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Figure 15. Wykagyl Country Club 16th hole.

derers, cameras, lights, actors, models, and splines. We also
devcloped classes specifically for golf modeling and analysis.
One set of analysis classes implements the initial- and bound-
ary-value solution algorithms in Numerical Rccipes.7 User-in-
terface classes for the HP widgctslz permitted us to create a
custom and portable X Window user interface.” The inter-
preted LYMB environment let us customize the uscer inter-
face for easy operator interaction during the broadcast.

The Golf Green class reads survey data and creates a
polygonal model of the green, perimeter, and skirt. It also re-
sponds to @(x,y)z?, returning the value of the elevation at
the requested Cartesian location on the green surface. An-
other message, @(x,v)normal?, returns the surface normal at
the point (x, y). The initial-value problem solver uses these
messages. Golf Green has a scale factor that scales the eleva-
tions and normals so the shooting method can control the
flatness of the green. We implemented the shooting method
in a LYMB script that uses loops, the initial-value solver, and
Golf Green classes.

The system runs on Sun 3/4, Hewlett-Packard 9000, Star-
dent GS2000, Digital Equipment DS5000, and Silicon Graph-
ics 4D workstations. Rendering classes for vendor-specific
hardware permit fast response on these systems. For in-
stance, the Silicon Graphics workstation renders a typical
green at 5 frames per second. Initial-value problems on this
machine take less than a second. Boundary-value solution
times depend on the green topography, coefficient of friction,
and distance from the hole. For distances less than 10 feet.
solution times are under 3 seconds. Distances longer than 30
feet require an average of about 20 seconds.
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User interface

By integrating user-inter-
face classes with existing ap-
plications, including the
parser and animation classes,
we created a powerful visual-
ization environment. Figure
16 shows one user interface to
the golf simulation. The green
can be viewed from different
points in space with a virtual
camera controlled by a point-
ing device (a mouse). The
user performs the rest of the
interactions using various
widgets in the control panel
on the right:

* Pin & Ball pops up slid-
ers to change the position of
the pin and the ball on the
green. Whenever the ball or
pin position is changed, the
system places the virtual cam-
era in a natural player’s posi-
tion, so the ball and the hole are in the field of view. After
the user changes the ball or hole position, three widgets im-
mediately show suggested speed, direction, and distance from
the ball to the hole.

e Arrow widgets change the initial putt speed and direc-
tion. Footprints and a putter head are displayed beside the
ball each time the direction is changed. Zero direction corre-
sponds to the straight line from the ball to the hole.

e The Putt selection shows the ball’s trajectory on the
green calculated on the basis of the defined initial speed and
direction.

Figure 16. Golf simulation user interface.
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Much of the mathematical literature focuses
on surtaces (manifolds of dimension 2) em-
bedded in four dimensions and ways of dis-
playing their projections to three dimensions.
A novel property of the 41 world not present
in three dimensions is the existence of nontriv-
1al volumetric objects (manifolds of dimension
3): accordingly. other work such as that of
Steiner and Burton” and Carey. Burton. and
Campbell has addressed the problem of how
to render 3-manifolds in a 41D world and show
the results in an ordinary 21D image. The 4D
rendering algorithms we describe in this arti-
cle share many basic features with the algo-
rithms presented by these authors. However.
no previous 4D rendering method applies to
points. curves. or surtaces in four dimensions,

Our technigue”

eencrates images revealing
new. intrinsically four-dimensional features of
manifolds with dimension less than 3 embed-

dedina 4D world.

Approach

Our approach can best be understood by considering the
problem of rendering a tangle of very thin wire in 3D space. At
cach point. the wire has one local tangent direction and a nor-
mal plane containing a set of normal directions parameterized
by a circle. Light falling on the wire is not reflected toward the
image plane because there is no tlat mirrorlike surface to cause
such a reflection. This is just another way of saving that points
on the wire do not have onc unique normal vector. as required
by elementary models for computing shading from illumina-
tion, but have a family of normal dircctions Iving in a planc.
However. il we diicken the thin wire by adding a shiny cirele in
the normal plane at cach point. it becomes a tbe that reflects
light beautifully and shows a great deal of 3D structure. Figure
I shows the contrast between these two situations. The thick-
ened wire also shows clearly where one part of the wire passes

in front of another part. giving even more 3D information,

75 R 0 O W 50 4 D OV O N8 5 048 160 0

Figure 1. (a) A thin wire in a 3D
world shows no 3D structure. (b)
A wire thickened to form a shiny
tube interacts with light to reveal
much of the 3D structure of the
underlying thin wire.

