Virtual Reality Performance for Virtual Geometry

Robert A. Cross and Andrew J. Hanson
Department of Computer Science

Indiana University
Bloomington, IN 47405

Abstract

We describe the theoretical and practical visualiza-
tion issues solved in the implementation of an interac-
tive real-time four-dimensional geometry interface for
the CAVE, an immersive virtual reality environment.
While our specific task is to produce a “virtual geom-
etry” ezperience by approzimating physically correct
rendering of manifolds embedded in four dimensions,
the general principles ezploited by our approach re-
flect requirements common to many immersive virtual
reality applications, especially those involving volume
rendering. Among the issues we address are the clas-
sification of rendering tasks, the specialized hardware
support required to attain interactivily, specific tech-
nigues required to render 4D objects, and interactive
methods appropriate for our 4D virtual world applica-
tion.

1 Introduction

In this paper we describe how we have combined
general requirements for a broad class of virtual reality
applications with the capabilities of special-purpose
graphics hardware to support an immersive virtual
reality application for viewing and manipulating four-
dimensional objects. We present general issues con-
cerning the application of virtual reality methods
to scientific visualization, discuss how the resulting
requirements are reflected in fundamental rendering
tasks, and point out where hardware features have cru-
cial roles to play. The proving ground for our general
observations is the design and implementation of an
application for visualizing a 4D mathematical world
through interaction with 3D volume images. We intro-
duce a task independent rendering paradigm through
which, with proper hardware support, we can produce
complex realistic images at interactive speeds.

4D Visualization. There have been a variety of
systems devoted to the general problem of 4D visu-
alization, ranging from the classic work of Banchoff
[2, 1] to geometry viewers such as Geomview [17], our
local “MeshView” 4D surface viewer, and specialized
high-performance interactive systems such as that of
Banks [3]. Our virtual-reality-oriented work builds on
these previous efforts and adds new features of 4D ren-
dering (see, e.g., [20, 4, 14]) that have only recently be-
come technically feasible to exploit interactively [11].
Such systems are valuable tools for mathematical re-
search [16] as well as for volume and flow-field visu-
alization applications [13, 15]. One of our goals is to

1070-2385/94 $04.00 © 1994 IEEE

156

develop techniques applicable to a real-time demon-
stration of 4D and volume-based 3D rendering applica-
tions in the CAVE [6]. In its present configuration, the
CAVE is a Silicon Graphics Onyx/4 RealityEngine?
with multiple graphics channels driving projectors for
two wall displays and the floor, with simulator support
for workstation code development.

2 Virtual Reality and Visualization of

Geometry
In this paper we emphasize the visualization of chal-
lenging classes of mathematical objects through 3D
volumetric rendering. This section outlines our view-
points on the general issues involved in creating a vir-
tual reality for such domains.

Mental models. Philosophers have long wrestled
with the question of the nature of reality: we consider
reality to be embodied in our personal mental models
that derive from experience with natural phenomena
and allow us to cope with the qualitative physics of
everyday life. Virtual reality, then, is achievable in
one of two ways: we may create simulated experiences
that involve the subject by exploiting ezisting mental
models and perceptual expectations; or we may at-
tempt, by simulating phenomena with no real-world
correspondence, to create new classes of mental mod-
els, thereby extending the human experience.

Necessary features. The basic features of the vir-
tual reality systems that concern us here are:

1. Immersion. The system must physically involve
the user by responding to viewer motions and ac-
tions, e.g., using a head-tracker, flying mouse,
wand, etc. Regardless of whether the display
medium is a simple through-the-window view or
a CAVE, this intensifies the intuition-building ex-
perience.

2. Interaction. The virtual environment must re-
spond to the participant’s actions at a high frame
rate and provide smooth and accurate tracking
of the input devices to support realistic feedback
to the viewer. The user must be able to make
changes and observe immediate results in order
to draw intuitive conclusions about the structure
and behavior of the simulated environment.

