Interactive Visualization Methods
for Four Dimensions

Andrew J. Hanson and Robert A. Cross
Department of Computer Science
Indiana University
Bloomington, IN 47405

Abstract

Making accurate computer graphics representations
of surfaces and volumes (2-manifolds and 3-manifolds)
embedded in four-dimensional space typically involves
complez and time-consuming compuiations. In order
to make simulated worlds that help develop human in-
tuition about the fourth dimension, we need techniques
that permit real-time, interactive manipulation of the
most sophisticated depictions available. We propose
the following new methods that bring us significantly
closer to this goal: an approach to high-speed 4D il-
luminated surface rendering incorporating 4D shading
and occlusion coding; a procedure for rapidly gener-
ating 2D screen images of lessellated 3-manifolds il-
luminated by 4D light. These methods are orders of
magnitude faster than previous approaches, enabling
the real-time manipulation of high-resolution 4D im-
ages on commercial graphics hardware.

1 Introduction

The visualization of objects in four-dimensional
space 18 an intriguing intellectual and computational
problem. On the one hand, computer graphics is in-
dispensable for making images that correspond accu-
rately to 4D — since no 4D “sandbox” exists for us
to play in, computer simulations are essential tools for
experiencing four dimensions. On the other hand, in-
tuitively appealing 4D rendering methods [2, 9, 7, 3, 4]
typically have a high computational expense (up to
hours per frame), which severely limits the degree to
which such a system can support the development of
human intuition by interactive exploration.

There are many potentially interactive methods
for the subproblem of representing surfaces projected
from 4D to 3D [1, 6, 3]. These include animated slices,
rendering the 3D projection directly, exploiting pseu-
docolor or texture to indicate 4D depth, displaying 4D

1070-2385/93 $3.00 © 1993 IEEE

196

shadows, and using auxiliary vectors to compensate
for the deficiency of surface tangent vectors. We have
experimented with many of these methods, but in our
opinion they lack the potential richness of the full 4D
illuminated rendering approach that uses thickened 3-
manifolds in place of the bare surfaces {3, 4].

Depictions of 3-manifolds have also been accom-
plished using a variety of techniques, such as projec-
tions and animations of hyperplane slices and strips[1];
again, we feel that full 4D illuminated rendering con-
tains more potential information.

In this paper, we begin by addressing and solving
the problem of choosing mathematical approximations
that, combined with state-of-the-art graphics hard-
ware, can be used to create a completely interactive
system for visualizing surfaces and volumes embedded
in four dimensions. To create our surface images, we
generalize the 3D “teddy bear hair” algorithm [8] to
four dimensions, obtaining theoretically justifiable ap-
proximations to the smooth and specular shading of a
2-manifold in 4D that has been thickened by the ad-
dition of a small shiny circle at each point of the nor-
mal space. We produce the effect of a full 4D depth-
buffered rendering by providing an additional texture
field marking the location of 4D occlusions. Finally,
we introduce a very fast technique for displaying three-
manifolds with 4D illumination. Our new approach
shortcuts the original method of [3, 4], which creates
an expensive volume image and then volume renders
that to 2D. By combining a generalized ray-tracing
technique with a hybrid scan-conversion method, we
transform the volume rendering to an equivalent 3D
rendering problem supported by graphics hardware.

All of these methods have been implemented to
run on a Silicon Graphics Reality Engine, exploit-
ing the high-performance scan-conversion and texture
mapping capabilities whenever possible. We are thus
able to interactively explore large classes of 2- and 3-
manifolds embedded in 4D.