Since surfaces embedded in four dimensions present the same

sortof rendering difficulties as wires embedded in three dimen-
stons. we adopt a similar solution. The fundamental idea of our
surface-rendering technigue is to attach a shiny circle to cach
point of the surface to make it “show up™ when we shine 4D
lightonit.

Rendering in D dimensions

A simple way of making sense of what it means (o render a
mathematical object that lives in a 4D world is to consider step
by step how we might render objects into Images in simpler
worlds. Figure 2 illustrates graphically the process of rendering
ascence in two, three. and four dimensions. In the 2D world of
Figure 2a. light rays can reflect direetly off curves to form an
image in the pixels of the view line. Points are also interesting
objects in two dimensions. but they do not have a single normal

Figure 2. In each dimension D, only objects of dimension (D-1) reflect light in a unique direction to form an image in the
(D-1)-dimensional viewing region. (a) Two dimensions, (b) three dimensions, (¢) four dimensions.

July (992
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Figure 3. In each dimension D, we can make objects of any dimension appear to reflect light in a unique direction by thickening
them in a radially symmetrical way so they acquire dimension (D-1). They then form proper images in the (D-1)-dimensional
viewing region. (a) Two dimensions, (b) three dimensions, (¢) four dimensions.

vector and light does not reflect coherently from them to form
a useful shaded image. In the 3D world of Figure 2b, surfaccs
have unique normal vectors at each point. Lighted surfaces
form images in the pixels of the view plane.”” Barc points and
lines in three dimensions do not reflect light to form good
shaded images. Finally. as Figure 2c shows. an image in a 4D
world is a volume that we call the view volume. Volumetric
objects (3-manifolds) reflect light properly to form shaded im-
ages in the view volume, but points, curves. and surfaces do not.

Now suppose we want to “see” objects such as points tn two
dimensions, points and curves in three dimensions, and points,
curves. and surfaces in four dimensions. We need to make these
objects “thicker” so they have unique normal vectors; only then
can we use conventional models to form their shaded images in
the viewing region. The simplest approach is to expand each
object in aradially symmetrical way, going out from each point.
Thus, we make a point visible in two dimensions by adding a
circle that turns it into a little curve. We expand points in three
dimensions into spheres, and make a curve visible by sweeping
it out with a circle to turn it into a cylindrical tube. In four
dimensions. points turn into 3-spheres, curves become swept
2-spheres. and we make a surface visible by attaching a shiny
circle at each point.

sional object to each point.

i Table 1. To make an object of dimension d in a D-dimensional world ren- ;{
. derable, give it dimension (D-1) by attaching the indicated (D-d-1)-dimen- |

Table 1 summarizes the procedure for modifying objects in
cachdimension to make them usable with conventional lighting
models and shaded rendering methods in that dimension. Fig-
ure 3 illustrates the geometric modifications graphically for
comparison with Figure 2.

We can summarize the procedure in a general rule:

To make an object of dimension d (a d-manifold) interact
sensibly with light rays in D dimensions, attach to cach
point of the object a radially symmetrical (spherical)
manifold of dimension (D - d — 1) lying in the object’s
normal space.

The result is always a manifold of dimension (D — 1), the same
dimension as the viewing region. For example, in two dimen-
sions (D = 2). a point (which has dimension d = 0) must be
expanded into a circle. which is technically a sphere of dimen-
sion 1. In four dimensions (D = 4), a line (d = 1) must have
ordinary balloonlike 2D spheres attached to each point to ex-
pand it into a 3-manifold.

Provided we use the methods just described to convert all our
objects into 3-manifolds in a 4D world (that is, objects defined
by volumes with 4D vertex coordinates), we can create shaded

images by analogy with 3D rendering tech-
niques. We replace projection of visible 3D
polygon faces into the view plane with projec-
i tion of visible 4D volume elements into the
i view volume. The projected volume is then
i scan converted to the raster of view-volume
voxels. Multiple volume elements might liec on

* Add indicated structure to make object renderable

the same 4D line of sight. We can account for

S 1 ‘ \ the resulting occlusion effects using methods

World Points Curves \ Surfaces Volumes | (b as a “w-buffer,” the 4D analog of a z-

Dimension d=0 d=1 | d=2 d=3 buffer, to eliminate parts of objects that are

D=2 Circle - | behind other objects relative to the 4D view-

T T e e s m 1 noint. In the following section, we show how

D=3 Sphere Circle. - \ecan handle and exploit 4D shadows using
D=4 3-Sphere Sphere Circle R | similar analogies to 3D methods.

