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} Introduction }

Textbook graphics treatments commonly use special notations for the geometry of 2 and 3
dimensions that are not obviously generalizable to higher dimensions. Here we collect a family
of geometric formulas frequently used in graphics that are easily extendible toN dimensions
as well as being helpful alternatives to standard 2D and 3D notations.

What use are such formulas? In mathematical visualization, which commonly must deal
with higher dimensions — 4 real dimensions, 2 complex dimensions, etc. — the utility is self-
evident (see, e.g., (Banchoff 1990, Francis 1987, Hanson and Heng 1992b, Phillips et al. 1993)).
The visualization of statistical data also frequently utilizes techniques ofN -dimensional display
(see, e.g., (Noll 1967, Feiner and Beshers 1990a, Feiner and Beshers 1990b, Brun et al. 1989,
Hanson and Heng 1992a)). We hope that publicizing some of the basic techniques will encour-
age further exploitation ofN -dimensional graphics in scientific visualization problems.

We classify the formulas we present into the following categories: basic notation and the
N -simplex; rotation formulas; imaging inN -dimensions;N -dimensional hyperplanes and vol-
umes;N -dimensional cross-products and normals; clipping formulas; the point-hyperplane dis-
tance; barycentric coordinates and parametric hyperplanes;N -dimensional ray-tracing meth-
ods. An appendix collects a set of obscure Levi-Civita symbol techniques for computing with
determinants. For additional details and insights, we refer the reader to classic sources such as
(Sommerville 1958, Coxeter 1991, Hocking and Young 1961) and (Banchoff and Werner 1983,
Efimov and Rozendorn 1975).

} Definitions — What is a Simplex, Anyway? }

In a nutshell, anN -simplex is a set of(N + 1) points that together specify the simplest non-
vanishingN -dimensional volume element (e.g., two points delimit a line segment in 1D, 3
points a triangle in 2D, 4 points a tetrahedron in 3D, etc.). From a mathematical point of view,

149
Copyright c
 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-336156-7



150 }

1 2 3 4
Figure 1. 2D projections of simplexes with dimension 1–4. AnN -simplex is defined by (N+1) linearly
independent points and generalizes the concept of a line segment or a triangular surface patch.

there are lots of differentN -dimensional spaces: here we will restrict ourselves to ordinary flat,
real Euclidean spaces ofN dimensions with global orthogonal coordinates that we can write as

~x = (x; y; z; : : : ; w)

or more pedantically as

~x = (x(1); x(2); x(3); : : : ; x(N)) :

We will use the first, less cumbersome, notation whenever it seems clearer.
Our first type of object inN -dimensions, the0-dimensionalpoint ~x, may be thought of as

a vector from the origin to the designated set of coordinate values. The next type of object is
the 1-dimensionalline, which is determined by giving two points(~x0; ~x1); the line segment
from ~x0 to ~x1 is called a1-simplex. If we now take three noncollinear points(~x0; ~x1; ~x2), these
uniquely specify aplane; the triangular area delineated by these points is a2-simplex. A 3-
simplex is a solid tetrahedron formed by a set of four noncoplanar points, and so on. In figure
1, we show schematic diagrams of the first few simplexes projected to 2D.

Starting with the(N + 1) points(~x0; ~x1; ~x2; : : : ; ~xN ) defining a simplex, one then connects
all possible pairs of points to form edges, all possible triples to form faces, and so on, resulting
in the structure of component “parts” given in table 1. The next higher object uses its predeces-
sor as a building block: a triangular face is built from three edges, a tetrahedron is built from
four triangular faces, a 4-simplex is built from 5 tetrahedra.

The general idea should now be clear:(N + 1) linearly independent points define ahy-
perplaneof dimensionN and specify the boundaries of anN -dimensional coordinate patch
comprising anN -simplex(Hocking and Young 1961). Just as the surfaces modeling a 3D ob-
ject may be broken up (ortessellated) into triangular patches,N -dimensional objects may be
tessellated into(N � 1)-dimensional simplexes that define their geometry.
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Table 1. Numbers of component structures making up an N -simplex. For example, in 2D, the basic
simplex is the triangle with 3 points, 3 edges, and one 2D face.

Dimension of Space

Type of Simplex N = 1 N = 2 N = 3 N = 4 . . . N

Points (0D) 2 3 4 5 . . .

�
N + 1

1

�
= N + 1

Edges (1D simplex) 1 3 6 10 . . .

�
N + 1

2

�

Faces (2D simplex) 0 1 4 10 . . .

�
N + 1

3

�

Volumes (3D simplex) 0 1 5 . . .

�
N + 1

4

�

...
...

...
...

...
.. .

...

(N � 2)D simplex . . .

�
N + 1

N � 1

�

(N � 1)D simplex . . .

�
N + 1

N

�
= N + 1

ND simplex 1 . . .

�
N + 1

N + 1

�
= 1

} Rotations }

In N Euclidean dimensions, there are
�
N
2

�
= N(N � 1)=2 degrees of rotational freedom

corresponding to the free parameters of the groupSO(N). In 2D, that means we only have one
rotational degree of freedom given by the angle used to mix thex andy coordinates. In 3D,
there are 3 parameters, which can be thought of as corresponding either to three Euler angles
or to the three independent quaternion coordinates that remain when we represent rotations in
terms of unit quaternions. In 4D, there are 6 degrees of freedom, and the familiar 3D picture of
“rotating about an axis” is no longer valid; each rotation leaves an entire plane fixed, not just
one axis.