2 Thickened Surfaces

We turn first to the question of rapidly produc-
ing qualitatively correct images corresponding to the
thickened-surface volume images of Hanson and Heng
[3, 4]. First, let us review the background and moti-
vation for the original technique:

e The “film dimension” varies with the dimension
of the space being viewed. Since projection along
the camera ray creates an image of one dimension
lower than the space, images of 2D space are lines,
images of 3D space are planes, and images of 4D

space are volumes with lit voxels, resembling a
CT scan.

e Imaging using traditional computer graphics
models requires that the objects being rendered
have unique normal vectors. Thus, surfaces in 3D
(typically boundaries of 3-volumes) can be ren-
dered while mathematical curves cannot. In 4D,
3-manifolds (typically boundaries of 4-volumes)
can be uniquely rendered, but surfaces and lines
cannot. (For detailed descriptions of 4D diffuse
and specular shading algorithms, see, e.g., [3, 4].)

e Informative images of curves in 3D can be pro-
duced by adding a circle to each point along the
curve, thus generating a thickened curve, a cylin-
drical surface with a curve at the core. Corre-
sponding images of surfaces in 4D can be created
by adding a circle to each point of the surface’s
normal plane, giving a thickened surface that is
actually a 3-manifold.

Complicated surfaces embedded in four dimensions
may be rendered by thickening them, applying the
analog of standard 3D illumination models (employing
the now well-defined normal vectors of the resulting
3-manifold), and scan-converting the projection into
a volume image. Just as z-buffering is used in 3D to
handle occlusions, “w-buffering” can be employed in
the 4D rendering process to handle 4D occlusions that
occur when more than one scene point projects to the
same point in the image volume. This volume image
is then volume-rendered into a standard 2D computer
screen image, preferably in stereo or as a rotating an-
imation so that the viewer can perceive the internal
structure of the volume.

Examples of a knotted sphere and an apparently
knotted sphere rendered using this method for a video
animation are shown in Figures 4a and 4b. These
images are low resolution representations, but higher
resolution was impractical: each image required up

197

to half an hour of computation on a high-performance
workstation, and took up to 48 megapixels of interme-
diate storage during the generation of the volume im-
age, 16 megapixels each for the diffuse color, the spec-
ular color, and the w-buffer. The computational ex-
pense for even a one-minute animation (1800 frames)
thus becomes staggering.

We are therefore obviously motivated to seek less
expensive ways of producing such images. Returning
to three dimensions for intuition, we note that the
overall appearance of a rendered shiny wire is more or
less independent of its thickness: it is precisely this
observation that was exploited by Kajiya and Kay (8]
to reduce the rendering of textures like hair to a com-
putationally tractable problem while preserving essen-
tial qualitative features. We therefore attempt the
analogous process for thickened surfaces in 4D. In the
following, we show how to generalize the method of
Kajiya and Kay to two-manifolds, so that we can ef-
fectively shrink the size of the thickening circle to a
point without losing any essential image properties.
The rendering problem is then partially reduced to a
texture-mapping problem, which is ideally suited for
real-time graphics hardware such as the Silicon Graph-
ics Reality Engine.

2.1 Simplified Four-Dimensional Diffuse
Reflection

In the model of diffuse reflection for 3D translucent
hair chosen by Kajiya and Kay, the intensity depends
only on the component of light lying in the normal
plane, regardless of the viewpoint. If we imagine split-
ting the light vector into a component in the tangent
space (a line) of the hair and a component in the nor-
mal space (a plane), their model keeps only the normal
space component. The diffuse reflection may thus be
expressed as the sine of the angle between the original
light vector and the tangent to the hair.

This approach is easily generalized to surfaces in
4D space by realizing that the normalized 4D light
vector L separates naturally into two orthogonal com-

ponents: one, f:T, in the tangent plane of the sur-

face, and the other, fN in the normal plane. Again,
a good approximation to the diffuse reflection of a sur-
face with a small translucent circle attached is given

by keeping only the normal space component IITJ il
of the light vector at each point. In practice, it is often
easiest to compute this as the complement of the mag-
nitude of the tangent-plane components of the light
vector: . .

NLwl? =1Lzl (1)

Thus, we adopt the following heuristic for the geo-
metric component of diffuse surface shading in 4D:

N —

D(E) = T il (2)
As with the model of Kajiya and Kay, if we neglect
shadowing, the intensity is independent of the view-
point; this feature appears to be acceptable in our
application. The complete diffuse lighting component
W qiffuge 18 described in terms of kg, the color of the

diffuse light, and D(f..), the geometric term:

Y diffuse = de(f") . (3)
2.2 Simplified Four-Dimensional Specu-
lar Reflection

In [8], it is pointed out that the specular reflection
from a thin cylinder is very nearly a cone. This cone
may be determined by reflecting a single ray of light
from a plane tangent to the hair at a point and then
rotating that vector about the hair’s axis. A lighting
model is then adopted that determines the intensity in
terms of the scalar product between the viewing vec-
tor and the closest vector lying on this cone. This is
equivalent to replacing the dot product of the normal
components of the light and view vectors by the prod-
uct of the magnitudes of their normal components.

