
User interface 
By integrating user-inter-  

face classes with existing ap- 
plications,  including the  
parser and animation classes, 
we created a powerful visual- 
ization environment.  Figure 
16 shows one user interface to  
the golf simulation. The green 
can be viewed from different 
points in space with a virtual 
camera controlled by a point- 
ing device (a mouse ) .  T h e  
user performs the rest of the 
interact ions using var ious 
widgets in the control panel 
on the right: 

Figure 15. Wykagyl Country Club 16th hole. 

derers. cameras. lights. actors, models. and splines. We also 
dcvclopcd classes specifically for golf modeling and analysis. 
One set of analysis classes implements thc initial- and bound- 
ary-value solution algorithms in Niimerical Recipes7 User-in- 
terfacc classes for the HP  widgets’’ pcrmittcd us to create a 
custom and portable X Window user intcrface.l3 The intcr- 
preted LYMB environment let us customize the user intcr- 
face for easy operator interaction during the broadcast. 

T h e  Golf Green  class reads survey da ta  and crcatcs  a 
polygonal model of the green. perimeter. and skirt. It also re- 
sponds to  @(s,y)iY, returning the value of the elevation at 
the requested Cartesian location on the green surface. An- 
other message, @(x,y)normnP, returns the surface normal at 
the point (x, y ) .  The initial-value problem solver uses these 
messages. Golf Green has a scale factor that scales the eleva- 
tions and normals so the shooting method can control the 
flatness of the green. We implcmcntcd the shooting method 
in a LYMB script that uses loops, the initial-value solver, and 
Golf Green classes. 

The system runs on Sun 3/4, Hewlett-Packard 9000. Star- 
dent GS2000. Digital Equipment DSS000, and Silicon Graph- 
ics 4D workstations. Rendering classes for vendor-specific 
hardware permit fast response on  these systems. For  in- 
stance. the Silicon Graphics workstation renders a typical 
green at 5 frames per second. Initial-value problems on this 
machine take less than a second. Boundary-value solution 
times depend on the green topography, coefficient of friction. 
and distance from the hole. For distances less than 10 feet. 
solution times are under 3 seconds. Distances longer than 30 
feet require an average of about 20 seconds. 
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Pin & Ball pops up slid- 
ers t o  change the position of 
t he  pin and  the  ball on  the  
green. Whenever the ball o r  
pin position is changed, t he  
system places the virtual cam- 
era in a natural player’s posi- 

tion, so the ball and the hole are in the field of view. After 
the user changes the ball o r  hole position, three widgets im- 
mediately show suggested speed, direction, and distance from 
the ball to the hole. 

Arrow widgets change the initial putt speed and direc- 
tion. Footprints and a putter head are displayed beside the 
ball each time the direction is changed. Zero direction corre- 
sponds to the straight line from the ball to the hole. 

T h e  Putt  selection shows the ball’s trajectory on  the 
green calculated on the basis of the defined initial speed and 
direction. 

Figure 16. Golf simulation user interface. 
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Approach 

Figure 1. (a )  A thin wire in a 3D 
world show\ no 3D 4tructure. (b) 
A wire thickened to form a \hinj 
tube interact4 with light to  reveal 
much of the 3D structure of the 
underlying thin wire. 

Since surfaces embedded in tour d imens ions  present the same 
\art ol  rendering difficulties :I\ \+ ire\ enihcclded in three dirncn- 
\ i o n s .  \\e adopt ;I \imilar so lu t ion .  7 h e  tund;rmc:ntal ideo o f  our  
surlace-rendering technique i s  to a t t a c h  :I s h i n )  circle to t a c h  
point ol t h e  surlace t o  make i t  - \ h o w  tip" a h e n  we \him: I D  
l ight on i t .  