[EEE Computer Graphics & Applications
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Projections and shadows

Here we outline the mathematical principles needed to com-
pute projected images of objects and their shadows in D dimen-
sions.

Projecting to a lower dimension

In three dimensions, both the view plane and the ideal walls
on which shadows are cast arc typically 2D rectangles. We
argue that in four dimensions the view volume is a 3D rectangu-
lar solid and shadows are¢ cast on “walls™ that are rectangular
solid subsets of hyperplanes. Objects appear in the view volume
as 3D projections from four dimensions: thatis, all points on the
4D object that lic on aray from the 4D focal point through a 3D
pointin the view volume are projected to that single 3D pointin
the image. We must use depth-buffering methods to choose the
opaque scene point nearest the focal point or to combine trans-
parent objects. Furthermore. a darkened. smokelike cloud ap-
pears in the view volume whenever a ray cast from the 4D light
source onto a visible “wall™ is obstructed by an object to form a
shadow.

To project from [ dimensions to (D-1)-dimensional view
hyperplanes or shadow hyperplanes. we let X = (X, X, X))
be the location of cither a light source or a viewpoint. and let
the cquation satistied by points x in the image (hyper)plane be

hex=c n

where 111 = 1. Given any known point Hin the (hyper)planc,
we can determine the value of ¢ using ¢ = 7 -H. We find the
image of a scene point P = (P Pa ... Pp) by substituting into
Equation | the parametric
cquation of aline joining the
viewpoint or light source X

to the scene point. x(r) = X +
1 (P -X).and solving for ty =
(c—n-X)/(n+(P=X)). The
image point I lying within
the image (hyper)plane
(Equation 1) is then

Figure 4. The Steiner surface
and its shadow projected to
3D using two different 4D
orientations.
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The role of shadows

The information provided by a single shadow scen alongside
the object in a single view is like information arising {from a
second viewpoint at the light source. Thercfore, even a single
shadow provides some stereographic depth information if we
know the location of the light source and of the (hyper)plane on
which the shadow is cast. Multiple shadows cast by multiple
light sources can provide additional constraints resembling the
various views in an engineering drawing (which would have
four views in four dimensions).

Figures 4 and 5 show examples of (unthickened) 2D surfaces
cmbedded in four dimensions along with their 4D shadows. We
made these images by projecting the object and its shadow into
three dimensions. illuminating the object’s opaque projection
with 3D lighting, treating the shadow as a gray semitransparent
film, and rendering everything into a conventional 2D image.
The shadows here are thin surfaces, artificially thickened for
visibility, as we might trcat the shadow of a wire in three dimen-
sions. Rotating onc of these objects in four dimensions inter-
changesitsimage outline with that of its shadow. as shown in the
figures. We give the mathematical descriptions of these objects
later.

Intensity shading methods

Images of illuminated 3D objects produce a wealth of orien-
tation cues that the human visual system can interpret reliably.
apparently by imposing constraints on the ambiguous data.

Shaded images of 4D ob-
jects also produce rich ori-
entation cues that are po-

tentially uscful. provided we
can learn to interpret them.
In this section, we discuss
the issues involved in pro-
ducing shaded images of ob-
jects in four dimensions.

Figure 5. The torus (a circle
swept around another circle in
four dimensions) and its
shadow projected to 3D using
two different 4D orientations.

57
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Extending rendering from 3D to 4D

The rendering process in four dimensions s closely analogous
to that in three dimensions. In three dimensions. a typical
Gouraud or Phong algorithm for rendering the surface of a
solid object into the 2D view-plane raster follows these steps:

1. Divide planar faces into triangles.

2. Compute the normals at the face vertices. For example.
take the gradient of an implicit surface defined by a single
function of the 3D coordinates, compute the cross product of
tangents to a parametric surface, or average the normals of the
surrounding faces in the general case.

3. Project each triangle to the 2D view plane.

4. In the view plane, interpolate the intensities (Gouraud
shading) or normals (Phong shading) from vertex to vertex to
get the values at the beginning and end of each scan line.

S. Interpolate these values along the scan line to get the
intensity or normal at an arbitrary pixel in the projected trian-
gle.

6. For Phong shading. compute the intensity at the pixel
using the interpolated normal.

7. Use a z-buffer or equivalent method to eliminate hidden
surfaces if required.

In four dimensions, we alter these steps to render the volume
element:

1. Subdivide the volume into tetrahedrons embedded in
four dimensions. Take care to avoid subdivisions that lcave
empty volume gaps between adjacent nonplanar faces if a rec-
tangular lattice is being used.