3. Visual realism. Redundant realistic visual cues
are needed to involve the participant, so we

should strive to include effects such as perspec-
tive, attenuation with distance, specular and dif-
fuse shading, shadows, motion parallax, and oc-
clusion. Providing such cues creates a more sat-
isfying visual experience, in addition to provid-
ing qualitative intuitive information at a pre-
conscious level [7].

Anticipating the future. One task of the vir-
tual reality developer is to avoid the pitfalls of short-
sightedness. In this respect, our philosophy is to ex-
tend our attention also to approaches that are not
feasible in terms of current performance, but could be
drastically accelerated in future hardware generations.
Indeed, the development of appropriate algorithms to
keep up with the rapid evolution of the hardware may
be viewed as one of the most serious challenges we
face: we may become imagination-limited long before
the limits of the hardware technology are reached.

3 Interactive Realism

The goals of interactivity and realism are contra-
dictory; we must apparently compromise between the
speed of scan-conversion approximations and physi-
cally accurate but time-consuming ray-tracing meth-
ods. Here we present the fundamentals of a rendering
semantics that has the potential to support an accept-
able compromise.

3.1 The Toolbox

The following image-level abstractions form a set
of fundamental tools in terms of which we can express
a remarkable number of complex geometric rendering
effects:

z-buffer. The z-buffer tests and optionally replaces
a geometric value normally representing an object’s
distance seen through the pixel; complex effects can
be achieved by selecting appropriate tests and replace-
ment rules.

Frame buffer and accumulation buffer mathe-
matics. Frame buffers support operations that act
selectively on images and include addition, multiplica-
tion, logical operations, convolution, and histograms.

The accumulation buffer, which is separate from the
frame buffer, is dedicated to image addition and scal-
ing and usually has more bits per color component
than the frame buffer. Typical applications involve
averaging a number of images, as in Monte-Carlo in-
tegration.

Static and dynamic textures. A static texture
is a common surface or volume texture map, while a
dynamic texture is one that may vary between frames.
For instance, we might simulate a window as a plane
with the current outside view mapped onto it; as the
scene outside changes, so does the texture map. In
addition to storing surface color, texture maps may
also serve as lookup tables for reflectance or shading
functions.

Automatic texture vertex generation. Given a
texture map containing a lookup table for a function,

157

we may not know in advance what portion of the tex-
ture map is required. Texture vertices can be gen-
erated automatically by supplying a (possibly projec-
tive) transformation function from the geometry to
the texture space. For example, given a volumetric
woodgrain texture, the system automatically chooses
the correct woodgrain to map onto a slice through the
virtual block. For a more complete discussion of tex-
ture mapping operations, see [8].

3.2 First-order Effects

We consider a first-order effect to be one that re-
quires a fixed, environment-independent number of
primitive operations per scene element. In this sec-
tion, we describe a set of useful first-order techniques
that can be used to approximate rendering effects.

Planar reflection. The reflections from a flat sur-
face can be defined by rendering the environment from
a virtual viewpoint placed on the opposite side of the
reflecting surface; this image is then mapped onto the
surface, giving the impression of a mirror.

Non-planar reflection. An environment map is
defined as the image of a perfectly reflecting sphere lo-
cated in the environment when the viewer is infinitely
far from the sphere. Given the view direction and
normal at each vertex of a polygon, we can use au-
tomatic texture vertex generation to choose texture
coordinates; this gives an approximation of infinite fo-
cal length reflection [8].

Shading maps. Texture maps can also be used
as repositories for pre-computed reflectance functions
(e.g., diffuse, Phong, Cook-Torrance, etc.Bl. This
method produces much better behavior than hardware
lighting (i.e., Gouraud shading), which defines colors
only at the vertices, and so cannot place specularities
inside a large polygon.