Rendering in D dimensions 
A s in ip lc  \va! ol making wnsc ol what i t  means to render ;I 

m;ithcm;ttical ohject  t h a t  I iLes in ;I 4D \ \ o r l d  i\ t o  considet- \tcp 
li! \ t cp  ho\\ \+e might render ob jec ts  i n t o  iiiiagcs i n  .;implcr 
world \ .  Figure 2 illustrate\ graphicall! t h e  process ot r e n d c r i n ~  
;I scene in tuo .  thrcc. a n c l  lour t l imcns ions .  In the 2D a.orld 0 1  
Figure ?a. light r a y  can reflect directly off curves to torin ; i n  

image in  t h e  pixels of the ricw / r / r c , .  Point\ arc also interc\tinF 
otiicct'\ in t ~ b o  dinicnsion4. but the! cio not h a \ e  ;I single norniiil 

Figure 2. In each dimen\ion I), onl j  oh.ject\ of d i m e n h n  (11-1) reflect light in a unique direction to  form an image in the 
(I)-1 )-dirnenrional biewing region. (a)  l w o  dimemion\. (h) three dinien\ion\, ( c )  lour dinien\ion\. 
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Figure 3. In each dimension D, we can make objects of any dimension appear to reflect light in a unique direction by thickening 
them in a radially symmetrical way so they acquire dimension (D-1). They then form proper images in the (D-1)-dimensional 
viewing region. (a) Two dimensions, (b) three dimensions, (c) four dimensions. 

vector and light does not reflect coherently from them to  form 
a useful shaded image. In the 3D world of Figure 2b. surfaces 
have unique normal vectors at each point. Lighted surfaces 
form images in the pixels of the v z ~ ~ ~ p / ( i i i ~ . ’ ’  Barc points and 
lines in three dimensions d o  n o t  reflect light to form good 
shaded images. Finally. a s  Figure 2c shows. an image in a 4D 
world is a volume that we call the view vohnze. Volumetric 
objects (3-manifolds) reflect light properly to form shaded im- 
ages in the view volume. but points, curves. and surfaces d o  not. 

N o w  suppose we want to  “see” objects such as points in two 
dimensions. points and curves in three dimensions. and points. 
curves. and surfaces in four dimensions. We need to make these 
objects “thicker” so they have unique normal vectors: only then 
can wc use conventional models to form their shaded images i n  
thc viewing region. The simplest approach is to expand each 
object in a radially symmetrical way. going out from each point. 
Thus. wc make ii point visible in two dimensions by adding a 
circle that turns i t  i n t o  a little curve. We expand points in three 
dimensions into spheres. and make a curve visible by sweeping 
i t  ou t  with a circle to turn i t  into a cylindrical tube. In four 
dimensions. points turn i n t o  .?-spheres. curves become swept 
2-spheres. and wc‘ make a surface visible by attaching a shiny 
circle at each point. 

Table 1 summarizes the procedure for modifying objects in 
each dimension to make them usable with conventional lighting 
models and shaded rendering methods in that dimension. Fig- 
ure 3 illustrates the geometric modifications graphically for 
comparison with Figure 2. 

We can summarize the procedure in a general rule: 

To make an object of dimension tl (a  &manifold) interact 
sensibly with light rays in D dimensions. attach to  each 
point of the object a radially symmetrical (spherical) 
manifold of dimension ( D  ~ ( I  ~ 1 )  lying in the object’s 
normal space. 

The result is always a manifold o f  dimension ( D  ~ I ) ,  the same 
dimension a s  the viewing region. For example, in two dimen- 
sions ( D  = 2). a point (which has dimension d = 0) must be 
expanded into a circle. which is technically a sphcre o f  dimen- 
sion 1 .  In four dimensions ( U  = 4). a line ( d  = 1 )  must have 
ordinary balloonlike 2D spheres attached to cach point to  ex- 
pand it into a .?-manifold. 

Provided we use thc methods just described to  convert all our 
objects into 3-manifolds in a 4D world (that is, objects defined 
by volumes with 4D vertex coordinates), we can create shaded 

Table 1. To make an object of dimension d i n  a D-dimensional world ren- ~ 

derable, give it dimension (D-1) by attaching the indicated (D-d-1)-dimen- 
sional obiect to each point. 

d indicated structure to  make object renderabl 

World , D i m e n w n  

n = 2 i ~1 D = 3  

1 l ) = 4  

Points Curves 1 Surtaces 
d = 0 

Circle 

Sphere 

3-Sphere 

-~ ~ 

images by analogy with 3D rendering tech- 
niques. We replace projection o f  visible 3D 
polygon faces into the view plane with projec- 
tion of visible 4D volume elements into the 
view volume. The projected volume is then 
scan converted to the raster of view-volume 
voxels. Multiple volume elements might lie on 
the same 4D line of sight. We can account for 
the resulting occlusion effects using methods 
such as a “w-buffer.” the 4D analog o f  a z -  
buffer, to  eliminate parts of objects that are 
behind other objects relative to the 4D view- 
point. In the following section, we show how 
we can handle and exploit 4D shadows using 
similar analogies t o  3D methods. 
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Projections and shadows 
X ( 4 .  P -  c )  + P(c -4. X) 

