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Abstract 
We propose an interactive method for exploring 

topological spaces based on the natural local geometry 
of the space. Examples of spaces appropriate for this 
visualization approach occur in abundance in mathe- 
matical visualization, surface and volume visualization 
problems, and scientific applications such as general 
relativity. Our approach is based on using a controller 
to choose a direction in which to “ulalh” a manifold 
along a local geodesic path. The method automata’cally 
generates orientation changes that produce a ma’mal 
viewable region with each step of the walk. The pro- 
posed interaction framework has many natural proper- 
ties to help the user develop a useful cognitive map of 
a space and is well-suited to haptic interfaces that may 
be incorporated into desktop virtual reality systems. 

1 Introduction 
In this article, we describe an interactive approach 

to visualizing topological manifolds. The interface can 
be realized in terms of standard mouse or joystick con- 
trollers as well as haptic interfaces. Properties of sur- 
faces with high complexity due to strong curvature 
or self-intersections can be explored dynamically and 
pieced together mentally by the user in a manner dif- 
ficult to achieve with standard graphical representa- 
tions alone. 

This work originates philosophically in our at- 
tempts to develop increasingly deeper conceptualiza- 
tions of the properties of complex geometric objects 
(for a general overview, see Hanson, Munzner, and 
Francis [14]). E xamples of other work in this area are 
the Geomview system and its auxiliary modules [16, 71, 
and Bryson’s system for visualizing geodesics in gravi- 
tational spacetime metrics [l]. However, highly tuned 
interaction with objects represented by multiple coor- 
dinate patches in three, four, or more dimensions re- 
quires additional special tools: our own MeshView sys- 
tem [15] was developed precisely to enable enhanced 
4D interaction, flexible 4D depth cues, and especially 
to display the relationship between a point on an ab- 

(a) (b) 
Figure 1: (a) A 2D curve with interest point P as it 
might intersect a 1D display. (b) The curve rotated 
so the tangent vector at the interest point is aligned 
with the screen, giving a maximal projection. 

stract parameter mesh and its mapping onto a self- 
intersecting surface in a computer graphics image. 4D 
lighting methods can also supply additional cues [13]. 
Long experience viewing and manipulating manifolds 
such as projective planes, everting spheres, and Rie- 
mann surfaces (see, e.g., Carter [2], Francis [5], and 
Hanson [S]) suggests the need for additional intuitive 
tools for exploring such spaces. The techniques de- 
scribed here comprise another powerful, interaction- 
based approach for developing mental models of such 
structures (see, e.g., Tversky [19]). 

2 Walking a Curve 
In this section, we introduce the reader to space 

walking using the traversal of a space curve, a simple 
example that exposes the richness of the approach. 

Assume that we have a closed 2D+space curve along 
with a particular point of interest P on that curve as 
shown in Figure 1. Now imagine projecting that curve 
to a single scanline of a CRT screen. To traverse or 
“walk” the curve, we must determine both a display 
strategy that represents the current interest point P in 
a natural manner, and we must specify how to rigidly 
transform the full curve to make a transition from I? 
to a neighboring interest point P’. In this simple case, 
the controller can be thought of as a slider, 1D mouse, 

(See color plates, page CP-15) 
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Figure 2: (a) Controller motion d> initiating transi- 
tion from interest point 6 to the next interest point 
5’. (b) Rolling the curve to present a maximal pro- 
jection at the new interest point. (c) Detail of the 
geometry involved in the transition using a discrete 
curve tessellation. 

or 1D joystick. 

Positioning the interest point using maximal 
projection. As shown in Figure la, it does not+ make 
sense to let the 2D projection of the curve at P have 
an arbitrary oblique orientation with respect to the 
screen face; our first assumption, which we will main- 
tain throughout, is that we should always attempt to 
orient the tangent to the curve parallel to the screen 
face at the interest point $, as indicated in Figure lb. 
We will call this choice the maximal projection. 

