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� Introduction �

In a previous article in Graphics Gems IV� �Geometry for N �Dimensional Graphics�
�Hanson ����	� we described a fundamental family of techniques for dealing with the
geometry of N �dimensional models in the context of graphics applications
 Here� we
build on that framework to look in more detail at the treatment of rotations in N �
dimensional Eucidean space
 In particular� we give a previously overlooked but very
natural N �dimensional extension of the �D rolling ball technique described in an ear�
lier Gem �Hanson ����	� along with the corresponding analog of the Virtual Sphere
method �Chen et al
 ��	
 Next� we discuss a practical method for specifying and
understanding the parameters of N �dimensional rotations in terms of nested hyper�
spheres
 Finally� we give the �D extension of �D quaternion orientation splines along
with some additional details of the �D Arcball method �Shoemake ����	� and a discus�
sion of the problems involved in extending these treatments to N �dimensional rotations
with N � �

For additional details and insights concerning N �dimensional geometry� we refer the

reader to classic sources such as �Sommerville ����Coxeter �����Hocking and Young
�����E�mov and Rozendorn ����	


� The Rolling Ball in N Dimensions �

Basic Intuition from the 2D Rolling Ball. The basic intuitive property of a rolling
ball �or tangent space	 rotation algorithm in any dimension is that it takes a unit vector
�v� � ��� �� � � � � �� �	 pointing purely in the N �th direction and tilts it in�nitesimally into
the remaining �N � �	 dimensions so that it takes the form

�v � ��n sin �� cos �	

where �n � �n�� n�� � � � � nN��� �	 is an arbitrary �N��	�dimensional vector of unit length
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Figure 1. 2D rolling ball.
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Figure 2. 3D rolling ball.

R

y

x

z

r

Figure 3. 4D rolling ball.

Qualitatively speaking� the rolling ball pulls vectors with an unseen N �th compo�
nent in the direction �n of the controller motion� bringing the other components
gradually into view�

2D. The �D case� illustrated in Figure �� is realized simply by applying the rotation
matrix

M� � R� �

�
cos � sin �
� sin � cos �

�
�

�
c s
�s c

�
� ��	

This transforms the vector ��� �	 with only an N �th component into one with a small
�rst component �pulled out
�
Typically� we choose c � cos � � R�D and s � sin � � r�D� where R is the radius

of a rotating disk containing the object to be rotated� r is the distance moved by the
controller �here� a �D mouse	� and D� � R� � r�� as illustrated in Figure �

Implementation Note� For interactive systems� this choice has the particular ad�

vantage that� however rapidly the user moves the controller� �� � �r�D	 � ��� so



Rotations for N-Dimensional Graphics � 3

j�j � ���
 Depending upon the desired interface behavior� an alternative choice would
be to take � � r�R �in radians	
 This may be somewhat slower to calculate� and can
cause large discontinuities in orientation for large controller motion


3D. The �D rolling ball can be derived by replacing Eq
 ��	 by the analogous ���
matrix for �x� z	 rotations and then enclosing this in a conjugate pair of rotations that
move an arbitrary �D mouse displacement �r � �x� y� �	 � �rnx� rny� �	 into the �x� z	�
plane
 With the �D mouse displacement �r depicted in Figure � and

Rxy �

�
� nx �ny �
ny nx �
� � �

�
� � R� �

�
� c � s

� � �
�s � c

�
� �

then we �nd an alternative derivation of �Hanson ����	�

M� � RxyR��Rxy	
�� ��	

�

�
� c� �ny	���� c	 �nxny��� c	 �nxs

�nxny��� c	 c� �nx	���� c	 �nys
�nxs �nys c

�
� ��	

�

�
� �� �nx	

���� c	 �nxny��� c	 �nxs
�nxny��� c	 �� �ny	���� c	 �nys

�nxs �nys c

�
� � ��	

where n�x � n�y � �


4D. The �D case proceeds in two stages� beginning with a �D mouse motion �r �
�x� y� z� �	 � �rnx� rny� rnz� �	 shown in Figure �� we transform �rst to move �ny � nz	
into a pure y�component� and then rotate the entire result so that we end up with only
a pure x�component
 De�ning