Physically based luminaires. A diffuse emitter
can be approximated by placing a projection point be-
hind the planar emitter and using projective textures
to shine a pre-computed cosine distribution texture
map into the environment. The diffuse light thus emit-
ted is multiplied by each surface’s diffuse light color
coefficient. Other distributions can be approximated
by projecting different lookup tables. If we use shad-
ing maps to approximate the cosine term and distance
attenuation at target polygons, we can approximate
physical luminaires.

Shadows. Areas lit by a particular light can be de-
fined as areas that that light “sees”; i.e., for sharp-
edged shadows, we test whether a particular point can
describe an unobstructed path to the luminaire. Us-
ing the z-buffer, we can define a depth texture map
from the light’s point of view. By projecting this tex-
ture map into the environment and z-buffering from
the eye’s point of view, we can compare the distance-
to-the-light values of visible surfaces to the projected
nearest-to-the-light value. If the eye sees a surface
whose distance to the light is larger than the indicated
minimum, it must be in shadow; if not, it is lit. If this
function is applied over all pixels to define a binary
black-white image, this can be multiplied by an image

containing a shadowless lit image to construct a final
image including appropriate shadows [18, 19]

3.3 Second-order Effects

Second-order effects provide more sophisticated im-
age features, and involve iteration or multiple samples
to generate a single image. These methods are suffi-
ciently expensive, at present, to preclude their use in
most interactive applications. However, these meth-
ods greatly increase visual satisfaction and hardware
improvements will make them increasingly practical.

Multiple samples. The accumulation buffer allows
an elegant implementation of Monte-Carlo methods
over entire images. Thus, dynamic images such as
shadow maps or reflection images can be defined by
probabilistic sampling, producing smooth shadows or
blurred reflections. Psychological research indicates
that smooth shadows, in particular, are important for
visual realism [7].

Iterated diffuse and specular reflection. If we
approximate diffuse emission from a single polygon
and produce an image of the incident light at another,
we can then emit some of this light back into the en-
vironment. When this process is iterated, it becomes
an approximation to radiosity and global illumination.
This method has the advantage of being much faster
than similar precomputations and has lower algorith-
mic complexity while maintaining important visual
features.

Participating media. Approximate volume images
may be produced by cutting multiple additive slices
through the viewed space. By projecting lighting dis-
tributions and shadows onto these slices, we can ap-
proximate the scattering of light as it passes through a
foggy environment, producing visible beams and sim-
ilar volume-rendering effects.

3.4 Hardware Support

At present, only the simplest of the above tech-
niques are viable in a software-only interactive system
with a complex environment. As our needs for real-
ism increase, so do our needs for graphics hardware
support. For example, if we require Phong shading,
but must implement it in software, the complexity
of environments with which we can interact will be
severely limited. However, given hardware texture-
mapping support, we can precompute a lookup table
to support an implementation of specular reflectance
functions; the hardware can wrap this texture around
the objects, interpolating between computed points to
produce correct images of specular objects.

Our virtual geometry applications are designed to
take full advantage of the hardware support of the Sil-
icon Graphics Onyx RealityEngine?. Its support for
high-speed texture mapping, in particular, enables us
to map large portions of our graphics computations
directly onto hardware-supported primitives. For ex-
ample, dynamic texture mapping and automatic tex-
ture vertex generation allow us to interactively simu-
late bizarre physical illumination models such as 4D
light. Effectively, we have transformed the mathemat-
ical rendering model into a form expressible in terms
of our hardware-supported high-speed toolbox. The

158

exploitation of such transformations can greatly en-
hance user comprehension through improved feedback
and perceived visual realism.