General rotations inN dimensions may be viewed as a sequence of elementary rotations.
Each elementary rotation acts in the plane of a particular pair, say(i; j), of coordinates, leaving
an(N � 2)-dimensional subspace unchanged; we may write any such rotation in the form

x0(i) = x(i) cos � � x(j) sin �

x0(j) = �x(i) sin � + x(j) cos �

x0(k) = x(k) (k 6= i; j) :

It is important to remember thatorder matterswhen doing a sequence of nested rotations; for
example, two sequences of small 3D rotations, one consisting of a(2; 3)-plane rotation followed
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Figure 2. Schematic view of the projection process for an N -dimensional pinhole camera.

by a(3; 1)-plane rotation, and the other with the order reversed, will differ by a rotation in the
(1; 2)-plane. (See any standard reference such as (Edmonds 1957).)

We then have a number of options for controlling rotations inN -dimensional Euclidean
space. Among these are the following:

� (i; j)-space pairs.A brute-force choice would be just to pick a sequence of(i; j) planes
in which to rotate using a series of matrix multiplications.

� (i; j; k)-space triples. A more interesting choice for an interactive system is to provide
the user with a family of(i; j; k) triples having a 2D controller like a mouse coupled to
two of the degrees of freedom, and having the 3rd degree of freedom accessible in some
other way — with a different button, from context using the “virtual sphere” algorithm
of (Chen et al. 1988), or implicitly using a context-free method like the “rolling-ball” al-
gorithm (Hanson 1992). The simplest example is(1; 2; 3) in 3D, with the mouse coupled
to rotations about thêx-axis (2; 3) and theŷ-axis (3; 1), giving ẑ-axis (1; 2) rotations as
a side-effect. In 4D, one would have four copies of such a controller,(1; 2; 3), (2; 3; 4),
(3; 1; 4), and(1; 2; 4), or two copies exploiting the decomposition ofSO(4) infinitesimal

rotations into two independent copies of ordinary 3D rotations. InN dimensions,
�
N
3

�

sets of these controllers (far too many whenN is large!) could in principle be used.

} N -dimensional Imaging }

The general concept of an “image” is a projection of a point~x = (x(1); x(2); : : : ; x(N)) from
dimensionN to a point~u of dimension(N � 1) along a line. That is, the image of a 2D world
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Figure 3. Qualitative results of perspective projection of a wire-frame square, a cube, and a hypercube
in 2D, 3D, and 4D, respectively.

is a projection to 1D film, 3D worlds project to 2D film, 4D worlds project to 3D film, and so
on. Since we can rotate our coordinate system as we please, we lose no generality if we assume
this projection is along theN -th coordinate axis. An orthographic or parallel projection results
if we simply throw out theN -th coordinatex(N) of each point. A pinhole camera perspective
projection (see figure 2) results when, in addition, we scale the first(N � 1) coordinates by
dividing by (dN � x(N))=fN , wheredN is the distance along the positiveN -th axis to the
camera focal point andfN is the focal length. One may need to project this first image to
successively lower dimensions to make it displayable on a 2D graphics screen; thus a hierarchy
of up to(N � 2) parameter setsf(fN ; dN ); : : : ; (f3; d3)g may be introduced if desired.

In the familiar 3D case, we replace a vertex(x; y; z) of an object by the 2D coordinates
(xf=(d� z); yf=(d � z)), so that more distant objects (in the negativez direction) are shrunk
in the 2D image. In 4D, entire solid objects are shrunk, thus giving rise to the familiar wire-
frame hypercube shown in figure 3 that has the more distant cubic hyperfaces actually lying
insidethe projection of the nearest cube.

As we will see a bit later when we discuss normals and cross-products, the usual shading
approaches allow only(N � 1)-manifolds to interact uniquely with a light ray. That is, the
generalization of a viewable “object” toN dimensions is a manifold of dimension(N � 1) that
bounds anN -dimensional volume; only this boundary is visible in the projected image if the
object is opaque. For example, curves in 2D reflect light toward the focal point to form images
on a “film line,” surface patches in 3D form area images on a 2D film plane, volume patches in
4D form volume images in the 3D film volume, etc. The image of this(N � 1)-dimensional
patch may be ray traced or scan converted. Objects are typically represented as tessellations
which consist of a collection of(N�1)-dimensional simplexes; for example, triangular surface
patches form models of the visible parts of 3D objects, while tetrahedral volumes form models
of the visible parts of 4D objects. (An interesting side issue is how to display meaningful
illuminated images of lower dimensional manifolds — lines in 3D, surfaces and lines in 4D,
etc.; see (Hanson and Heng 1992b) for further discussion.)
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Figure 4. The line from ~x0 to ~x1 whose points obey the equation n̂ � (~x� ~x0) = 0. The constant c is
just n̂ � ~x0.

} Hyperplanes and Volume Formulas }

Implicit Equation of a Hyperplane. In 2D, a special role is played by the single linear
equation defining a line; in 3D, the analogous single linear equation defines a plane. InN -
dimensions, the following implicit linear equation describes a set of points belonging to an
(N � 1)-dimensional hyperplane:

n̂ � (~x� ~x0) = 0 : (1)

Here~x0 is any point on the hyperplane and conventionallyn̂ � n̂ = 1. The geometric interpre-
tation of this equation in 2D is the 1D line shown in figure 4. In general,n̂ is a normalized unit
vector that is perpendicular to the hyperplane, andn̂ � ~x0 = c is simply the (signed) distance
from the origin to the hyperplane. The point~xc = cn̂ is the point on the hyperplane closest to
the origin; the point closest to some other point~P is ~xc = ~P + n̂fn̂ � (~x0 � ~P )g.