Ryz �

�
����

� � � �
� ny

ryz
� nz

ryz
�

� nz
ryz

ny
ryz

�

� � � �

�
���� � Rxy �

�
���

nx �ryz � �
ryz nx � �
� � � �
� � � �

�
��� � R� �

�
���

c � � s
� � � �
� � � �
�s � � c

�
��� �

��	
where r�yz � n�y � n�z � we �nd

M� � RyzRxyR��Rxy	
���Ryz	

��

�

�
���

�� �nx	���� c	 ���� c	nxny ���� c	nxnz snx
���� c	nxny �� �ny	���� c	 ���� c	nynz sny
���� c	nxnz ���� c	nynz �� �nz	���� c	 snz

�snx �sny �snz c

�
��� � ��	

where we used n�x � n�y � n�z � � to get the symmetric form shown
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ND. The obvious extension of this procedure to any dimension is accomplished by hav�
ing the controller interface supply an �N��	�dimensional vector �x � �rn�� rn�� � � � � rnN��	
with �x � �x � r� and �n � �n � � and applying the rotation

MN � RN���N��RN���N�� � � �R���R��R���	
�� � � � �RN���N��	

���RN���N��	
��

�

�
�������

�� �n�	
���� c	 ���� c	n�n� � � � ���� c	nN��n� sn�

���� c	n�n� �� �n�	
���� c	 � � � ���� c	nN��n� sn�











 
 










���� c	n�nN�� ���� c	n�nN�� � � � �� �nN��	���� c	 snN��

�sn� �sn� � � � �snN�� c

�
�������
��	

Recall that the controller input �x � r�n that selects the direction to �pull� also speci�es
the parameters c � cos � � R�D� s � sin � � r�D� with D� � R��r�� or� alternatively�
� � r�R

Figures �� �� and � indicate schematically how the dynamics of the user interface work

� moving the controller causes the portion of the �gure that was initially projected to
a point along the line of sight through the center of rotation to tilt into view as though
following the lead of the control vector


� Controlling Unit Vectors in N Dimensions �

In general the controller motion vector �x may have any magnitude� and this quantity
controls a vector�s rotation according to the chosen format for ��r� R	
 However� there
is a special class of control strategies that may be used for controlling N �dimensional
unit vectors such as N �D lighting vectors� by picking an �N � �	�dimensional point
inside an �N � �	�sphere projected from its N �dimensional embedding space to an
�N � �	�dimensional plane� one can both select and display the unit vector

Figure �a shows a schematic diagram of a method for controlling the �D lighting

vector using a �D mouse� the unit vector in �D has only two degrees of freedom� so that
picking a point within a unit circle determines the direction uniquely �up to the sign
of its view�direction component	
 With a convention for distinguishing vectors with
positive or negative view�direction components �e
g
� solid or gray	� we can uniquely
choose and represent the �D direction
 Control of the vector is straightforward using
the rolling ball� the lighting vector initially points straight out of the screen �up in
the oblique view of Figure �b	� and moving the mouse in the desired direction tilts the
vector to its new orientation� whose projection to the plane of Figure �a is shown in
the gray ellipse in Figure �b
 Rotating past �� degrees moves the vector so its view�
direction component is into the screen
 However� control of the unit vector is even more
natural if one simply tracks the position of the mouse constrained to the interior of
the circle in Figure �a
 Note� To extend this method to the back hemisphere� map
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�a	 �b	 �c	
Figure 4. Schematic diagram comparing (a) selecting 2D point in disk to specify 3D light direction,
shown obliquely in (b), and (c) 3D flying mouse control of a 4D light direction by picking 3D point inside
solid sphere.

the exterior of the circle to points on the back hemisphere out to some second radius
chosen to correspond to the direction opposite to the view direction