4 Visualization Effects Design

The particular system that we have implemented
to explore virtual reality paradigms focuses on math-
ematical visualization in higher dimensions [11]. We
create the illusion that the participant is immersed in
the 3D, volumetric retina of a 4D cyclops interacting
with objects in a 4D world. Among the issues we must
address to achieve this are the following:

4D Depth. Perceiving 4D depth requires binocular
fusion of a pair of distinct 3D volume images; a 3D
human would effectively need 2 pairs of 3D eyes to
see these images at the same time (and could not fuse
them anyway). Thus we need to obtain 4D depth cues
from other sources such as motion, occlusion, or depth
color codes. For example, occlusions of surfaces by
surfaces can be emphasized for visibility by painting or
cutting away the more distant of two surfaces around
an illusory intersection in a particular projection.

4D Motion Cues. Motion is an important factor
in our ability to perceive 3D structure monocularly;
either constant-angular-velocity rigid 3D rotation or
periodic rocking is an adequate substitute for a stereo
display. We use rigid 4D rotations to generate mo-
tion cues for our 4D monocular world that resemble
familiar 3D motion cues.

3D Depth. Typical objects that we project out of
4D produce volume images, though our rendered im-
ages of thickened surfaces are simplified since we use a
thin-surface approximation to achieve acceptable ren-
dering performance. Thus seeing the 3D opaque ex-
terior of our objects is not enough — we want to see
inside the projected shape. This causes a problem: if
we make a surface transparent but featureless, like a
highly inflated balloon, there are not enough distinct
features in the image to activate 3D stereo percep-
tion except along the outer edges of the object. Sim-
ilarly, for volumetric objects whose interior is made
of smooth internal “jellylike” solids, it is difficult to
produce a strong impression of what may be a very
complex internal 3D structure.

Texture. For human binocular vision to perceive
a full 3D structure in one glance, smooth rendering
methods are often deficient; they do not generate the
image gradients necessary for the edge matching pro-
cess used in stereo depth reconstruction. One tech-
nique to circumvent this problem is to spice up the
featureless jelly with surface or volumetric textures.
Such textures, which can be as simple as a set of grid
lines or a regular or random lattice of points, provide a
richer collection of image gradients to drive the stere-
ographic matching process.

No Slices. A common approach to representing 4D
objects is to slice them up and consider them as a
sequence of 3D objects, often presented as a time-
sequenced animation. We insist on holistic images for
our imaginary 4D retina; humans are not adept at per-
ceiving 3D objects from a time sequence of 2D slices,
so we do not expect that 3D slices of 4D objects will
be any easier.

Lighting. In everyday life, we are able to perceive
3D shapes in static photographs and drawings. We
make certain assumptions about the nature of the ob-
jects and lighting conditions, and apparently infer the
3D structure using what is known in computer vision
as a “shape from shading” algorithm. We see objects
whose structure is revealed by the intensity gradations
reflected from the object and by its cast shadows. Dif-
fuse and specular highlights reveal additional informa-
tion about the directions of surface or volume patches
that is more specific than, for example, gradient or
isosurface information. 4D lighting permits a similar
holistic depiction of a 4D object, and the structure of
the lighting in the 3D projection contains many sub-
tle clues about the 4D structure and its orientation
relative to the 4D lights and camera.

Shadows. To enhance the scene perception experi-
ence, we can provide auxiliary cues such as 3D shad-
ows to supplement 3D stereo perception. One can also
generate 4D shadow volumes to help reveal hidden 4D
structure [12].

Occlusion. We exploit occlusion information to in-
fer structure in 2D drawings representing the 3D
world; a typical mathematical application would be
the “crossing diagram” showing the unique 3D struc-
ture of a knotted loop of string using over/under cross-
ing markings on a 2D diagram alone. Similar phenom-
ena occur in 4Dj; non-intersecting surfaces in 4D may
appear to intersect in a curve when projected to 3D,
just as 3D lines may appear falsely to intersect when
projected to 2D; pieces of 4D volumes may completely
block out other 4D volumes in the 3D projection, just
as 3D surfaces block (occlude) one another in 2D imag-
ing. Single convex 3D and 4D objects have no occlu-
sions, and so can be easily rendered using back-face
culling. For 4D multiple-object scenes and non-convex
objects, we can provide occlusion handling, crossing
markings or depth-cued colors to emphasize the oc-
currence of 4D occlusion. This is not always possi-
ble to achieve interactively, since processing occlusions
may be a memory-intensive or combinatorially explo-
sive process.