Surfaces in four dimensions permit a treatment of
specular reflection that is closely parallel to the treat-
ment of very thin hair in three dimensions. The tan-
gent to a 4D surface is a plane instead of a line, but
the normal space remains a plane. Thus we initially
consider a specular coefficient that is decomposed into
tangential and normal parts of the scalar product be-
tween the view vector V and the reflected illumination
vector R:

~ -

— — — —
R-V=Rr-Vor+Ry-Vn. (4)
If we attach an infinitesimal circle lying in the normal
plane to each point of the surface, points on this cir-
cle lie on small 3-manifold patches, which have unique
normal vectors. Given this normal vector, we can find
the reflection vector R. As with thickened 3D hair,
we now simply replace the dot product of the nor-
mal components of the reflected light vector and the
view vector by the product of the magnitudes of their
normal components. This heuristic thus replaces the
specular coefficient R-V by

PPN — — — —
S(R,V)=Rr -V +||Rn[IVn]

()

198

This equation can be rephrased in terms of the light
vector L, replacing RT with —fT and _ﬂN with

—
L n, yielding

SR, V)= ~Tr- Vo +|TalliVall- ()

In Figure 1, we see how the vectors in the normal
plane have been effectively replaced with their mag-
nitudes, allowing us to completely describe the four-
dimensional system with a three-dimensional figure.

If we now take k, to be the color of the reflected
light and Eq. (6) for S(R,V) to be the heuristic
Phong-like specular term (with a floor of zero) to be
raised to a power p, we find the intensity

v =k, S(R, V).)

specular

2.3 4D Occlusions

For 4D surfaces such as knotted spheres, whose
3D projections contain massive self-intersections, ad-
ditional features are needed in the texture-map gen-
eration algorithm in order to retain all the qualitative
properties of Figure 4. Each 3D self-intersection cor-
responds to a place where one surface patch occludes
another along the 4D line of sight, so correct w-buffer
emulation should permit only the nearest patch to be
seen. When such occlusion marking is desired, one
may check for parts of the surface in 4D that have 3D
coordinates very near those of other parts in a partic-
ular 4D=>3D camera projection. Then the distances
from the conflicting areas to the camera focal point
are compared, and the more distant area is painted
with transparent or opaque black; the areas nearer
the camera can also be painted in a distinctive color
for emphasis. This method gives us the precise ana-
log of a traditional knot-crossing diagram such as the
one shown in Figure 2a, where a substantial section of
each occluded line segment is removed from the draw-
ing. Figure 2b shows our corresponding picture for
the spun trefoil, a simple knotted sphere, projected to
3D from a particular 4D viewpoint, cut away to reveal
the interior.

The following features of 4D occlusion algorithms
should be noted:

e Certain classes of objects, such as spun knots
in 4D, permit simple calculation of the occlu-
sion texture due to the separability of occlusion
points into a small set of 2D intersection prob-
lems. These properties can be conditionally de-
pendent upon the chosen 4D viewpoint.

LNmax

A R
[}
-/
\
I R.
\%
VT
Tangent
Plane T

Figure 1: The tangent plane of a surface at a particular point showing the four dimensional vectors and their
relevant tangent and normal components. f'N max represents the value the light’s normal component would

assume in this diagram if —IjT vanished.

o For high-quality transparency, the texture poly- 2.4 Results

gons must be rendered in back-to-front order with
the help of a BSP tree, a time-consuming prepro-
cessing requirement.

For general 4D objects and general 4D view-
points, the occlusion texture must be computed
by recalculating the entire self-intersection map in
the new 3D projection. A variety of methods can
be used, ranging from brute force to BSP trees to
an augmented z-buffer that keeps a database of
4D depths as each polygon is scan-converted from
3D to 2D.