( I;. P - 4 'X) 
-~~ I = x( I ( , )  = 

Here we outline the mathematical principles needed t o  c o m  
putc projected images ofohjccts and their shadows in I1 dinicn- The role of shadows 
sions. The  information provided b y  a single shadow seen alongside 

Projecting to a lower dimension 
In three dimensions. both the view plane and the ideal walls 

on which \hadon's are cast are typically 2D rectangles. We 
argue that in four dimensions the view volume is ii 3D r 
lar solid and shadows are cast on "w;iIls" that are rectangular 
solid subsets of hyperplanes. Objects appcar in the view volume 
as 3D projections from lour dimensions: that is. all points on  the 
4D object that lie o n  a ray from the 4D focal point through a 3D 
point in the view \.olume are projected t o  that single 3D point in 
the image. We must uxe depth-buflering methods to choow the 
opaque scene point neare\t the local point or  to combine trans- 
parent objects. Furthermore. a darkened. smokelike cloud ap- 
pears i n  the view volume whenever a ray cast from the 1 D  light 
source onto ;I \&ihle "uall" is obstructed by a n  object to form a 
shadow. 

To project lroin 1) dimensions to (11-1 )-dimensional \ iew 
hyperplanes or shadow hyperplanes. we let X = ( X I .  A':. ..., X n )  
be the location of either ;I light source o r  21 viewpoint. and let 
the equation wtisticd by points x in the image (hypcr)plane be 

the object in 21 single view is like information arising from a 
src ,or i t l  i , iw ,poi t i l  at the light source. Therefore. even a single 
shadow provides some stereographic depth information if we 
know the location of the light source and of tbc (hyper)plane on 
which the shadow is cast. Multiple shadows cast by multiple 
light sources can provide additional constraints resembling the 
various views in an engineering drawing (which would have 
lour \ iews i n  four dimensions). 

Figure5 4 and 5 show examples o f  (unthickcned) 2D surfaces 
embedded in four dimensions along with their 4D shadows. We 
made these images by projecting the object and its shadow into 
three dimensions. illuminating the object's opaque projection 
with 3D lighting. treating the shadow as a gray semitransparent 
film. and rendering everything into a conventional 2D image. 
The shadows here are thin surfaces, artificially thickened for 
\.isibility. as we might treat the shadow o f a  wire in three dimen- 
sions. Rotating one of these objects in four dimensions inter- 
changes its image outline with that ofitsshadow.asshown in the 
figures. We give the mathematical descriptions of these objects 
1 at er. 

A 

Intensity shading methods / / ' x = ( '  (1 )  

where I I  . I I  = I .  (iiven an! known point H i n  the (hyper)plane. 
we can determine the v;ilue of c using c = I: . H .  We find the 
image of ;I sccnc point P = ( P I .  1'2. .... P i , )  b> substituting into 

Equation I the parametric 
equation o f ; t  line joining the 

A A  
Image\ of illuminated 3D objects produce a wealth of orien- 

tation cues that the human  visual system can interpret reliably. 
apparently by imposing constraints o n  the ambiguow data. 

Shaded images of 4D ob- 
jects also produce rich ori- 

viewpoint or liqht source X 
t o  the \cene point x ( f )  = X + 
I ( P i  X) ,rnd wlving lor til = 

( c  - / I .  X)/( ( P - X ) )  The 
image point I I> ing i+ifhiii 

t h e  ini'rge (1iyper)pldne 
(Equ'ition 1 ) is then 

and it4 ,hadow projected to 
3D u4ing two different 4D 
orientation$. 

entation cues that are po- 
tentially useful. provided we 
can learn to interpret them. 
I n  this \ection. we discuss 
the i\\ues invohed in pro- 
ducing \haded images of ob 
jects in tour dimension\. 