Depth Coding. A number of techniques have been
proposed to provide a sense of depth in 4D graph-
ics (see, e.g., [2]); these include pseudocolor coding of
depth, application of depth-dependent static or mov-
ing textures, and 4D-depth dependent opacity or blur-
ring.

Redundancy. Typical 3D terrain maps and graphs
have redundant coding of properties such as elevation.
Pseudocolor, isolevel contours, ruled surface markings,
and oblique views exhibiting occlusion, illumination
effects, and shadows may all be combined in a single
representation. 4D data representations also profit
from such redundancy, so we add multiple 4D cues
when possible.

In summary, the family of visual effects that we
wish to achieve involves a wide variety of issues and
representation technologies. The common thread is
this: we examine holistic perceptual processes such as
lighting and motion that serve us well in dealing with
our 3D world, and exploit the 4D analogs of those

159

processes to encode relevant information in the 3D
volume image perceived by our hypothetical 4D being.

5 Interactive Interface Design

Our philosophy of 4D interaction is based on sev-
eral fundamental assumptions about how human be-
ings learn about the 3D world. We are all familiar with
the fact that if we are driven around a strange town,
we are much less able to find our way later than if we
do the driving ourselves. Thus we seek 4D interaction
modes that emphasize the involvement of the user and
promote the feeling of direct manipulation, as though
4D objects were responding in some physical way to
the motions of our input devices. Successful strate-
gies should therefore significantly reduce the required
user training time by exploiting analogs of familiar 3D
direct manipulation.

Restricting ourselves for now to single compact ob-
jects lying in the center of our perceived CAVE space,
we need several basic types of control: (1) the user
moving around the 3D projected object itself; (2) rigid
3D motions of the object; (3) rigid 4D rotations (and
perhaps translations) of the object; (4) 4D control of
the orientation of the light ray (or rays) used in the
shading and shadowing processes. The first two capa-
bilities are standard for almost all CAVE applications.

The two 4D rotation tasks, however, require the
following application-specific design considerations:

4D Orientation Control. Direct manipulation of
3D orientation using a 2D mouse is typically handled
using a rolling ball [9] or virtual sphere [5] method to
give the user a feeling of physical control. Figure la
shows the effect of horizontal and vertical 3D rolling
ball motions on a cube: supposing that the cube ini-
tially shows only one face perpendicular to the viewer’s
line of sight, moving the mouse in the positive z di-
rection exposes an oblique sliver of the left-hand face,
while motion in the y direction exposes the bottom
face; reversing directions exposes the opposite faces.
Long or repeated motions in the same direction bring
cycles of 4 faces towards the viewer in turn. In the
rolling ball method, circular mouse motions counter-
rotate the cube about the viewing axis; in the virtual
sphere method, the mouse acts as if glued to a glass
sphere, so that at a certain radius along the x-axis
from the center, a vertical mouse motion causes spin-
ning about the viewing axis.

The extension of this approach to 4D is outlined in
the appendix and described in more detail in [10]. Fig-
ure 1b is the 4D analog of Figure la: beginning with
a fully visible transparent (volume-rendered) cube,
which represents a single hyperface of a hypercube per-
pendicular to the 4D viewing vector, we move the 3D
mouse along the z-axis to expose a volumetric sliver
on the left; this is the oblique view of the left hyper-
face. Moving the 3D mouse along the y-axis exposes a
volumetric sliver on the bottom; moving the 3D mouse
along the z-axis exposes a volumetric sliver on the back
of the original volumetric cube. Reversing directions
brings up the opposite hyperfaces; long motions reveal
cycles of 4 hyperfaces, but now there are three cycles,
one each in the z, y, and 2z directions. How do we
get ordinary rotations, say in the z-y plane? Moving

(a)

vz

¥

(b)

Figure 1: Schematic diagram comparing (a) 2D mouse control of a 3D object, and (b) 3D flying mouse control of

a 4D object.

the 3D mouse in small circles in any plane produces
counter-rotations of that plane, thus giving 3 more
degrees of freedom, exhausting the 6 degrees of orien-
tational freedom in 4D. The 4D virtual sphere action
follows by exact analogy to the 3D case.