Some 4D-viewpoint-independent features assist-
ing in the occlusion calculations can be main-
tained in a 4D BSP-tree data structure. In par-
ticular, such a data structure can be used in a
viewpoint independent hidden-volume calculation
during the projection to 3D, much as the 3D BSP
tree is used for viewpoint-independent hidden sur-
face elimination.

4D self-shadowing is potentially important when
complex surfaces are illuminated by 4D light.
Such shadows can be computed by creating a
thick occlusion-marking texture derived by using
the point light source as the 4D focal point and
projecting to 3D.

199

In Figures 5a,b, we show the results of combin-
ing the approximations for the diffuse, specular, and
occlusion-tagged texture that we have developed as in-
teractive alternatives to the fully-correct volume ren-
derings shown in Figures 4a,b for the spun trefoil knot-
ted sphere and the apparently (but not) knotted twist-
spun trefoil. These images have the following remark-
able properties:

e Once a 4D viewpoint is chosen and occlusion pre-
processing (if required) is performed, these im-
ages can be rotated arbitrarily in 3D, and the 4D
lighting vector can be changed arbitrarily; redis-
play time of a 50,000 polygon tessellation on the
SGI Reality Engine occurs is less than one sec-
ond, including completely recomputing the shad-
ing portion of the texture map and transferring
it to texture memory. This is a speed increase of
up to three orders of magnitude over the original
method.

o The resolution of the image can be as detailed as
that of a full 1000x1000 workstation screen with
no significant performance penalty. The contrast
in precision is plainly evident, and much addi-
tional detail can be seen.

e The important qualitative features of Figure 4 are
completely preserved in Figure 5, including the

Figure 2: (a) Typical representation of a 3D knot projected to a 2D image that uses symbolic cutaways to represent
occlusions and reveal the full structure of the knot. (b) A slice into the interior of the analogous representation of
the spun-trefoil knotted sphere; three entire circular ribbons are removed from the 3D surface by painting them
a transparent black texture. These sections are farther away from the 4D camera than the normally shaded parts
of the surface with which they intersect in the 3D projection.

clear depiction of knot-crossing regions in four-
dimensional space.

3 Three-Manifolds

There are many interesting 4D objects that are in
fact 3-manifolds, not surfaces, and therefore cannot be
rendered using the acceleration methods described so
far. In particular, we have previously generated im-
ages of objects such as 3-spheres, 4D superquadrics,
hypercubes (tesseracts), and 3D scalar fields (equiv-
alent to 4D elevation maps) using the full volume-
image/volume-rendering methods [4, 5]. What alter-
natives are available for interactive manipulation of
objects such as these?

3.1 Plane-Tracing

We begin by describing a fundamental technique
that takes us the first step towards simplifying the
computation of the twice-projected 2D image of any
3-manifold in 4D that has been decomposed into tetra-
hedral volumes (precisely analogous to decomposing
a surface in 3D into triangles). To understand the
concepts, first consider a 3D world projected to a 2D
image and imagine that our desired result is a 1D im-
age given by the sum of the pixels in each column

200

of the 2D image array. In Figure 3a, we show that
the contribution of a polygon to the image intensity
in each 1D pixel can be computed from the length of
the polygon line segment intersecting the ray plane of
the column, projected to the image plane. The contri-
bution of the polygon to the 1D pixel is the integral
of the intensity over the line; if the intensity is con-
stant (e.g., planar faces and distant light), the contri-
bution is the product of the intensity and the length
of the line. This procedure might be called “plane-
tracing” — ray-tracing with a planar ray; it produces
a 1D image directly and eliminates 2D rendering from
the process of imaging 3D objects tessellated into pla-
nar faces. Adding perspective, smoothly interpolated
shading, and occlusion is in principle straightforward.