Positioning the curve. Now let d; be the inter- 
active controller input, which is interpreted-to mean 
“move alo,“g the curve in the direction dx by arc 
length lldxll.” Th e resulting action changes the in- 
terest point from @  to p’ as we slide along the curve 
as shown in Figure 2a,b. Suppose for simplicity that 
the curve is represented a: disc_rete line segments, as 
shown in Figure 2c. If P + dx does not reach the 
edge vertex sedge, the simplest motion is to trans- 
late by d; in the screen tangent direction. Other- 
wise, we take d = sedge - P, /7 = P’ - Gedge, set 
Ild>ll = ]]S]] + ]]$I], translate sedge to the origin, ro- 
tate by cos0 = da fi/]]G]) I]@]], and make a final trans- 
lation by ]]a]] to place F’ at the screen center, where it 
becomes the new interest point I?. One obvious strat- 
egy for smoothing this transition is to do the rotation 
in finite time using 6(t) = te with t increasing from 
zero to one. 

Remark: Self-intersecting curves are treated nat- 
urally in this framework by requiring local continu- 
ity of the tangent vector. A natural source of inter- 
esting self-intersecting curves is the class of non-self- 

intersecting 3D curves that possess a self-intersecting 
2D projection. Accordingly, we next examine 3D 
space curves, and find that they introduce new inter- 
esting issues and intrinsic properties that generalize 
easily to ND space curves. 3D subspaces turn out to 
play a special role in walking curves. Later, we will 
see that 4D subspaces play a similar special role in the 
analysis of surface walking. 

Extension to 3D space curves. First suppose we 
have a 3D space curve, but are still restricted to a 
1D display screen, and have chosen a 2D projection. 
When we restrict the tangent to the interest point of 
the curve’s 2D projection to lie in the 1D screen face, 
we see that the 3D curve will be tangent to the plane 
perpendicular to the line of sight through the interest 
point, but may make an oblique angle to the 1D screen 
line drawn in this plane. We then have the following 
choices for positioning the 3D curve: 

2D tangent. Ignore 3D altogether, make the 2D 
projection tangent to the 1D screen’s center at 
the interest point @  and walk the 2D projection 
only, as in Figure 2. 

3D tangent, 2D adjustment. If the 3D curve’s 
tangent at @ ’ does not lie in the projection plane, 
first align it with the projection plane as shown 
in Figure 3a,b. Then rotate the result in the pro- 
jection plane to produce the maximal projection 
at P” as shown in Figure 3c. 

3D tangent, 3D adjustment. Alternatively, 
ignore the 2D+projection altogether, translate di- 
rectly from P to g’, and rotate the entire 3D 
curve so that the tangent at 3’ aligns with the 
1D screen line. The only change is that now @ ’ is 
a 3D vector and the rotation is in the 3D plane de- 
fined by the three (assumed non-collinear) points 
($7 @edge, g’). The angle of rotation corresponds 
to the 3D dot product, with the geometry as in 
Figure 2c. 
At this point, there is an arbitrary rotational de- 
gree of freedom about the curve’s new tangent 
vector, the screen line; we have the choice of leav- 
ing the orientation where it falls after aligning 
the tangent, which is quite arbitrary, or choosing 
a geometrically motivated orientation. Provided 
the curve’s second derivative does not vanish, we 
can choose an intrinsic orientation based on the 
Frenet frame [4, 61, 

2(s) 
fYs) = Ilx”(S)ll 
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Figure 3: One possible approach to maintaining maximal projection of a 3D space curve during the transition 
between facets, (a) Maximal projection of a tessellated section of a 3D space curve is aligned so that the triangle 
(&, x’r , &) lies in the plane defined by the screen and the gaze direction. (b) Rocking @’ into the screen plane by 
rotating around x’z - 21. (c) Rotate in screen plane to achieve maximal projection of the segment containing 5’. 

S’(s) x Z”(S) 
B(s) = llx”(S) x ft’(s)II 

lqs) = 6(s) x r?(s) . 

A natural ch$ce is-to fo:ce the tangent circle 
spanned by T and N at P to lie entirely in the 
2D projection plane. 

