1 ), â2, . . . , âN , then the rotation

matrix that transforms any vector to that frame just has the new axes as its columns:

M =
�
â1 â2 � � � âN

�
:

The orthonormality constraints giveM the requiredN(N � 1)=2 degrees of freedom.
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Concatenated subplane rotations. Rotations in the plane of a pair of coordinate axes
(x̂i; x̂j), i; j = 1; : : : ; N can be written as the block matrix

Rij(�ij) =

2
66666666666666664

1 � � � 0 0 � � � 0 0 � � � 0
...

. . .
...

...
. ..

...
...

. . .
...

0 � � � cos �ij 0 � � � 0 � sin �ij � � � 0
0 � � � 0 1 � � � 0 0 � � � 0
...

. . .
...

...
. ..

...
...

. . .
...

0 � � � 0 0 � � � 1 0 � � � 0
0 � � � sin �ij 0 � � � 0 cos �ij � � � 0
...

. . .
...

...
. ..

...
...

. . .
...

0 � � � 0 0 � � � 0 0 � � � 1

3
77777777777777775

(6)

and thus theN(N � 1)=2 distinctRij(�ij) may be concatenated in some order to produce a
rotation matrix such as

M =
Y
i<j

Rij(�ij)

with N(N � 1)=2 degrees of freedom parametrized byf�ijg. However, since the matrices
Rij do not commute, different orderings give different results and it is difficult to intuitively
understand the global rotation. In fact, as is the case for 3D Euler angles, one may even repeat
some matrices (with distinct parameters) and omit others, and still not miss any degrees of
freedom.

Quotient Space Decomposition. Another useful decomposition relies on the classic
quotient property of the topological spaces of the orthogonal groups (Helgason 1962),

SO(N)=SO(N � 1) = SN�1 ; (7)

whereSK is a K-dimensional topological sphere. In practical terms, this means that the
N(N � 1)=2 parameters ofSO(N), the mathematical group ofN -dimensional orthogonal
rotations, can be viewed as a nested family of points on spheres. The 2D form is the matrix (1)
parameterizing the points on the circleS1; the 3D form reduces to the standard matrix

M3(�; n̂) =

2
4 c+ (n1)

2(1� c) n1n2(1� c)� sn3 n3n1(1� c) + sn2
n1n2(1� c) + sn3 c+ (n2)

2(1� c) n3n2(1� c)� sn1
n1n3(1� c)� sn2 n2n3(1� c) + sn1 c+ (n3)

2(1� c)

3
5 (8)

where the two free parameters ofn̂ � n̂ = (n1)
2 + (n2)

2 + (n3)
2 = 1 describe a point on

the 2-sphere. These two parameters plus a third from theS1 described byc2 + s2 = 1 (i.e.,
c = cos �; s = sin �) yield the required total of three free parameters equivalent to the three
Euler angles. The 4D and higher forms are already too unwieldy to be conveniently written as
single matrices.
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} Interpolating N-Dimensional Orientation Frames }

To define a uniform-angular-velocity interpolation between twoN -dimensional orientation
frames, we might consider independently interpolating each angle in Equation (6), or we might
take the quotient space decomposition given by the hierarchy of points on the spheres(SN�1; : : : ; S2; S1)
and apply a constant angular velocity spherical interpolation to each spherical point in each suc-
cessive dimension using the “Slerp”

n̂12(t) = Slerp(n̂1; n̂2; t) = n̂1
sin((1� t)�)

sin(�)
+ n̂2

sin(t�)

sin(�)

wherecos � = n̂1 � n̂2. (This formula is simply the result of applying a Gram-Schmidt decom-
position while enforcing unit norm in any dimension.)

Either of these often achieves the goal of smooth appearance, but the solutions are neither
unique nor mathematically compelling, since the curve is not guaranteed to be a geodesic in
SO(N).

The specification of geodesic curves inSO(N) is a difficult problem in general (Barr et al.
1992); fortunately, the two most important cases for interactive systems,N = 3 andN = 4,
have elegant solutions using the covering or “Spin” groups. ForSO(3), geodesic interpolations
and suitable corresponding splines are definable using Shoemake’s quaternion splines (Shoe-
make 1985), which can be simply formulated using Slerps onS3 as follows: letn̂ be a unit
3-vector, so that

q0 = cos(�=2); ~q = n̂ sin(�=2)

is automatically a point onS3 due to the constraint(q0)2 + (q1)
2 + (q2)

2 + (q3)
2 = 1. Then

each point onS3 corresponds to anSO(3) rotation matrix

R3 =

2
4 q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q20 + q22 � q21 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3 + 2q0q1 q20 + q23 � q21 � q22

3
5 (9)

which the reader can verify reduces exactly to the nested-sphere form in Equation (8). Note
that the quaternionsq and�q each correspond to the same 3D rotation. Slerpingq generates
sequences of matricesR3(t) that are geodesic interpolations. Arbitrary splines can be defined
using the method of Schlag (Schlag 1991).

Quaternions in Four Dimensions. In four dimensions, the correspondence between the
rotation groupSO(4) and the spin group Spin(4) that is its double covering may be computed
by extending quaternion multiplication to act not just on 3-vectors (“pure” quaternions)v =
(0; ~V), but on full 4-vector quaternionsv� in the following way:

3X
�=0

R�
�v

� = q � v� � p�1 :



62 }

We thus find that the general double-quaternion parameterization for 4D rotation matrices takes
the form

R4 =

2
664

q0p0 + q1p1 + q2p2 + q3p3 q1p0 � q0p1 � q3p2 + q2p3
�q1p0 + q0p1 � q3p2 + q2p3 q0p0 + q1p1 � q2p2 � q3p3
�q2p0 + q0p2 � q1p3 + q3p1 q1p2 + q2p1 + q0p3 + q3p0
�q3p0 + q0p3 � q2p1 + q1p2 q1p3 + q3p1 � q0p2 � q2p0

q2p0 � q0p2 � q1p3 + q3p1 q3p0 � q0p3 � q2p1 + q1p2
q1p2 + p1q2 � p0q3 � q0p3 q1p3 + p1q3 + p0q2 + q0p2
q0p0 + q2p2 � q1p1 � q3p3 q2p3 + q3p2 � q0p1 � q1p0
q2p3 + q3p2 + q1p0 + p0q1 q0p0 + q3p3 � q1p1 � q2p2

3
775 : (10)

One may check that Equation (9) is just the lower right-hand corner of the degeneratep = q
case of Equation (10).

Shoemake-style interpolation between two distinct 4D frames is now achieved by applying
the desired Slerp-based interpolation method independently to a set of quaternion coordinates
q(t) on one three-sphere, and to a separate set of quaternion coordinatesp(t) on another. The
resulting matrixR4(t) gives geodesic interpolations for simple Slerps, and can be used as the
basis for corresponding spline methods (Schlag 1991,Barr et al. 1992). Analogs of theN = 3
andN = 4 approaches for generalN involve computing Spin(N) geodesics and thus are quite
complex.

Controls. As pointed out in (Shoemake 1994), the Arcball controller can be adapted with
complete faithfulness of spirit to the 4D case, since one can picktwo points in a three-sphere
to specify an initial 4D frame, and then picktwo morepoints in the three-sphere to define
the current 4D frame. Equation (10) gives the complete form of the effective 4D rotation.
Alternately, one can replace the 4D rolling ball or Virtual Sphere controls described earlier by
a pair (or more) of 3D controllers (Hanson 1992).
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