4D Light Control. Figure 2a shows a schematic
diagram of a method for controlling the 3D lighting
vector using a 2D mouse: the unit vector in 3D has
only two degrees of freedom, so that picking a point
within a unit circle determines the direction uniquely
(up to the sign of its view-direction component). With
a convention for distinguishing vectors with positive
or negative view-direction components (e.g., solid or
gray), we can uniquely choose and represent the 3D
direction. Control of the vector is straightforward us-
ing the rolling ball: the lighting vector initially points
straight out of the screen (up in the oblique view of
Figure 2b), and moving the mouse in the desired di-
rection tilts the vector to its new orientation, whose
projection to the plane of Figure 2a is shown in the
gray ellipse in Figure 2b. Rotating past 90 degrees
moves the vector so its view-direction component is
into the screen.

The analogous control system for 4D lighting,
shown in Figure 2c, is based on a similar observation:
since the 4D normal vector has only 3 independent
degrees of freedom, choosing an interior point inside
a solid sphere determines the vector uniquely up to
the sign of its component in the unseen 4th dimension
(the “4D view-direction component”). The rest of the
control proceeds analogously. Since we cannot easily
interpret 4D oblique views, we do not attempt to draw
the 4D analog of Figure 2b.

160

6 Examples

A classic example of a non-trivial surface embed-
ded in 4D is a knotted sphere, and this is the central
demonstration we have implemented for the CAVE;
Figure 3 shows the spun trefoil, the 4D knotted sphere
closest in spirit to an ordinary 3D trefoil knot, while
Figure 4 shows the twist-spun trefoil, which, astonish-
ingly, can be shown to be unknotted in 4D.

The real-time display ¢f these images is made possi-
ble by replacing the techhiques of [14%, which required
up to half an hour per frame to render, with a dy-
namic texture map implementation of [11], resulting in
update rates of up to 30 frames/second. The texture
mapping support of the RealityEngine permitted us to
represent the 4D lighting distributions on the surface
using a dynamic texture map; the resulting transpar-
ent volumetric image was rendered using frame buffer
addition with multiplicative opacity.

Occlusion computations remain too expensive for
real time, and so we precompute the occlusions for
one particular viewpoint and fix them to the object;
this has the curious advantage that, when the object
is rotated in 4D, one can see the explicit separation of
the apparent self-intersections, and convince oneself
that the “side view” shows that no self-intersections
exist.

In Figure 5 we show a closeup of the 4D control
feedback display, which reads out the current 4D light
position and 4D orientation of the central knotted
sphere. Figure 6 is a true volume-rendered object, the
hypersphere, projected from 4D to show a 3D view of
its “northern hemisphere;” grid lines and a volumetric
speckle texture are added within the featureless vol-
ume of this object to give a clear stereographic image,
as noted in Section 4.

Finally, in Figure 7, we step back to show how

(a)

(c)

Figure 2: Schematic diagram comparing (a) selecting 2D point in disk to specify 3D light direction, shown
obliquely in (b), and (c) 3D flying mouse control of a 4D light direction by picking 3D point inside solid sphere.

our mathematical world appears in a rich virtual
workspace. To illustrate some of our other capabil-
ities for general virtual geometry, we show in Figure 8
how the knotted sphere appears in a room illuminated
by a light shining through foggy air. Note the satisfy-
ing effect of the 3D shadows cast in the room by the
mathematical objects.