N dimensions. In higher dimensions, we note the 
remarkable fact that the local characteristics of the 
curve that concern us lie within a 3D subspace: the 
points (20, x’r , x”z, 2s) defining the tangents to the se- 
quence of interest points as indicated in Figure 3 define 
a tetrahedron, a 3-simplex, regardless of the dimen- 
sion of the four N-dimensional vectors describing the 
endpoints of the three edges. Thus we may rephrase 
the alignment of the Frenet curve normal fi with the 
2D projection plane for arbitrary dimension as follows: 
(1) define the plane containing the screen vector and 
the gaze vector to be aligned with the edges contain- 
ing ($0, x’r,x’z). The desired new orientation has the 
tangent at @’ parallel to the screen vector; further- 
more, we want the plane containing the screen vector 
and the gaze vector to be aligned with the plane of the 
edges (Zr,x’z, ~?a). Since this transformation is strictly 
in a 3D subspace, one has several choices: (1) align 3’ 
with the screen direction first and then rotate about 
the line containing 6’ to place the line containing $ 
back in the projection plane; (2) rotate about the line 
containing I? until the line containing 3’ is in the pro- 
jection plane, then rotate in that plane until 3’ is in 
the screen tangent direction; (3) better yet, one can 
perform a geodesic quaternion interpolation between 
the two frames within the 3D subspace [18]. 

The strategies that align the 3D tangent instead of 
the simpler 2D projected tangent have the effect of 

“pulling the curve through a tube” surrounding the 
1D screen line. Also note that in these algorithms 
the curve may rotate rapidly about the 1D screen line 
if the maximal projection aligning the curve’s Frenet 
normal with the 2D projection plane is always en- 
forced. 

3 Walking in Space 
We next outline the extension of the basic concepts 

of curve walking to surfaces and higher dimensional 
manifolds. From this point on, we will assume that 
we have a 2D screen space with a well-defined normal 
gaze direction, and that surface patches are projected 
from a 3D graphics space, the “projection volume,” 
onto this 2D screen. Higher dimensional objects will 
typically first be transformed to the 3D projection vol- 
ume in a manner analogous to the projection of a 3D 
curve to a 2D projection plane noted earlier. We be- 
gin by examining surfaces (2-manifolds) with vertex 
coordinates in 3D Euclidean space. We assume that a 
surface is defined by a collection of vertices {5&} with 
a data structure such as a winged edge data structure 
that allows one to determine the faces adjoining each 
edge and each vertex. 

Paths on a surface in 3D. First, we consider a 
surface represented by triangular facets in ordinary 
3D space. Our basic hypothesis of maximal projection 
then requires that the facet of interest lies completely 
in the screen plane. 

Next, as illustrated in Figure 4, we choose a point 
of interest @ in the facet and give an algorithm for 
transforming the display as we move to a new interest 
point e’. Assuming a 2D controller motion d>, we 
proceed as follows: 

Clip. First, we clip the vector @ + d> to the 
triangle containing 3. That is, working within the 
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Figure 4: Surface facet with interest point @ maxi- 
mally projected onto a 2D screen from an implicit 3D 
graphics space behind the screen. 

Figure 5: Flattened facet-to-facet transition. 

2D screen coordinate system with triangle coordinates 
(Zu,~r,&), compute each normal riur = (-(yr - 
ya), (zr -x0)), etc., and each t = risr .(&-P)/iisr.dG, 
etc.; if all positive t’s are greater than one, $’ = P+& 
lies in the face; otherwi:e the minjmum+positive t gives 
the intersection point Pedge = P + tdx. 

If @’ lies in the current face,+simply translate that 
point to the screen center. If P’ lies in the adjacent 
face, rotate as prescribed below and then translate $’ 
to the screen center. If I? crosses the clipping bound- 
ary of the adjacent face, repeat the clipping and rota- 
tion procedure until it lies within a face. This proce- 
dure amounts to flattening the neighboring facets as 
shown in Figure 5 to find the destination interest point 
6’ in the local 2D coordinate system of the final face. 

Rotating between facets. In the facet model, 
vertices are points of vanishing measure that in fact 
carry the Gaussian curvature in their angular deficits. 
For now, we assume we never actually pass through a 
vertex; all paths will be across edges from one face to 
another; smoothing models can in principle distribute 
the curvature across the faces and permit direct traver- 
sal of vertices. 