four dimensions)  and it4 
\hadow projected to 3D using 
two ditferent 4D orientations. 
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Extending rendering from 3D to 40  Smooth shading 
The rendering process in four dimensions is closely analogous 

to that in three dimensions. In three dimensions. a typical 
Gouraud or Phong algorithm for rendering the surface of a 
solid object into the 2D view-plane raster follows these steps: 

In  three dimensions. a typical shading algorithm computes 
the normalvector; at a surface point (usuallyapolygon vertex) 
and assigns a Lambertian diffuse intensity 

A A  

1~~ = 10 n Id (3) 

Ii 1 I,, = ~~ Det 
H 

1.  Divide planar faces into triangles. 
2. Compute the normals at the face vertices. For example. 

take the gradient of an implicit surface defined by a single 
function of the 3D coordinates. compute the cross product of 
tangents to  a parametric surface, o r  average the normals of the 
surrounding faces in the general case. 

3. Project each triangle to the 2D view plane. 
4. In the view plane. interpolate the intensities (Gouraud 

shading) or  normals (Phong shading) from vertex to vertex to 

1.1 Pi Q I  RI 
1-2 1’2 Q, K z  
I.; 1’3 Q3 K j  
1-d PJ Q-1 Rd 

(5) 

A 
to the point. where L is the unit vector from the point t o  the light 
source and the dot product is taken as zero when negative (the 
normal is pointing away from the light). If  both sides of a poly- 
gon might be visible. the absolute value may be used instead or 
the surface may be doubly covered (for example, for one-sided 
surfaces). 

We can actually consider I? to be proportional to the cro.s.s 
puotfucrofthe ordered tangent vectors P(u. v ) ,  Q(u. v) at a local 
point ( U ,  v) in the surface. so 

get the values at the beginning and end of each scan line. 
5. Interpolate these values along the scan line to get the 

intensity or  normal at an arbitrary pixel in the projected trian- 
gle. 

(4) 

6. For Phong shading. compute the intensity at the pixel 

7. Use a z-buffer or equivalent method to eliminate hidden 
using the interpolated normal. 

surfaces if required. 

In four dimensions. we alter the\e steps to render the volume 
clement: 

1. Subdivide thc volume into tetrahedrons embedded in 
four dimensions. Take care to avoid subdivisions tha t  leave 
empty volume gaps between adjacent nonplanar faces i f  a rec- 
tangular lattice is being used. 

2. Compute the intensities or  normals at the tetrahedral ver- 
tices. For example. find the normals by taking the gradient of a 
volunzr defined implicitly by a single equation in the four coor- 
dinate variables. by taking the cross product (see below) of the 
tangents, or by averaging the normals of the surrounding vol- 
iinies in the general case. 

3. Project each tetrahedron to the view volume. 
4. In the view volume. interpolate the intensities (Ciouraud 

shading) or normals (Phong shading) from vertex to vertex to 
get the values at the vertiws ofench polygor7 lying in the scan 
planes slicing up the tetrahedron. 

5 .  In each scan plane, we now have a planar polygon repre- 
senting a slice of the tetrahedron’s voxels. Using the known 
values at each vertex of this polygon. interpolate to find the 
values at the polygon’s internal voxels using the standard 3D 
view-plane interpolation. 

6.  For Phong shading, compute the intensity at each voxel 
using the interpolated normal. 

7. To eliminate occluded volumes from the view volume, use 
a 4D depth buffer (wbuffer) or  equivalent method and store 
only the intensity of the nearest object lying on a given ray into 
the view-volume voxels. 

58 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 11:39 from IEEE Xplore.  Restrictions apply.



Examples of surfaces in 4D 
I n  t h i s  sec t ion  \\e pre\cnt our re\ult\ lor s o m e  cla\sic L v i i i -  

pic\ ol surface\ lroni J D  topology. Application\ ot the method 
t o  other situations. such ;I\ the rendering 0 1  po in th  : incl L t ine\  

cinhcdclcci i n  l o u r  dimension\. l i a \ c  h c e n  p u t ~ l i \ I i c d  e I \e -  
\\ here. I 
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Figure 8. Cro55-eped 5tereo pairs of two view5 of a Steiner wrface differing by their 4D orientation. Top: the thickened Steiner 
wrface rendered in four dimemion5 with 41) lighting. Bottom: the 5tanddrd Steiner wrface projected to three dimenGon5 and 
rendered wing 31) methods. The image5 on the left 5ide are for the right eye, and the image5 on the right 5ide are  for the left eye. 
To view in 5tereo. place a finger on the page between the two image5 and focus on the finger while moving it toward your nose until 
you \ee three di5tinct image\. The center image 5hould appear in three dhm"ion5. 