7 Conclusions and Future Work

We have described a wide spectrum of issues in-
volved in the development of an ambitious virtual re-
ality system that attempts to immerse the viewer in a
technically correct four-dimensional world. The tech-
niques required for this system include the optimiza-
tion of rendering approximations through the use of
hardware graphics operations, as well as task-specific
approaches to enhancing user interaction. The opti-
mizations used in this system apply also to general
virtual reality performance problems.

While adapting our software to the CAVE, we faced
parallelization issues that did not arise on a single
screen. In addition to parallelizing the mathematics
(e.g., multi-threading the projection of four dimen-
sions to three), we dealt with other problems involving
shared memory and resources. For example, one must
avoid collisions on the graphics hardware, particularly
during geometry transformations.

In its present form, this project is approaching the
limits of the target graphics hardware. We now face
the standard bottleneck of textured polygon fill rate,
for instance. Extending the features of the system
will require computations for which the RealityEngine
hardware has no particular advantage; for example,
the 4D occlusion calculation is still too computation-
ally expensive for adequate interactive performance,
as is depth-ordered transparency. However, the addi-
tion of resources such as hardware support for large
dynamic 3D textures would enable us to attack even
more challenging problems in virtual geometry.

Acknowledgments

This work was supported in part by NSF grant IRI-
91-06389. We thank George Francis, Chris Hartman,

161

and the NCSA CAVE personnel, as well as the mem-
bers of the Electronic Visualization Laboratory at the
University of Illinois/Chicago for their support.

References

[1] BancHOFF, T. F. Visualizing two-dimensional
phenomena in four-dimensional space: A com-
puter graphics approach. In Statistical Image
Processing and Compuier Graphics, E. Wegman
and D. Priest, Eds. Marcel Dekker, Inc., New
York, 1986, pp. 187-202.

[2] BancHOFF, T. F. Beyond the third dimension:
Geometry, computer graphics, and higher dimen-
sions. Scientific American Library (1990).

[3] BaNKs, D. Interactive manipulation and display
of two-dimensional surfaces in four-dimensional
space. In Computer Graphics (1992 Sympo-
sium on Interactive 3D Graphics) (March 1992),
D. Zeltzer, Ed., vol. 25, pp. 197-207.

[4] CarEY, S. A., BurroN, R. P., aAND Camp-
BELL, D. M. Shades of a higher dimension. Com-
puter Graphics World (October 1987), 93-94.
[5] CHEN, M., MOUNTFORD, S. J., AND SELLEN,
A. A study in interactive 3-d rotation using 2-
d control devices. In Computer Graphics (1988),
vol. 22, pp. 121-130. Proceedings of SIGGRAP
1988.

[6] Cruz-NEIRA, C., SANDIN, D. J., AND DE-
FANTI, T. A. Surround-screen projection-based
virtual reality: The design and implementation of
the CAVE. In Computer Graphics (SIGGRAPH

’93 Proceedings) (Aug. 1993), J. T. Kajiya, Ed.,
vol. 27, pp. 135-142.

[7] GoLDsTEIN, E. B. Sensation and Perception.
Wadsworth Publishing Company, 1980.

(8] HAEBERLI, P., AND SEGAL, M. Texture map-
ping as a fundamental drawing primitive. In

(10]

(11]

(12]

[13]

[14]

[15

(16]

(17]

(18]

(19]

[20]

Fourth EUROGRAPHICS Workshop on Render-
ing (June 1993), M. Cohen, C. Puech, and F. Sil-
lion, Eds., pp. 259-266.

HansoN, A. J. The rolling ball. In Graph-
ics Gems III, D. Kirk, Ed. Academic Press, San
Diego, CA, 1992, pp. 51-60.

HansoN, A. J. Rotations for n-dimensional
graphics. Tech. Rep. 406, Indiana University
Computer Science Department, 1994.