Four Dimensions. In 4D, oriented 3-manifolds
form boundaries of objects (polytopes) whose interi-
ors are 4-volumes; it is these 3-manifolds that are pro-
jected to the image volume and rendered. Since we can
see only one particular 2D view of the volume image
at a time, we can exploit a shortcut analogous to the
one just described in 3D: determine a 2D pixel value
directly from the projected lines found by intersecting
a planar ray through a column of the volume image
with each tetrahedral volume. The contribution of a
tetrahedron (hyperface) to such a pixel is the integral

Film plane

Film line
\%

Film Volume

Figure 3: (a) Schematic diagram of the construction of a column-summed image of a 3D object without an
intermediate 2D image; only the projected length of the line where a triangle intersects the planar ray need be
computed. (b) Schematic diagram showing how a solid tetrahedron in 4D contributes an intensity to its 2D image

corresponding to the length of a single line.

of its intensity over the projected length of the inter-
section line in the ray plane; if the hyperface intensity
is constant, one need only multiply by the projected
line length. A schematic diagram of this process is
given in Figure 3b.

Speed-up Approximation. We can achieve a re-
markable acceleration in 4D volume rendering when-
ever the intensity changes across portions of the pro-
jected tetrahedra are effectively linear, e.g., when the
hyperface intensity is constant. Then we may reformu-
late the problem as an equivalent 3D Gouraud shad-
ing task. We need only plane-trace the locations of
each tetrahedron’s vertices and the projected crossing
points of two opposite edges (when such a crossing
occurs), assign intensities as described above to these
2D points, and let standard bilinear interpolation al-
gorithms (e.g., in hardware) fill in the rest of the 2D
image intensities. Using an additive alpha-blend mode
with no z-buffering produces excellent representations
of complex tessellated 3-manifolds in a fraction of a
second. Similar accelerations can be achieved for non-
constant hyperface intensity provided the integral of
the intensity along the projected line can be simply
computed and interpolated among 2D projected ver-
tices.

3.2 Geometry

We note that the geometry involved in this 4D con-
struction is highly counterintuitive. We are used to
thinking in 3D that planes intersect in a common line
and that a solid intersects a plane to form an area

201

patch in the plane. In 4D, planes intersect in one
point: a plane is described in 4D by 2 constraint equa-
tions, so 2 planes give four constraints, and their mu-
tual solution is a point. Furthermore, a plane inter-
sects a hyperplane (volume) in a line: two equations
for the plane plus one equation for the hyperplane give
three equations in 4D, leaving only a line, not a sur-
face, in the intersection.

Let us define the “planar ray” contributing to pixel
(i,7) as a plane bounded by the lines from the cam-

era’s focal point C to the bottom point g’o and to the

top point ?1 of the corresponding column of the vol-
ume image. Any point in that plane has barycentric
coordinates (e, 8), e.g.,

Xap=C+a(So- C)+B(S1-C). (8)
If {X'o, X"1, X'2, X 3} are the four 4D points of one
of a set of tetrahedral “faces” bounding a 4D volume,
we may examine each of the four associated planar
triangles in turn to see if they intersect the chosen
viewing wedge at interior points or whether they miss
(like a triangular face in 3D missing a scan line or an
image column in Figure 3a).

For example, we can write the parametric form of
one of the four faces of a tetrahedron as

—

X,,,,, = ?1+#(?2—?1)+V(?3—?1). (9)
If we then set X qp = X .., Egs. (8) and (9) form
a set of four equations in four unknowns which we
solve to find their common point. If 0 < a < 1,

0 < B < 1, the point is potentially visible to the cam-
era. H0<pu<1,0<v<1,0<1—pu—v<l, then
the point lies within the face of the tetrahedron. Ei-
ther two or zero such mutual solution points will exist
among the four tetrahedral faces. If two intersections
are found, we draw the line joining them, project the
line to the volume image and add a contribution to
the 2D image intensity equal to the integral of the
projected voxel values over the projected length. For
the special case of constant voxel intensities within the
entire tetrahedron, we just have

AI = I - {projected line length}. (10)

3.3 Results

In Figure 6, we show the results of applying this ap-
proach to the rendering of a cross-eyed stereo pairofa
tesseract. Our current implementation allows the user
to rotate the 4D light, 3D object orientation, or 4D ob-
ject orientation at more than 30Hz for a 1000x 1000
image of a tesseract (up to 20 visible tetrahedra in a
given view) on an SGI Reality Engine system. The
update time is expected to be essentially linear in
the complexity of the tessellation. This overall ap-
proach is valid for any object well-approximated by
a convex polytope, including simple 3D scalar fields
[5]. Adding approximate smoothly shaded interpola-
tions is in principle straightforward (e.g., by trans-
forming to an equivalent Phong interpolation instead
of a Gouraud interpolation). Nonconvex or multiple
objects would need additional attention to avoid the
display of scene portions that should be occluded; 4D
shadows should in principle be incorporated as well in
such scenes. The approach to rendering 3-manifolds
described here is easily formulated as a parallel prob-
lem; thus we expect to be able to handle increasingly
complex interactive 3-manifold rendering in the next
generation of mathematical visualization systems.