Simplex Volumes and Subvolumes. The volume (by which we always mean theN -
dimensional hypervolume) of anN -simplex is determined in a natural way by a determinant of
its (N + 1) defining points (Sommerville 1958):

VN =
1

N !
det

2
6666664

x1 x2 � � � xN x0
y1 y2 � � � yN y0
...

...
. . .

...
...

w1 w2 � � � wN w0

1 1 � � � 1 1

3
7777775
: (2)
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The bottom row of 1’s in eq. (2) corresponds to the familiar homogeneous coordinate used with
4 � 4 projection matrices in 3D graphics. We will attempt to convince the reader in a mo-
ment that disastrous sign inconsistencies result unless the global origin~x0 of theN -simplex’s
coordinate system is in the last column as shown.

The expression for the volume in eq. (2) issigned, which means that it implicitly defines the
N -dimensional generalization of theRight-Hand Ruletypically adopted to determine triangle
orientation in 3D geometry. For example, we observe that if~x0 = (0; 0; : : : ; 0) is the origin
and we choose~x1 = (1; 0; : : : ; 0), ~x2 = (0; 1; 0; : : : ; 0), and so on, the value of the determinant
is +1. If we had put~x0 in the first row in eq. (2), the sign would alternate from dimension to
dimension! We will exploit this signed determinant shortly to defineN -dimensional normal
vectors, and again later to formulateN -dimensional clipping.

First, we use the standard column-subtraction identity for determinants to reduce the dimen-
sion of the determinant in eq. (2) by one, expressing it in a form that is manifestlytranslation-
invariant:

VN =
1

N !
det

2
6666664

(x1 � x0) (x2 � x0) � � � (xN � x0) x0
(y1 � y0) (y2 � y0) � � � (yN � y0) y0

...
...

. . .
...

...
(w1 � w0) (w2 � w0) � � � (wN � w0) w0

0 0 � � � 0 1

3
7777775

=
1

N !
det

2
6664

(x1 � x0) (x2 � x0) � � � (xN � x0)
(y1 � y0) (y2 � y0) � � � (yN � y0)

...
...

. . .
...

(w1 � w0) (w2 � w0) � � � (wN � w0)

3
7775 : (3)

These formulas forVN can be intuitively understood as generalizations of the familiar 3D triple
scalar product,

[(~x1 � ~x0)� (~x2 � ~x0)] � (~x3 � ~x0) ;

which gives the volume of the parallelepiped with sides((~x1� ~x0); (~x2� ~x0); (~x3� ~x0)). The
corresponding tetrahedron with vertices at the points(~x0; ~x1; ~x2; ~x3) has one-sixth the volume
of the parallelepiped. The analogous observation inN dimensions is that the factor of1=N ! in
eq. (3) is the proportionality factor between the volume of theN -simplex and the volume of
the parallelepiped whose edges are given by the matrix columns.

Invariance. The volume determinant is invariant under rotations. To see this explicitly, let
jXj be the matrix in eq. (3) and letjRj be any orthonormal rotation matrix (i.e., one whose
columns are of unit length and are mutually perpendicular, with unit determinant); then, letting
jX 0j = jRj � jXj, we find

det jX 0j = det(jRj � jXj) = det jRjdet jXj = det jXj = N !VN ;
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since the determinant of a product is the product of the determinants.
A manifestly translationand rotation invariant form for the square of the volume element is

(VN )2 =

�
1

N !

�2
det jXt �Xj

=

�
1

N !

�2
det

2
6664

v(1; 1) v(1; 2) � � � v(1; N)
v(2; 1) v(2; 2) � � � v(2; N)

...
...

. . .
...

v(N; 1) v(N; 2) � � � v(N;N)

3
7775 ; (4)

wherev(i; j) = (~xi � ~x0) � (~xj � ~x0).
This invariant form is not presented as an idle observation; we now exploit it to show how to

construct volume forms forsubspacesofN -dimensional spaces, for which the defining vertices
of the desired simplex cannot form square matrices!

The trick here is to note that whileVK , for K < N , is not expressible in terms of a square
matrix of coordinate differences the wayVN is, we may writeVK as the determinant of a square
matrix in one particular coordinate frame, and multiply this matrix by its transpose to get a form
like eq. 4, which does not depend on the frame. Since the form is invariant, we can transform
back to an arbitrary frame to find the following expression forVK in terms of itsK basis vectors
(~xk � ~x0) of dimensionN :

(VK)2 =

�
1

K!

�2

det

2
6664

~x1 � ~x0
~x2 � ~x0

...
~xK � ~x0

3
7775 �

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xK � ~x0

�

=

�
1

K!

�2

det

2
6664

v(1; 1) v(1; 2) � � � v(1;K)
v(2; 1) v(2; 2) � � � v(2;K)

...
...

. . .
...

v(K; 1) v(K; 2) � � � v(K;K)

3
7775 : (5)

That is, to compute a volume of dimensionK in N dimensions, find theK independent basis
vectors spanning the subspace, and form a squareK � K matrix of dot products related to
V 2
K by multiplying theN � K matrix of column vectors by its transpose on the left. When
K = 1, we see that we have simply the squared Euclidean distance inN dimensions,v(1; 1) =
(~x1 � ~x0) � (~x1 � ~x0).