The analogous control system for �D lighting� shown in Figure �c� is based on a

similar observation� since the �D normal vector has only � independent degrees of
freedom� choosing an interior point inside a solid sphere determines the vector uniquely
up to the sign of its component in the unseen �th dimension �the ��D view�direction
component�	
 The rest of the control proceeds analogously
 Since we cannot easily
interpret �D oblique views� we do not attempt to draw the �D analog of Figure �b


� Controlling the Remaining Rotation Degrees of Freedom �

There are N�N � �	�� parameters in a general N �dimensional orthogonal rotation
matrix� one parameter for each possible pair of axes specifying a plane of rotation �the
�D intuition about �axes of rotation� does not extend simply to higher dimensions	

The matrix MN in Equation ��	 has only �N � �	 parameters� where are the other
�N � �	�N � �	�� degrees of freedom needed for arbitrary rotations�
As discussed in �Hanson ����	� the non�commutativity of the rotation group allows

us to generate all the other rotations by small circular motions of the controller in
the �N � �	�dimensional subspace of �x
 Moving the controller in circles in the ��� �	�
plane� ��� �	�plane� etc
� of the �N � �	�dimensional controller exactly generates the
missing �N � �	�N � �	�� rotations required to exhaust the full parameter space
 In
mathematical terms� the additional motions are generated by the commutation relations
of the SO�N	 Lie algebra for i� j � �� � � � � N � ��

�RiN � RjN � � 	ijRNN � 	jNRiN � 	iNRjN � 	NNRij

� �Rij �
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The minus sign in the above equation means that clockwise controller motions in the
�i� j	�plane inevitably produce counterclockwise rotations of the object
 Thus the phi�
losophy presented in �Hanson ����	 of achieving the full set of context�free rotation
group transformations with a limited set of controller moves extends perfectly to N �
dimensions
 Implementation Note� In practice� the e�ectiveness of this technique varies
considerably with the application� the size of the counter�rotation experienced may be
very small for parameters that give appropriate spatial motion sensitivity with current
�D mouse technology


Alternative Context Philosophies. The rolling ball interface is a context�free inter�
face which allows the user of a virtual reality context to ignore the absolute position
of the controller and requires no supplementary cursor context display� thus one may
avoid distractions that may disturb stereography and immersive e�ects in a virtual re�
ality environment
 However some applications are better adapted to context�sensitive

interfaces like the Arcball method of �Shoemake ����	 or the Virtual Sphere approach of
�Chen et al
 ��	
 The Virtual Sphere approach in particular can be straightforwardly
extended to higher dimensions by using the rolling ball equations inside a displayed
spatial context �typically a sphere	 and changing over to an �N��	�dimensional rolling
ball outside the context� that is� as the controller approaches and passes the displayed
inner domain context sphere� the rotation action changes to one that leaves the N �th
coordinate �xed but changes the remaining �N � �	 coordinates as though an �N � �	�
dimensional rolling ball controller were attached to the nearest point on the sphere

Similar �exibility can be achieved by using a di�erent controller state to signal a dis�
crete rather than a continuous context switch to the �N � �	�dimensional controller


� Handy Formulas for N -Dimensional Rotations �

For some applications the incremental orientation control methods described above are
not as useful as knowing a single matrix that immediately gives the entireN �dimensional
orientation frame for an object
 We note three ways to represent such an orientation
frame�

Columns are new axes. One straightforward construction simply notes that if the
default coordinate frame is represented by the orthonormal set of unit vectors �x� �
��� �� � � � � �	� �x� � ��� �� �� � � � � �	� � � � � �xN � ��� � � � � �� �	� and the desired axes of the

new �orthonormal	 coordinate frame are known to be �a� � �a
���
� � a

���
� � � � � � a

�N�
� 	� �a�� � � � �

�aN � then the rotation matrix that transforms any vector to that frame just has the new
axes as its columns�

M �
	
�a� �a� � � � �aN
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The reader may verify that the orthonormality constraints give M the required N�N �
�	�� degrees of freedom


Concatenated subplane rotations. The rotations in the plane of a pair of coordinate
axes ��xi� �xj	� i� j � �� � � � � N can be written as

Rij��ij	 �

�
�����������������

� � � � � � � � � � � � � � �






 
 











 
 












 
 






� � � � cos �ij � � � � � � sin �ij � � � �
� � � � � � � � � � � � � � �
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� � � � sin �ij � � � � � cos �ij � � � �






 
 











 
 












 
 






� � � � � � � � � � � � � � �

�
�����������������

and thus theN�N��	�� distinct Rij��ij	 may be concatenated in some order to produce
a rotation matrix such as

M �
Y
i�j

Rij��ij	

with N�N � �	�� degrees of freedom parametrized by f�ijg
 However� since the matri�
ces Rij do not commute� di�erent orderings give di�erent results and it is di�cult to
intuitively understand the global rotation
 In fact� as is the case for �D Euler angles�
one may even repeat some matrices and omit others� and still not miss any degrees of
freedom


Quotient Space Decomposition. A more intuitively controllable decomposition re�
lies on the classic quotient property of the topological spaces of the orthogonal groups
�Helgason ����	�

SO�N	�SO�N � �	 � SN�� � �	

where SK is aK�dimensional topological sphere
 In practical terms� this means that the
N�N��	�� parameters of SO�N	� the mathematical group ofN �dimensional orthogonal
rotations that we are concerned with� can be viewed as a nested family of points on
spheres

Suppose we let Par�SK	 � K denote the number of free parameters describing a point

on a K�sphere �e
g
� the surface of the balloon�like ��sphere S� has two parameters�
azimuth and elevation	
 Then Eq
 �	 can be applied repeatedly to compute the total
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number of parameters in the group as�

Par�SO�N		 � Par�SN��	 � � � �� Par�S�	 � Par�S�	

� �N � �	 � �N � �	 � � � �� � � �

� N�N � �	�� �

An implementable formula may be derived starting with the explicit matrix needed
to rotate a canonical point ��� �� � � � � �� �	 on the unit K�sphere SK to an arbitrary
point �n� with �n � �n � �� on the K�sphere lying in a �K � �	�dimensional subspace of
N �dimensional Euclidean space
 First� we de�ne the matrix

RK�� �

�
�������

n�
r�

n�
r�

�

�n�
r�

n�
r�

�

� � �

 



�

�
�������
�

�
�������

� � �
� n�

r�

r�
r�

� � r�
r�

n�
r�


 
 


�

�
�������
� � �

� � �

�
�������

� � � � � � �






 
 















� � � � nK
rK

rK��
rK

�

� � � � �
rK��
rK

nK
rK

�

� � � � � � �

�
�������
�

�
�������

� � � � � � �






 
 















� � � � � � �
� � � � � nK�� rK
� � � � � �rK nK��

�
�������
�

where �ri	
� �

Pi
j	��nj	

�� so that �rK��	
� � �n � �n � �
 The reader may verify

that this matrix �with an appropriate set of �N � K � �	 trailing ��s down the di�
agonal	 takes the vector with a � in the �K � �	�st position into the unit N �vector
�n � �n�� n�� � � � � nK� nK��� �� � � � � �	
 Note� These matrices can be chosen in many
alternate ways

The fundamental rotation algorithm now requires the user to choose a sequence of

subspaces terminating �nally in a one�parameter rotation in a single plane� that is�

� Choose a point �n on the �N � �	�sphere embedded in N dimensions that de�nes�
via �n � �x � �� an �N � �	�dimensional Euclidean subspace
 The matrix �RN	

��

transforms �n to lie on the N �th axis


� Choose a point �n� on the �N � �	�sphere embedded in the just de�ned �N � �	�
dimensional space� �n� � �x � � de�nes an �N � �	�dimensional Euclidean subspace