Steiner surface 4D torus 
Hilbert and <'ohn-Vos\cn'' yavc ;I set 0 1  equations for i i  non- 

singular embedding ol thc projective plane in tour dimensions 
known as ;I Steiner surface. We represent this 4urflicc paramet- 
rically by the equations 

Next wc look a t  the torus. ano the r  3D surtacc described by 
Hilbert and ('olin-Vossen.''Thc familiar torus in  three dimcn- 
\ions is strongly curvecl: the 4D version is intrinsically f l a t .  like 
the surface o f a  cylinder in three dirnensions. We formulate the 
equations in four dimensions simply by taking t\vo scpar';ite 
circles. one in the first two coordinates and the other  in the 1 = cos' / I  eo\  I '  ~ sin cos- L '  

second two coordinates o f  the 4D space: 

where 0 i / I  < JC? 0 < I '  c: JC. We computc the tangent \'cctors 
locally by taking partial dcrivati\cs with respect to I I  and I' ancl 
ortlionorniali/ing ;is recluired. 

When we rotate this equation i n  t'oitr ilinic,nsions. i t  chwngcs 
smoothly from the classic "cross cap" torm ol the projective 
plane t o  Steiner'\ Roman surface. depending on the rotation 
axes we choose. Figure 4 shows vie\\\ of this surfiice from dit- 
ferent 4D viewpoints produced by prolecling the wrface and its 
shadow t o  three dimensions before rendering using convcn- 
tional3D lighting methods. The  use olshado\vs grc-atly clarifies 
the nature of the Inwicction from fou r  dimensions to three di- 
inension\. I f  u c  animate this rotation. \vc c;in \imultaneousl! 

: = c o s  I' 

11' -= sin 1' 

Figure 5 sho\\s the 311 projection of the torusobject (with 3D 
rendering) and its sh;rdo\v for  tuo \kwpoints  in  a 3D rotation 
sequence. Again. an animation o f  this rotation s h o w  h o w  the 
object and itsshadowcontinuall!eschange appearances. Using 
o n l y  the .3D proiection. it is verq difficult to  grasp the flat nature 
o f t h e  intrinsic wrfacc in four  dimensions. 

Figure (1 s h o w  stereo p a i r 4  of the torus rendered i n  four 
dimensions with 3D lighting and i n  t w o  different 4D orienla- 
t ions.  'The -3D proiection with 3D lighting is \hewn henealh lor 

see the two states o f  the shape ancl watch thc,m exchange places 
as the rotation proceeds. 

Figure S shou\ \ terco pairs o f  the sh;iclecl \olume rencleringol 
tlic Steiner s u r l x c .  We thicken each point hy  placing ii v " l  
specular circle i n  the normal plane a n d  illuminate the resulting 
3-manifold by ;I \ingle 3D point light source. ~1.0 distinguish 4D 
from 3D cftccts. \\e render the full 4D thickened object along 
with the 31) rcnclering of its projection. We give image\ t o r  two 
separate 4D rotation angles. showing the dramatic changes in  
the apparent stiiipt. 2 ~ ~ 1 ~ 1  its 411 specular rellectioii\ 21s the oricn- 
t ; r t ion cvoI\ c's. 

comparison. Here the 4D specularitiex again give ;I dramati- 
c;illy different picture and provide some insight into the flatness 
o l  the surface i n  l ou r  dimensions. 

Knotted sphere 
Finiill! wc cwminc  the 3D version ola  k n o t .  Knottcd cur\'cs 

can ex is t  onl!, i n  three dimensions. sincc i n  four dimensions a 
knot  can i11wiys tx undone b! jumping out in  the fourth dimen- 
sion. I n  l o u r  dimensions. howc\cr. u e  c a n  have t w o  \ irt j irc.c~.s 
t h i i t  clash at ;I point and  cannot pass h! one another. Thus. In 
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