} Normals and the Cross-Product }

A frequently asked question inN -dimensional geometry concerns how to define a normal vec-
tor as a cross-product of edges for use in geometry and shading calculations. To begin with,
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you must have an(N � 1)-manifold (a line in 2D, surface in 3D, volume in 4D) in order to
have a well-defined normalvector; otherwise, you may have a normalspace(a plane, a vol-
ume, etc.). Suppose you have an ordered set of(N � 1) edge vectors(~xk � ~x0) tangent to this
(N � 1)-manifold at a point~x0; typically these vectors are the edges of one of the(N � 1)-
simplexes in the tessellation. Then the normal~N at the point is ageneralized cross-product
whose components are cofactors of the last column in the following (notationally abusive!)
determinant:

~N = Nxx̂+Nyŷ +Nz ẑ+ � � � +Nwŵ

= det

2
6666664

(x1 � x0) (x2 � x0) � � � (xN�1 � x0) x̂

(y1 � y0) (y2 � y0) � � � (yN�1 � y0) ŷ

(z1 � z0) (z2 � z0) � � � (zN�1 � z0) ẑ

...
...

. . .
...

...
(w1 � w0) (w2 � w0) � � � (wN�1 � w0) ŵ

3
7777775
: (6)

As usual, we can normalize usingk ~Nk, the square root of the sum of the squares of the co-
factors, to form the normalized normaln̂ = ~N=k ~Nk. A quick check shows that if the vectors
(~xk � ~x0) are assigned to the first(N � 1) coordinate axes in order, this normal vector points
in the direction of the positiveN -th axis. For example, in 2D, we want the normal to the vector
(x1�x0; y1�y0) to be ~N = (�(y1�y0); (x1�x0)) so that a vector purely in thex direction
has a normal in the positivey direction; placing the column of unit vectors(x̂; ŷ; ẑ; : : : ; ŵ) in
the first column fails this test. The 3D case can be done either way because an even number
of columns are crossed! It is tempting to move the column of unit vectors to the first column
instead of the last, but one must resist: the choice given here is the one to use for consistent
behavior across different dimensions!

The qualitative interpretation of eq. (6) can now be summarized as follows:

� 2D: Given two points(~x0; ~x1) determining a line in 2D, the cross-product of asingle vector
is the normal to the line.

� 3D: Given three points defining a plane in 3D, the cross-product of the two 3D vectors
outlining the resulting triangle is the familiar formula(~x1�~x0)� (~x2�~x0) for the normal
~N to the plane.

� 4D: In four dimensions, we use four points to construct the three vectors(~x1 � ~x0); (~x2 �
~x0); (~x3 � ~x0); the cross product of these vectors is afour-vector that is perpendicular
to each vector and thus is interpretable as the normal to the tetrahedron specified by the
original four points.

From this point on, the relationship to standard graphics computations should be evident:
If, in N -dimensional space, the(N � 1)-manifold to be rendered is tessellated into(N � 1)-
simplexes, use eq. (6) to compute the normal of each simplex for flat shading. For interpolated
shading, compute the normal at each vertex (e.g., by averaging the normals of all neighboring
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simplexes and normalizing or by computing the gradient of an implicit function specifying the
vertex). Compute the intensity at a point for which you know the normal by taking the dot
product of the appropriate illumination vector with the normal (e.g, by plugging it into the last
column of eq. (6)). If appropriate, set the dot product to zero if it is negative (pointing away
from the light). Back face culling, to avoid rendering simplexes pointing away from the camera,
is accomplished in exactly the same way: plug the camera view vector into the last column of
eq. (6) and discard the simplex if the result is negative.

Dot Products of Cross Products. We conclude this section with the remark that some-
times computing the dot product between a normal and a simple vector is not enough; if we
need to know the relative orientation of two face normals (e.g., to determine whether a finer
tessellation is required), we must compute the dot products of normals. In principle, this can
be done by brute force directly from eq. (6). Here we note an alternative formulation that is the
N -dimensional generalization of the 3D formula for the decomposition of the dot product of
two cross products; in the 3D case, if one normal is given by the cross product~X = ~A� ~B and
the other by~Y = ~C � ~D, we can write

~X � ~Y = ( ~A� ~B) � ( ~C � ~D) = ( ~A � ~C)( ~B � ~D)� ( ~A � ~D)( ~B � ~C) : (7)

We note that the degenerate case for the square of a cross product is

( ~A� ~B) � ( ~A� ~B) = ( ~A � ~A)( ~B � ~B)� ( ~A � ~B)2 ;

which, if � is the angle between~A and~B, reduces to the identityk ~Ak2k ~Bk2 sin2 � = k ~Ak2k ~Bk2�

k ~Ak2k ~Bk2 cos2 �.
The generalization of this expression toN dimensions can be derived from the product of

two Levi-Civita symbols (see the Appendix). If~X and~Y are two cross products formed from
the sets of vectors~x1; ~x2; : : : ; ~xN�1 and~y1; ~y2; : : : ; ~yN�1, then

~X � ~Y =
X

all indices
x
(i1)
1 x

(i2)
2 : : : x

(iN�1)
N�1 y

(j1)
1 y

(j2)
2 : : : y

(jN�1)
N�1

det

2
6664

�i1j1 �i1j2 � � � �i1jN�1
�i2j1 �i2j2 � � � �i2jN�1

...
...

. . .
...