�RN��	

�� transforms �n� to lie on the �N � �	�st axis


� Repeat K times� terminating when the current �n � ��� �� �� �� � � � � �	 lies on the �rd
axes� or when K � N � �
 For example� when N � �� one reduction su�ces� for
N � �� two steps are needed� and so on
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The �nal matrix� with exactly N�N � �	�� free parameters� is

MN � RN � � �R�R��R�	
�� � � ��RN	

�� � ��	

where

R� �

�
�������

c �s
s c

�

 
 


�

�
�������

�with c � cos �� s � sin �	 performs the �nal clockwise rotation in the �x�� x�	�plane

In �D� for example�

M���� �n	 �

�
� c� �n�	���� c	 n�n���� c	� sn� n�n���� c	 � sn�
n�n���� c	 � sn� c� �n�	���� c	 n�n���� c	� sn�
n�n���� c	� sn� n�n���� c	 � sn� c� �n�	���� c	

�
� ���	

where �n � �n � �n�	
� � �n�	

� � �n�	
� � � reduces the number of free parameters to the

three Euler angles

In �D� we would let �m � �m�� m�� m�� m�	 be the required �D unit vector and

�n � �n�� n�� n�	 the �D unit vector� and proceed to merge the matrices to compute
M���� �n� �m	� it is probably best to implement this directly using the matrix multiplica�
tions� as the expression analogous to Eq
 ���	 is outrageously long
 We verify that the
three constraints �m � �m � �n � �n � c�� s� � � on the nine free variables �m� �n� and �c� s	
reduce the total number of free parameters to the required six angles


� Interpolating N -Dimensional Orientation Frames �

Given two N �dimensional orientation frames� how can we de�ne a uniform�angular�
velocity interpolation between them� One approach would be to take the hierarchy of
points on the spheres �SN��� � � � � S�� S�	 and apply a constant angular velocity spherical
interpolation or �Slerp� to each�

�n���t	 � Slerp��n�� �n�� t	 � �n�
sin���� t	�	

sin��	
� �n�

sin�t�	

sin��	

where cos � � �n� � �n�
 This formula is simply the result of applying a Gram�Schmidt
decomposition while enforcing unit norm
 Arbitrary splines can be de�ned in each
subspace using this combined with the method of �Schlag ����	 in Gems II

This achieves the goal of smooth appearance� but the solution is neither unique nor

mathematically compelling� since the curve is not guaranteed to be a geodesic in SO�N	
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The arbitrariness of chosen matrix orders in MN can be exploited to give qualitatively
similar but di�erent interpolations

The speci�cation of geodesic curves in SO�N	 is a di�cult problem in general �Barr

et al
 ����	� fortunately� the two most important cases for interactive systems� N � �
and N � �� have elegant solutions using the covering or �Spin� groups
 For SO��	�
geodesic interpolations and suitable corresponding splines are de�nable using Shoe�
make�s quaternion splines �Shoemake ���	� which can be simply formulated using
Slerps on S� as follows� let �q be a ��vector of any length and �n a unit ��vector� so that

q� � cos����	� �q � �n sin����	

is automatically a point on S� due to the constraint �q�	
� � �q�	

� � �q�	
� � �q�	

� � �

Then each point on S� corresponds to an SO��	 rotation matrix

R� �

�
� q�� � q�� � q�� � q�� �q�q� � �q�q� �q�q� � �q�q�

�q�q� � �q�q� q�� � q�� � q�� � q�� �q�q� � �q�q�
�q�q� � �q�q� �q�q� � �q�q� q�� � q�� � q�� � q��

�
�

which the reader can verify reduces exactly to the usual form in Eq
 ���	
 In addition�
two distinct points on S�� �q�� �q	 and ��q����q	� obviously correspond to the same rota�
tion R�
 Slerping q generates sequences of matrices R� that are geodesic interpolations