We now compute the transition across a given edge, 
assuming we know the unit vectors A and B perpen- 
dicular to the transition edge, as indicated schemati- 

Figure 6: 3D facet rotation. 

tally in Figure 6. We want to translate the origin to 
the point Pedge and rotate by the angle cos 8 = A. B 

in the plane containing A and B so that 8’ now lies 
in the screen plane and is identical to the original A. 

We use a Gram-Schmidt procedure to derive the 
norm-preserving rotation using the orthonormal basis 
vectors A and e = (B - J% cos e)/ sin 8. (If A and B 
are paralle$no rotation takes place and we translate 
directly to P’ in the plane of the original facet.) Every 
vertex q in the entire data structure undergoes the 
following rotation: 

5’=q-&&(&q)-e(&q 
. -B 

+[ ii e] 
[ 

-“;;?;e Es;; ][ p;] (1) 

where we may vary t slowly between zero and one to 
avoid sudden jumps in the orientation. 

Surfaces in N dimensions. The equations pre- 
sented so far in fact extend trivially to arbitrary di- 
mensions for the vertex coordinates. The only essen- 
tial difference is that the vector B may have a compo- 
nent in some direction 8 outside the projection vol- 
ume spanned by (k:, f, a), and the procedure given so 
far rotates only the projection of the face of the new 
interest point @’ into the screen plane. That projec- 
tion may be slightly tilted and therefore not maximal 
unless we make an additional rotation in the Z-W plane 
to line it up and eliminate the $ir component; we may 
use Gram-Schmidt to define 61r in any dimension as 
follows: 

I3 - k(jz: * 8) 
Iti' =  (1 -(f,i))2)1/2 

Tessellated surfaces in arbitrary dimensions N > 3 
can therefore be handled in a manner similar to our 
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Figure 7: Aligning surface facets with a 3D subspace in 
dimensions 4 or greater exploits 5 vertices that define 
3 neighboring triangles, 2 overlapping tetrahedra (3- 
simplexes) whose sixth edges are the dotted lines, and 
one nondegenerate 4-simplex. 

discussion for curves in dimensions N > 2. The 
essence of the argument, represented in Figure 7, is 
that the two triangles and four vertices of a winged 
edge in any dimension define a 3D subspace that we 
can require to be aligned with the 3D volume that 
eventually projects to the 2D screen. When making a 
transition to a new interest point P’, we introduce a 
new 3D subspace+that shares the x-y plane with the 
facet containing P and has a new component in the 
B direction. If B has components only in the (x,3,2) 
subspace, we are done. 

If not, we rotate the entire object and generate a 
maximal projection that not only has P’%  face lying 
in the screen z-y plane, but also has the tetrahedron 
containing P and 3’ contained completely in the 3D 
projection volume. This is the analog for surfaces of 
computing the Frenet frame curve normal and read- 
justing the curve normal to lie in the plane normal to 
the screen. 

As in the space curve treatment, we have three al- 
ternatives: (1) Apply the analog of Eq. (1) to rotate 
B in the z-w plane so that it has no G  component, 
then perform the standard 3D facet transition to align 
the new B with the original A. (2) First align the 
new B with the original A, then apply Eq. (1) in the 
z-20 plane to eliminate the C component. (3) Iden- 
tify the 4D subspace (the 4-simplex) generated by the 
5 vertices shown in Figure 7, compute the 4D frame 
with normal ti to the S-simplex defined by the “old” 
winged edge faces, compute the distinct 4D frame 
with normal C relative to the 3-simplex d+efined by 
the “new” winged edge faces containing P and I?“, 
then perform a geodesic rotation between the two 4D 
frames. Details of the required methods may be found 
in Hanson [lo, 111. 

Remark: Earlier, we showed how the Frenet-frame 
treatment of space curves is essentially exhausted in 

3D. The method just described shows how a winged- 
edge treatment of arbitrary surfaces naturally leads to 
4D subspaces, and that no further complexities arise in 
developing an analogous treatment of surface geome- 
try in higher dimensions. Extending this treatment to 
winged faces for walking three-manifolds intrinsically 
requires 5D subspaces; K-manifolds whose tessellated 
geometry is described by winged (K- 1)-planes will re- 
quire (K + 2)-dimensional subspaces to treat the most 
general maximal projection requirements in arbitrary 
dimensions. 