�iN�1j1 �iN�1j2 � � � �iN�1jN�1

3
7775 ; (8)

where the Kronecker delta,�ij , is defined as

�ij = 1 i = j
= 0 i 6= j :

It is easy to verify that forN = 3 this reduces to eq. (7).
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More remarkable, however, is the fact that this formula shows that the square magnitude of
the normal ~N of a hyperplane given in eq. (6) is thesubvolumeof the corresponding paral-
lelepiped specified by eq. (5). That is, not only does thedirectionof eq. (6) have an important
geometric meaning with respect to the(N � 1)-simplex specifying the hyperplane, but so does
its magnitude! We find

~N � ~N = det

2
6664

v(1; 1) v(1; 2) � � � v(1; N � 1)
v(2; 1) v(2; 2) � � � v(2; N � 1)

...
...

. . .
...

v(N � 1; 1) v(N � 1; 2) � � � v(N � 1; N � 1)

3
7775 = ((N � 1)! VN�1)

2 :

} Clipping Tests in N Dimensions }

Now we can exploit the properties of the volume formula to define clipping (“which side”) tests
in any dimension. If we replace(~xN � ~x0) by (~x � ~x0), eq. (3) becomes afunctionVN (~x).
Furthermore, this function has the remarkable property that it is an alternative form for the
hyperplane equation, eq. (1), whenVN (~x) = 0.

We can furthermore determineon which sideof the(N � 1)-dimensional hyperplane deter-
mined by(~x0; ~x1; : : : ; ~xN�1) an arbitrary point~x lies simply by checking the sign ofVN (~x).
That is,

� VN (~x) = 0 ) the point~x lies on a hyperplane and solves an equation of the form eq. (1).
� VN (~x) > 0 ) the point~x lies above the hyperplane.
� VN (~x) < 0 ) the point~x lies below the hyperplane.

Note: The special caseVN = 0 is of course just the general criterion for discoveringlinear
dependenceamong a set of(N +1) vector variables. This has the following elegant geometric
interpretation: In 2D, we use the formula to compute the area of the triangle formed by 3
points(~x0; ~x1; ~x); if the area vanishes, the 3 points lie on a single line. In 3D, if the volume
of the tetrahedron formed by 4 points(~x0; ~x1; ~x2; ~x) vanishes, all 4 points are coplanar, and
so on. VanishingN -volume means the points lie in a hyperplane of dimension no greater than
(N � 1).

These relationships between the sign ofVN (~x) and the relative position of~x are precisely
those we are accustomed to examining when weclip vectors (e.g., edges of a triangle) to lie on
one side of a plane in a viewing frustum or within a projected viewing rectangle. For example,
a 2D clipping line defined by the vector~x1 � ~x0 = (x1 � x0; y1 � y0) has a right-handed
(unnormalized) normal~N = (�(y1 � y0); (x1 � x0)). Writing the 2D volume as the areaA,
eq. (3) becomes

A(~x) =
1

2
det

�
(x1 � x0) (x� x0)
(y1 � y0) (y � y0)

�
=

1

2

h
~N � (~x� ~x0)

i
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Figure 5. In 2D, the line through ~x0 to ~x1 defined by n̂ � (~x � ~x0) = 0 partitions the plane into two
regions, one where this expression is positive (e.g., for~x+) and another where it is negative (e.g., for ~x�).
In 3D, the analogous procedure uses the plane defined by (~x0; ~x1; ~x2) to divide 3-space into two half
spaces. The same pictures serve to show how the distance h from a point to a hyperplane is computable
from the ratio of the simplex volume to the lower-dimensional volume of its base, i.e., 2A=L or 3V=A.

for some arbitrary point~x, and so we recover the form of eq. (1) as

n̂ � (~x� ~x0) =
2A

k~x1 � ~x0k
;

wheren̂ = ~N=k ~Nk; the relationship of~x to the clipping line is determined by the sign.
In 3D, when clipping a line against a plane, everything reduces to the traditional form, namely

the dot product between a 3D cross-product and a vector from a point~x0 in the clipping plane
to the point~x being clipped. The normal to the plane through(~x0; ~x1; ~x2) is

~N = (~x1 � ~x0)� (~x2 � ~x0) (9)

=

�
+det

�
(y1 � y0) (y2 � y0)
(z1 � z0) (z2 � z0)

�
;

�det

�
(x1 � x0) (x2 � x0)
(z1 � z0) (z2 � z0)

�
;+det

�
(x1 � x0) (x2 � x0)
(y1 � y0) (y2 � y0)

��
;

and we again find the same general form,

n̂ � (~x� ~x0) =
6V

k ~Nk
;

whose sign determines where~x falls. Figure 5 summarizes the relationship of the signed vol-
ume to the clipping task in 2D and 3D.
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Hyperplanes for clipping applications in any dimension are therefore easily defined and
checked by choosing~xN to be the test point~x and checking the sign of eq. (3). If~N and a
point ~x0 are easy to determine directly, then the procedure reduces to checking the sign of the
left hand side of eq. (1).

The final step is to find the desired point on the truncated, clipped line. Since the clipped
form of a triangle, tetrahedron, etc., can be determined from the clipped forms of the component
lines, we need only consider the point at which a line straddling the clipping hyperplane inter-
sects this hyperplane. If the line to be clipped is given parametrically as~x(t) = ~xa+t(~xb�~xa),
where~xa and~xb are on opposite sides of the clipping hyperplane so0 � t � 1, then we simply
plug~x(t) into V (~x) = 0 and solve fort:

t =
det

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~x0

�
det

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~xb

� =
n̂ � (~xa � ~x0)

n̂ � (~xa � ~xb)
: (10)

Heren̂ is of course just the normal to the clipping hyperplane, discussed in detail above.