Quaternions in Four Dimensions. In the four�dimensional case� which we should
really regard as the more fundamental one since it includes the �D transformation as
a special case� we can �nd the induced SO��	 matrix by extending quaternion mul�
tiplication to act on full quaternions v� and not just ��vectors ��pure� quaternions	
v � ��� �V	 in the following way�

�X
�	�

R�
� v

� � q � v� � p�� �

Working out the algebra� we �nd that R� given above is just the degenerate p � q case
of the �D rotation matrix

R� �

�
���

q�p� � q�p� � q�p� � q�p� q�p� � q�p� � q�p� � q�p�
�q�p� � q�p� � q�p� � q�p� q�p� � q�p� � q�p� � q�p�
�q�p� � q�p� � q�p� � q�p� q�p� � q�p� � q�p� � q�p�
�q�p� � q�p� � q�p� � q�p� q�p� � q�p� � q�p� � q�p�

q�p� � q�p� � q�p� � q�p� q�p� � q�p� � q�p� � q�p�
q�p� � p�q� � p�q� � q�p� q�p� � p�q� � p�q� � q�p�
q�p� � q�p� � q�p� � q�p� q�p� � q�p� � q�p� � q�p�
q�p� � q�p� � q�p� � p�q� q�p� � q�p� � q�p� � q�p�

�
��� ���	
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We may take this form and plug in

p� � cos�
��	� �p � �m sin�
��	

to get a new form of the �D orthogonal rotation matrix parameterized in terms of two

separate ��sphere coordinates �

R� �

�

�

�
����

C� � C� � �m � �n�C� � C�	
�m�

��C� �m�

��C� �m�
� S� �m�

� S�
�m�

��C� �m�

��C� �m�
� S� �m�

� S�
�m�

��C� �m�

��C� �m�
� S� �m�

� S�

�m�

��C� �m�

��C� �m�
� S� �m�

� S�
C� � C� � �m�n� �m�n� �m�n�	�C� � C�	

m�
��C� �m�

��C� �m�

� S� �m�
� S�

m�
��C� �m�

��C� �m�

� S� �m�
� S�

�m�
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�m�
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��C� �m�
� S� �m�

� S�
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��C� �m�
��C� �m�

� S� �m�
� S�
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��C� �m�

��C� �m�

� S� �m�
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C� � C� � ��m�n� �m�n� �m�n�	�C� � C�	

�
�������	

where C� � cos �
��
��	� S� � sin �

��
��	� m�

i � �mi�ni	� and m�

ij � �minj�mjni	

Shoemake�style interpolation between two distinct �D frames is now achieved by

applying the desired Slerp�based interpolation method independently to a set of coor�
dinates q�t	 on one three�sphere� and to a separate set of coordinates p�t	 on another

The resulting matrix R��t	 gives geodesic interpolations for simple Slerps� and smooth
interpolations based on in�nitestimal geodesic components when the spline methods of
�Schlag ����	 or �Barr et al
 ����	 are used


Controls. As pointed out in �Shoemake ����	� the Arcball controller can be adapted
with complete faithfulness of spirit to the �D case� since one can pick two points in
a three�sphere to specify an initial �D frame� and then pick two more points in the
three�sphere to de�ne the current �D frame
 Note that Eq
 ���	 gives the complete
�D rotation formula
 Alternately� one can replace the �D rolling ball or virtual sphere
controls described at the beginning by a pair �or more	 of �D controllers as noted in
�Hanson ����	
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Higher Dimensions. The spin groups for dimensions higher than four contain highly
suggestive subgroups that are isomorphic to the quaternion SU��	 algebra that we
have used here for SO��	 and for SO��	� whose covering group surprisingly decomposes
into a direct product of two quaternions
 However� the higher dimensional covering
groups unfortunately consist of much more complex topological spaces
 Our preliminary
investigations of these spaces suggest that there should exist methods for specifying
higher�dimensional geodesic interpolations and splines that are not radically di�erent
from dimensions three and four� but this is a topic for future work
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