Acknowledgments

We thank Pheng Heng, Hui Ma, and Lie-Hwang
Hwang for their contributions to this investigation.
We also thank David Banks for suggesting to us the
relevance of reference [8). We gratefully acknowledge
the facilities support of Indiana University and of
CICA (the IU Center for Innovative Computer Ap-
plications). This research was supported in part by
NSF grant IRI-91-06389.

202

References

[1] T.F. Banchoff, Beyond the Third Dimension: Ge-
ometry, Computer Graphics, and Higher Dimen-
sions, (Scientific American Library, New York,
1990).

[2] S.A. Carey, R.P. Burton, and D.M. Camp-
bell, “Shades of a Higher Dimension,” Computer

Graphics World, pp. 93-94, October 1987.

(3] AJ. Hanson and P.A. Heng, “Visualizing the
Fourth Dimension Using Geometry and Light,” in
the Proceedings of Visualization 91, San Diego,

CA, Oct 22-25, pp. 321-328, 1991.

A.J. Hanson and P.A. Heng, “Illuminating the
Fourth Dimension,” Computer Graphics and Ap-
plications, 12, No. 4, pp. 54-62 (July, 1992).

[5] AJ. Hanson and P.A. Heng, “Four-Dimensional
Views of 3D Scalar Fields,” in Proceedings of Vi-
sualization ’92, Boston, MA, Oct 21-23, 1992,
pp. 84-91 (IEEE Computer Society Press, Los
Alamitos, CA, 1992).

[6] C. Hoffmann and J. Zhou, “Some Techniques for
Visualizing Surfaces in Four-Dimensional Space,”

Computer-Aided Design, 23, pp. 83-91 (1991).
7

—

S. Hollasch, “Four-space visualization of 4D ob-
jects,” Master’s Thesis, Arizona State University,
August 1991.

J.T. Kajiya and T.L. Kay, “Rendering Fur with
Three Dimensional Textures,” in the Proceedings
of Siggraph 89, Computer Graphics 23, pp. 271-
280 (1989).

(9

—

K.V. Steiner and R.P. Burton, “Hidden Volumes:
The 4th Dimension,” Computer Graphics World,
pp. 71-74, February 1987.

Figure 4: Volume rendering of volume images produced using full 4D scan-conversion of thickened surfaces
(Hanson and Heng [4]). (a) Spun trefoil. (b) Twist-spun trefoil.

Figure 5: Images of surfaces created interactively using the “4D thin hair” method introduced in Section 2. (a)
Spun trefoil. (b) Twist-spun trefoil.

Figure 6: Cross-eyed stereo pair of a hypercube in 4D created interactively using the method of Section 3. The
front, bottom, and right sides of the blue cube face the viewer; the magenta cube is a “roof” viewed from below.

(See color plates, p. CP-19.)

203

Interactive Visualization Methods for Four Dimensions, A.J. Hanson and R.A. Cross,
pp. 196-203.

Figure 4; Volume rendering of volumeimages produced using full 4D scan-conversion ofthickenedsurfaces (Hanson
and Heng 4)). (@) Spun trefoil. (b) Twist-spun trefoil.

Figure 5: images of surfaces created interactively using the “4D thin hair” method intfroduced in Section 2. (@) Spun

trefoil. (b) Twist-spun trefoil.

Figure 6: Cross-eyed stereo pairofa hypercubein 4D created interactively using the method of Section 3. The front,
pottom, and right sides of the blue cube face the viewer: the magenta cube is a “roof” viewed from below.

CP-19 BEST COPY AVAL LABLE