} Point-Hyperplane Distance }

The general formula for the volume of a parallelepiped is the product of the base and the height,
W = Bh. In N dimensions, if we takeWN = N !VN to be the volume of the parallelepiped
with edges(~x1 � ~x0); (~x2 � ~x0); : : : ; (~xN�1 � ~x0); (~x� ~x0), this generalizes to

WN = hWN�1 ;

whereh is the perpendicular distance from the point~x to the(N�1)-dimensional parallelepiped
with volumeWN�1 = (N � 1)!VN�1 and edges(~x1 � ~x0); (~x2 � ~x0); : : : ; (~xN�1 � ~x0). We
may thus immediately compute the distanceh from a point to a hyperplane as

h =
WN

WN�1
=

N !VN
(N � 1)!VN�1

=
N VN
VN�1

: (11)

Note! Here one must use the trick of eq. 4 to expressWN�1 in terms of the square root of a
square determinant given by the product of two non-square matrices.

Thus in 2D, the area of a triangle(~x0; ~x1; ~x) is

A = V2 =
1

2
W2 =

1

2
det

�
(x1 � x0) (x� x0)
(y1 � y0) (y � y0)

�

and the length-squared of the base isL2 = (~x1 � ~x0) � (~x1 � ~x0) so, withA = (1=2)hL,
the height becomesh = 2A=L = W2=L = W2=W1. In 3D, the volume of the tetrahedron
(~x0; ~x1; ~x2; ~x) is V = V3 = (1=6)W3 and the areaA = (1=2)W2 of the triangular base may be
written

(2A)2 = (W2)
2 = det

�
(~x1 � ~x0) � (~x1 � ~x0) (~x1 � ~x0) � (~x2 � ~x0)
(~x2 � ~x0) � (~x1 � ~x0) (~x2 � ~x0) � (~x2 � ~x0)

�
:
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Figure 6. Barycentric coordinates in N dimensions.

We knowV = (1=3)hA, and soh = 3V=A = 6V=2A = W3=W2. (See figure 5.) We note
for reference that, as we showed earlier, the base(N � 1)-volume is related to its normal by
~N � ~N = W 2

N�1.
Here we also typically need to answer one last question, namelywhereis the point~p on the

base hyperplane closest to the point~x whose distanceh we just computed? This can be found
by parameterizing the line from~x to the base hyperplane along the normaln̂ to the hyperplane
as~x(t) = ~x+ tn̂, writing the implicit equation for the hyperplane asn̂ � (~x(t)� ~x0) = 0, and
solving for the mutual solutiontp = n̂ � (~x0 � ~x) = �h. Thus

~p = ~x+ n̂(n̂ � (~x0 � ~x))

= ~x� hn̂ :

} Barycentric Coordinates }

Barycentric coordinates (see, e.g., (Hocking and Young 1961), chapter 5) are a practical way to
parameterize lines, surfaces, etc., for applications that must compute where various geometric
objects intersect. In practice, the barycentric coordinate method reduces to specifying two
points (~x0; ~x1) on a line, three points(~x0; ~x1; ~x2) on a plane, four points(~x0; ~x1; ~x2; ~x3) in
a volume, etc., and parameterizing the line segment, enclosed triangular area, and enclosed
tetrahedral volume, etc., respectively, by

~x(t) = ~x0 + t(~x1 � ~x0) (12)

~x(t1; t2) = ~x0 + t1(~x1 � ~x0) + t2(~x2 � ~x0) (13)

~x(t1; t2; t3) = ~x0 + t1(~x1 � ~x0) + t2(~x2 � ~x0) + t3(~x3 � ~x0) (14)

� � � :
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The line and plane geometries are shown in figure 6. The interpolated point then lies within the
N -simplex defined by the specified points provided

0 � t � 1

0 � t1 � 1; 0 � t2 � 1; 0 � (1� t1 � t2) � 1

0 � t1 � 1; 0 � t2 � 1; 0 � t3 � 1; 0 � (1� t1 � t2 � t3) � 1

: : :

Center of What? However, this is really only half the story of barycentric coordinates. For
the other half, we seek a geometric interpretation of the parametersti when we aregiven the
value of~x.

First let us look at the simple case when~x lies on the line segment between~x0 and~x1.
Solving eq. (12) fort directly gives

t =
(~x� ~x0) � (~x1 � ~x0)

(~x1 � ~x0) � (~x1 � ~x0)
:

That is,t is the fraction of the distance that~x has traveled along the line, theratio between the
length from~x0 to ~x and the total length. But, since~x1 � ~x0 = ~x1 � ~x+ ~x� ~x0, we easily see
that an alternative parameterization would be to taket1 = t and

t0 =
(~x1 � ~x) � (~x1 � ~x0)

(~x1 � ~x0) � (~x1 � ~x0)

so that1 = t0 + t1 and eq. (12) for~x becomes

~x(t0; t1) = t0~x0 + t1~x1 :

If t0 = 1, then the entire fraction of the distance from~x1 to ~x is assigned tot0 and~x = ~x0. If
t1 = 1, then the entire fraction of the distance from~x0 to ~x is assigned tot1 and~x = ~x1.