4 Facet-based vs Smoothly Interpo- 
lated Control 

Our approach so far has treated manifolds as locally 
planar segments in the manner of flat-shaded polyhe- 
dral computer graphics models and the Regge calculus 
[17] treatment of Riemannian geometry. Thus all tran- 
sitions between facets across winged edges are indistin- 
guishable from walking on flat space; all the curvature 
is contained in the ‘Langular deficits,” the difference 
between 2n and the actual sum of facet angles at each 
vertex. For relatively dense manifold triangulations, 
the angular deficit at each vertex is very small, and 
navigation of the manifold appears fairly smooth (see 
the examples in Figures 8,9, and 10). However, just as 
we may wish to approximate the appearance of smooth 
shaded surfaces starting from an underlying discrete 
tessellation, we may wish to extend the walker ap- 
plication with an interpolation scheme that makes the 
manifold appear to be smooth. For example, we see in 
Figure 3 that we really want a curve’s segment-based 
Frenet normal and tangent-aligned in the screen pro- 
jection plane at x”i , not at P, which should already be 
interpolating between the orientations at x’r and x’s; a 
similar observation holds for surface walking as well. 

The first step in generating a smoothly-varying 
manifold walk is to produce a local tangent line at 
each vertex of a curve, a local tangent plane at each 
vertex of a surface, and so on. The second, and more 
problematic, task is to produce a compelling interpo- 
lation procedure that connects these tangent frames 
continuously to one another over the entire manifold. 

In 3D, for example, the standard interpolated shad- 
ing algorithm that computes a vertex normal by aver- 
aging the normals to the surrounding faces is a good 
start; this normal defines the 3D tangent plane at 
the vertex. Just as bilinear interpolation of the ver- 
tex normals generates face-interior normals for local 
Phong shading calculations, we can produce interpo- 
lated tangent planes perpendicular to these local nor- 
mals. However, we have one additional complexity not 
present in the smooth shading algorithm: the relative 
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orientations of the planes perpendicular to the nor- 
mals determine the facet orientation in the maximal 
projection. Thus we must choose an entire coordi- 
nate frame, not just a normal, at each vertex; if we 
can choose frames that fit with their neighbors in an 
appealing way, we can proceed using standard quater- 
nion spherical interpolations [18]. 

In dimensions higher than three, this procedure is 
additionally complicated by the fact that there is no 
longer a normal vector to a surface, but a normal sub- 
space of dimension IV - 2. 

5 Interactive Interfaces 
User alignment with maximal projection. The 
plane in which the maximal projection is enforced can 
be oriented arbitrarily in the 3D graphics coordinates 
of the projection volume. This plane is exactly analo- 
gous to the tube y2 + z2 = r2 through which a space 
curve is forced to pass to align it with the x-axis of 
a 1D screen; the flat facets of a surface are effectively 
drawn through a hypertube z2 + w2 = r2 in 4D and 
thus forced into the z-y plane. But this z-y plane 
can be oriented with the screen coordinate system, 
in which case we are “walking” on the surface with 
gravity pulling us in the gaze direction, or it could 
be oriented with the floor, in which case the maximal 
projection is aligned with the gaze direction and we 
get the impression of walking on a treadmill oriented 
to the gravitational pull of the outside world as we sit 
at the computer console. 

Extension to haptic interfaces. Given any 3D 
haptic interface, we can make the surface, in either 
screen or treadmill orientation, an impenetrable bar- 
rier or a cage constraining our motion to 2D. In static 
mode, one could keep the object fixed with the cen- 
ter maximally projected and allow the user to feel a 
limited continuous neighborhood of the center point, 
thus getting a tactile sense of the surface shape. In dy- 
namic mode, one can assign a velocity and direction to 
the disp(lacement of the tactile probe from the center, 
thus empowering the user effectively to drive around 
the manifold while feeling the changes in shape and 
slope a short distance away from the central maximal 
projection point. 