HansoN, A. J., AND Cross, R. A. Interac-
tive visualization methods for four dimensions.
In Proceedings of Visualization 93 (1993), IEEE
Computer Society Press, pp. 196-203.

HANsSON, A. J., AND HENG, P. A. Visualizing
the fourth dimension using geometry and light.
In Proceedings of Visualization 91 (1991), IEEE
Computer Society Press, pp. 321-328.

Hanson, A. J., aAND HeENng, P. A. Four-
dimensional views of 3d scalar fields. In Proceed-
ings of Visualization ’92 (1992), IEEE Computer
Society Press, pp. 84-91.

HansoN, A. J., aND HENG, P. A. Illuminating
the fourth dimension. Computer Graphics and
Applications 12, 4 (July 1992), 54-62.

HANsON, A. J., AND Ma, H. Visualization flow
with quaternion frames. In Proceedings of Vi-
sualization ’94 (1994), IEEE Computer Society
Press. In these Proceedings.

HaNsoN, A. J., MUNZNER, T., AND FRANCIS,
G. K. Interactive methods for visualizable geom-
etry. IEEE Computer 27, 7 (July 1994), 73-83.

PHiLLiPS, M., LEVY, S., AND MUNZNER, T. Ge-
omview: An interactive geometry viewer. No-
tices of the Amer. Math. Society 40, 8 (Octo-
ber 1993), 985-988. Available by anonymous ftp
from geom.umn.edu, The Geometry Center, Min-
neapolis MN.

REevEs, W. T., SaLesiN, D. H., AND CoOK,
R. L. Rendering antialiased shadows with depth
maps. In Computer Graphics (SIGGRAPH 87
Proceedings) (July 1987), M. C. Stone, Ed.,
vol. 21, pp. 283-291.

SEGAL, M., KoroBKIN, C., VAN WIDENFELT,
R., ForaN, J., AND HAEBERLI, P. E. Fast shad-
ows and lighting effects using texture mapping.
In Computer Graphics (SIGGRAPH ’92 Proceed-
ings) (July 1992), E. E. Catmull, Ed., vol. 26,
Pp. 249-252.

STEINER, K. V., AND BURTON, R. P. Hidden
volumes: The 4th dimension. Computer Graphics
World (February 1987), 71-74.

162

A 4D Rolling Ball Formula

For completeness, we list the 4D rolling ball for-
mula derived in [10] that is the basis for most of our
4D controls; this natural algorithm for 4D orienta-
tion control requires exactly three control parameters,
thus making it ideally suited to the “flying mouse” or
CAVE “wand” 3-degree-of-freedom user interface de-
vices. Let X = (X,Y, Z) be a displacement obtained
from the 3-degree-of-freedom input device, and define
r? = X24Y %422, Take a constant R with units 10 or
20 times larger than the average value of r, compute
D? = R? 4 r?, compute the fundamental rotation co-
efficients ¢ = cos = R/D, s =sinf = r/D, and then
take ¢ = X/r,y=Y/r,z2 = Z/r,s0 2® + y* + 22 = 1.
Finally, rotate each 4-vector by the following matrix
before reprojecting to the 3D volume image:

1-2z3(l-¢) —(l-c)zy —(l—c)zz sz
—(1-czy 1-%*(1—-¢) —-(1-clyz sy
—(1-¢c)zz —(l—-cyz 1-2*(1-c) sz

—sz -8y -8z c

Figure 3: Closeup of spun trefoil knot in the Figure 4: Closeup of twist—spun trefoil apparent
CAVE simulator. knot in the CAVE simulator.

Figure 5: 4D control feedback display; single line Figure 6: The "solid textured beach—ball" view of
shows light direction, wire-frame shows 4D orien—~ the hypersphere.
tation referred to a hypercube.

Figure 7: User view of knotted sphere and controls Figure 8: Adding 3D light and fog to the virtual
inside a rich virtual room. workspace.

(See color plates, page CP-17.)

163