Next, suppose we know~x in a plane and wish to compute its barycentric coordinates by
solving eq. (13) for(t1; t2). Once we realize that(~x1�~x0) and(~x2�~x0) form the basis for an
affine coordinate system for the plane specified by(~x0; ~x1; ~x2) in any dimension, we see that
we may measure the relative barycentric coordinates by taking the dot product with each basis
vector:

(~x� ~x0) � (~x1 � ~x0) = t1k~x1 � ~x0k
2 + t2(~x2 � ~x0) � (~x1 � ~x0)

(~x� ~x0) � (~x2 � ~x0) = t1(~x1 � ~x0) � (~x2 � ~x0) + t2k~x2 � ~x0k
2 :

Extending the previously introduced abbreviation to the formv(x; j) = (~x � ~x0) � (~xj � ~x0)
and solving this pair of equations by Cramer’s rule, we get

t1 =

det

�
v(x; 1) v(1; 2)
v(x; 2) v(2; 2)

�

det

�
v(1; 1) v(1; 2)
v(2; 1) v(2; 2)

�
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t2 =

det

�
v(1; 1) v(x; 1)
v(1; 2) v(x; 2)

�

det

�
v(1; 1) v(1; 2)
v(2; 1) v(2; 2)

� :

The denominator is clearly proportional to thesquareof the area of the triangle(~x0; ~x1; ~x2),
and the numerators have the form of squared areas as well. InN dimensions, the numerators
reduce to determinants of products of non-square matrices, and so maynot be expressed as
two separate determinants! However, if we transform to a coordinate system that contains the
triangle within the plane of two coordinate axes, or ifN = 2, an effectively square matrix is
recovered; one factor of area in the denominator then cancels out, giving the intuitively expected
result that the barycentric coordinates are ratios of two areas:t1 = A(~x; ~x0; ~x1)=A(~x0; ~x1; ~x2),
t2 = A(~x; ~x2; ~x0)=A(~x0; ~x1; ~x2). This leads us to introduce the generalized version oft0 for
the line, namely,

t0 = 1� t1 � t2 =
A(~x1; ~x2; ~x)

A(~x0; ~x1; ~x2)

=

det

�
(~x1 � ~x0) � (~x1 � ~x) (~x1 � ~x0) � (~x2 � ~x)
(~x2 � ~x0) � (~x1 � ~x) (~x2 � ~x0) � (~x2 � ~x)

�

det

�
v(1; 1) v(1; 2)
v(2; 2) v(2; 2)

� :

Here we used the squaring argument given above to extendt0 from its special-coordinate-
system interpretation as the fraction of the area contributed by the triangle(~x; ~x1; ~x2) to the
invariant form. This form obviously has the desired property thatt0 = 1 when~x = ~x0, and we
finally have the sought equation (with1 = t0 + t1 + t2)

~x(t0; t1; t2) = t0~x0 + t1~x1 + t2~x2 :

It is amusing to note that the determinant identity1 = t0+ t1+ t2 and its higher analogs, which
are nontrivial to derive, generalize the simple identity~x1� ~x0 = ~x1� ~x+ ~x� ~x0 that we used
in the 1D case.

Thus we can construct barycentric coordinates in any dimension which intuitively correspond
to fractions of hypervolumes; each barycentric coordinate is the hypervolume of anN -simplex
defined by the point~x and all but one of the other simplex-defining points divided by the volume
of the whole simplex. The actual computation, however, is best done using the squared-volume
form because only that form is independent of the chosen coordinate system.

Note: The volumes aresigned; even if~x lies outside theN -simplex volume, the ratios remain
correct due to the cancellation between the larger volumes and the negative volumes. We also
remark that the generalized formulas forti in any dimension, with1 =

PN
i=0 ti, give an elegant

geometric interpretation of Cramer’s rule as ratios of simplex volumes.
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Figure 7. Schematic diagram comparing an ordinary camera ray and a planar “thick ray” used in N -
dimensional ray-tracing methods.

} Ray Tracing }

It is often useful to compute the intersection of a ray passing through two points (typically the
camera focal point~C and an image point~P ) with a geometrical object. InN dimensions, this
object will typically be an(N � 1)-simplex defining an oriented visible “face” with a normal
vector computable as described above. We need to do several things: compute the intersection
of the ray with the hyperplane containing the “face,” check to see whether the point lies within
the simplex’s boundaries (observe that this is a clipping problem), and see whether the normal
vector points in the direction of the ray (making it visible).

We formulate this procedure by first writing

~X(t) = ~C + t(~P � ~C)

for the position of a point on the camera ray, as illustrated in figure 7. Then we consider a single
(N � 1)-simplex of the tessellation to be described either by a known normal or by using the
set ofN points giving its vertices to define its normal via eq. (6); in either case, we can write
the equation of anyotherpoint~x lying within the simplex as

n̂ � (~x� ~x0) = 0 :

Plugging in the parametric ray equation, we solve for the point~X(t) in the simplex that lies on
the ray:

t =
n̂ �

�
~x0 � ~C

�

n̂ �
�
~P � ~C

� :

A useful generalization of ray-tracing toN -dimensions follows from the observation that a
“thick ray” is cast into space by an open-ended simplex that is essentially a barycentric coordi-
nate form with the restriction0 � (1�t1�t2�: : :) � 1 relaxed (see, e.g., (Hanson and Cross 1993)).
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A planar ray such as that shown in figure 7 then has two parameters,

~X(t1; t2) = ~C + t1(~P1 � ~C) + t2(~P2 � ~C) ;

with obvious generalizations to volume rays, etc. Intersecting such a planar ray with an(N�2)-
dimensional manifold (describable using(N�2) barycentric parameters) results inN equations
with N unknown parameters, and thus a uniquepoint is determined as the mutual solution. In
3D, a plane intersects a line in one point, in 4D two planes intersect in a single point, while in
5D a plane intersects a volume in a point. Other generalizations, including rays that intersect
particular geometries in lines and surfaces, can easily be constructed. For example, the inter-
section of a planar ray with the single hyperplane equation for a 3-manifold in 4D leaves one
undetermined parameter, and is therefore a line.