Direct manipulation characteristics. The inter- 
face we have described is a generalization of a context- 
free, direct-manipulation 3D rolling-ball orientation 
controller (see, e.g., [9]) to arbitrary manifolds and 
dimensions. Properties such as non-commutativity of 
paths between points that are observed in this style 
of orientation control are transformed into the rich 

geometric properties and symmetry transformations 
of arbitrary topological spaces. In addition, just as a 
scene controlled by a rolling ball can move either in the 
same direction as the controller motion or in the oppo- 
site direction, we can traverse a manifold either way: 
walking forward to a new position on the manifold, or 
pushing the manifold in the controller direction. 

Extension to three-manifolds and wands. The 
approach can be naturally extended to three- 
manifolds with winged faces, and so on. In contrast 
to the Maniview [7] approach, which uses an “in- 
sider’s” view emphasizing discrete symmetry groups 
and face identifications by producing repeated copies 
of the manifold sewn to itself in the 3D viewing space, 
we would navigate specific embeddings of 3-manifolds 
in four or more dimensions. This approach would 
fit well with applications treating 3D scalar fields as 
4D terrain elevation maps [12], and would be ideally 
adapted to 4D orientation control using three-degree- 
of-freedom control devices such as a wand [3,11]. Nat- 
ural applications of this technique occur not only in 
topology and volume visualization, but also in the 
Regge calculus approach to general relativity [17]. 

6 Examples 
We conclude with several visual examples. In prac- 

tice, the concepts presented are strongly dependent on 
motion cues and the sense of direct manipulation, and 
so are difficult to represent with static images. 

l In Figure 8, we show a family of geodesic paths 
that would be taken by a walker exploring an or- 
dinary 3D torus. 

a We display in Figure 9 selected geodesic paths 
resulting from walking on the spun trefoil knotted 
sphere embedded in 4D, projected to 3D. Note 
how the paths follow the continuous surface in 4D 
despite the presence of self-intersecting surfaces 
in the 3D projection. The color coding on the 3D 
surface denotes the 4D depth from which it was 
projected, with blue near and red far in 4D. 

l Figure 10 shows a family of walker trajectories 
on the one-sided projective plane embedded in 
4D and projected to 3D. The chosen projec;tion 
results in a surface that it is part way between a 
crosscap and Steiner’s Roman surface. Here 4D 
depth is also denoted by color. One-sided surfaces 
present interesting logistical problems for path- 
tracing strategies, but the paths themselves are 
straightforward. 
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7 Conclusion 
In this paper, we have introduced a method for 

visualizing topological data structures by “walking” 
their geometry in a way that we feel has much po- 
tential for enhancing users’ cognitive maps of a space. 
It is uniquely adapted to exploring high-dimensional 
mathematical data structures because of its ability to 
continuously flatten out the local neighborhood into 
the user’s viewing space while maintaining a global 
context. For surfaces that appear self-intersecting in a 
particular projection, the method’s locally-continuous 
traversal of the surface provides information interac- 
tively that is hidden even in a stereographic display. 
One can imagine many other applications, such as re- 
lational databases, 2D scalar fields, 3D scalar fields, 
and lattice models of general relativity. Furthermore, 
the method is ideally adaptable for newly-available 
haptic technologies, since it relies on local continuity 
that embodies an intrinsic model for force-feedback 
and tactile navigation. 
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Figure 8: (a) Families of geodesic paths followed by the space walker algorithm on an ordinary torus in 
3D. (b) The 3D paths on the torus with the surface removed. 

Figure 9: (a) Selected geodesic paths resulting from walking on the spun trefoil knotted sphere embedded 
in 4D. Note how the paths follow the continuous surface in 4D despite the presence of self-intersecting 
surfaces in this 3D projection. (b) The 3D paths with the surface removed. 

Figure 10: (a) Families of geodesic paths on a projective plane embedded in 4D and projected to 3D so 
that it is part way between a crosscap and Steiner’s Roman surface. (b) The 3D paths on the projective 
plane with the surface removed. 

133 

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95) 
1070-2385/95 $10.00 © 1995 IEEE 