} Conclusion }

Geometry is an essential tool employed in the creation of computer graphics images of every-
day objects. Statistical data analysis, mathematics, and science, on the other hand, provide
many problems whereN -dimensional generalizations of the familiar 2D and 3D formulas are
required. TheN -dimensional formulas and insights into the nature of geometry that we have
presented here provide a practical guide for extending computer graphics into these higher-
dimensional domains.

} Appendix: Determinants and the Levi-Civita Symbol }

One of the unifying features that has permitted us throughout this treatment to extend formulas
to arbitrary dimensions has been the use ofdeterminants. But what if you encounter an expres-
sion involving determinants that has not been given here and you wish to work out its algebraic
properties for yourself? In this appendix, we outline for the reader a useful mathematical tool
for treating determinants, the Levi-Civita symbol. References for this are hard to locate; the
author learned these techniques by apprenticeship while studying general relativity, but even
classic texts like Møller (Møller 1972) contain only passing mention of the methods; somewhat
more detail is given in hard-to-find sources such as (Efimov and Rozendorn 1975).

First we define two basic objects, the Kronecker delta,�ij ,

�ij = 1 i = j
= 0 i 6= j

and the Levi-Civita symbol,�ijk:::, which is the totally antisymmetric pseudotensor with the
properties

�ijk::: = 1 i; j; k; : : : in an even permutation of cyclic order
= �1 i; j; k; : : : in an odd permutation of cyclic order
= 0 when any two indices are equal.
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All indices are assumed to range from1 to N , e.g.,i = f1; 2; : : : ; (N � 1); Ng, so that, for
example, (1234,1342,4132,4321), are even permutations and (1324,2134,1243,4312) are odd
permutations.

We can use the Kronecker delta to write the dot product between twoN -dimensional vectors
as a matrix product with the Kronecker delta representing the unit matrix,

~A � ~B =
NX
i=1

NX
j=1

Ai�ijBj =
NX
i=1

Ai

0
@ NX

j=1

�ijBj

1
A =

NX
i=1

AiBi ; (15)

and the Levi-Civita symbol to write the determinant of a matrixjM j as

det [M ] =
X

all ik indices
�i1i2:::iNM1;i1M2;i2 � � �MN;iN :

The fundamental formula for the product of two Levi-Civita symbols is:

�i1i2:::iN �j1j2:::jN = det

2
6664
�i1j1 �i1j2 � � � �i1jN
�i2j1 �i2j2 � � � �i2jN

...
...

. . .
...

�iN j1 �iN j2 � � � �iN jN

3
7775 :

(Note that if we setfj1j2 : : : jNg = f1; 2; : : : ; Ng, the second Levi-Civita symbol reduces to
+1, and the resulting determinant is an explicit realization of the antisymmetry of the Levi-
Civita symbol itself as a determinant of Kronecker deltas!)

With this notation, the generalized cross product~N of eq. (6), simplified by setting~x0 = 0,
can be written

~N =
X

all indices
�i1i2:::iN�1iNx

(i1)
1 x

(i2)
2 � � � x

(iN�1)
N�1 x̂

(iN ) ;

wherex̂(iN ) are the unit vectors(x̂; ŷ; : : : ; ŵ) of the coordinate system. The dot product be-
tween the normal and another vector simply becomes

~N � ~L =
X

all indices
�i1i2i3:::iN�1iNx

(i1)
1 x

(i2)
2 x

(i3)
3 � � � x

(iN�1)
N�1 L(iN ) :

The reader can verify that, in 2D,Nk =
P2

i=1 x
(i)�ik = (�y; +x), and so on. We conclude

with two examples of applications:
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Rotations of Normals. Is the normal~N a vector?Almost. To check this, we must rotate
each column vector in the cross product formula usingx0(i) =

PN
j=1Rijx

(j) and compute the

behavior of~N . Using the identity ((Efimov and Rozendorn 1975), p. 203),

�i1i2:::iN�1iN det [R] =
X

all jk indices
�j1j2:::jN�1jNRj1i1Rj2i2 � � �RjN�1iN�1RjN iN ;

we find

N 0(i) =
X

all indices
excepti

�i1i2:::iN�1iRi1j1x
(j1)
1 Ri2j2x

(j2)
2 � � �RiN�1jN�1x

(jN�1)
N�1

=
NX
j=1

RijN
(j) det [R] :

Therefore ~N is a pseudotensor, and behaves as a vector for ordinary rotations (which have
det [R] = 1), but changes sign if[R] contains an odd number of reflections.

Contraction Formula. The contraction of two partial determinants of(N�K)N -dimensional
vectors can expanded in terms of products of Kronecker deltas as follows:

X
iN�K+1:::iN

�i1i2:::iN�K iN�K+1:::iN �j1j2:::jN�K iN�K+1:::iN =

K! det

2
6664

�i1j1 �i1j2 � � � �i1jN�K
�i2j1 �i2j2 � � � �i2jN�K

...
...

. . .
...

�iN�Kj1 �iN�K j2 � � � �iN�K jN�K

3
7775 :

The expression eq. (8) for the dot product of two normals is a special case of this formula.
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