2. Compute the intensities or normals at the tetrahedral ver-
tices. For example. find the normals by taking the gradient of a
volume defined implicitly by a single equation in the four coor-
dinate variables, by taking the cross product (see below) of the
tangents, or by averaging the normals of the surrounding vol-
umes in the general case.

3. Project each tetrahedron to the view volume.

4. In the view volume, interpolate the intensities (Gouraud
shading) or normals (Phong shading) from vertex to vertex to
get the values at the vertices of each polygon lying in the scan
planes slicing up the tetrahedron.

S. Ineach scan plane, we now have a planar polygon repre-
senting a slice of the tetrahedron’s voxels. Using the known
values at each vertex of this polygon. intcrpolate to find the
values at the polygon’s internal voxels using the standard 3D
view-plane interpolation.

6. For Phong shading, compute the intensity at each voxel
using the interpolated normal.

7. Toeliminate occluded volumes from the view volume, use
a 4D depth buffer (w-buffer) or equivalent method and store
only the intensity of the nearest object lying on a given ray into
the view-volume voxels.

58

Smooth shading

In three dimensions, a typical shading algorithm computes
A . .
the normal vector n at a surface point (usually a polygon vertex)
and assigns a Lambertian diffuse intensity

In=1lon-L 3)

tothe point, where ? is the unit vector from the point to the light
source and the dot product is taken as zero when negative (the
normal is pointing away from the light). If both sides of a poly-
gon might be visible. the absolute value may be used instead or
the surface may be doubly covered (for example, for one-sided
surfaces).

We can actually consider A to be proportional to the cross
productof the ordered tangent vectors P(u.v), Q(u, v) atalocal
point {u, v) in the surface. so

I Ly Py Q
Ip= I Det |L> P> Q- (C))
Ly Py Qs

where L is the vector to the light source and we choose the
normalization H = LIl x [Cofactor LIl to make the maximum
value of the determinant be unity.

In four dimensions, the shading equation for 3-manifolds is
obtained either from Equation 3 with a four-vector normal or
by expanding the determinant in Equation 4 to four columns
and placing the tangent directions (P. Q. R) at a local point (i1,
v.8) on the 3-manifold into the columns, yielding the form

L. P O R

I s P O R

=do 2 B0 R 5
o=y Pty b 0. R, ®

Ly Py Oy Ry

For points (dimension d = 0), curves (d = 1), and surfaces (d =
2). there are zero, one, or two available tangent vectors instead
of the three needed in Equation 5, so we are missing critical
information nceded to compute a 4D intensity.

Specularity

Specular highlights are a dominant source of intuitive shape
information in 3D renderings, so we expect specularity to be
equally important in our perception of 4D geometry. We can
construct the 4D analog of the specular shading contribution to
an object s image in various ways.'” Here we use a Phong specu-
lAar shading approach compt/l\ted by replacing the lighti/r\lg vector
Lwith the norm/glized sum B of the camera dircction C and the
lighting vector L, and then raising the appropriate dot product
or determinant to a high power k. Thus we simply add to the
shading equation a specular term such as

L=1IB-nk (©)

IEEE Computer Graphics & Applications
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Froore oo Vo stages s the saperguadnointerpolanon from a

3-sphere to a hypercube or tesseract.

where izis the appropriate 41 normal and the dot productis set
tozerowhen negative. We then render mto the view solume by
summing both the dittuse and specubar components ot the in-

tensity at cachvozel,

Examples of rendered volumes

We can render volumes. or 3-mamitolds, embedded i a 4D
world straighttorwardly using the shading methods presented
above Nextwe eive some examples of such renderings to pro-
vide a context for the more complex thickened-surface render-
mes to follow.

The S-sphere and the hypercube or tesseract are classic sub-
jects of study i four dimensions. Here we examine them to-

vetherusing the fact that the superqguadric

reduces to the 3-sphere when v 20 but asvmptotically ap-

proaches a hvpercube ortesseractas vy - < Frgure 6 shows how
the rendered object evolves mappearance as itmakes the tran-
sition from a hypersphere toa hvpercube. Freure 7 shows how
the hypercube's specular shading changes as the viewpoint ro-
tates i four dimenstons around the seene center. Just as an
cdge-on face ot o 3D cube reduces to a line when it is ahiegned
with the viewing angle. the cubie volumes forming the bounding
“hyperfaces™ of the hypereube approach planar polveons em-
bedded i the view volume when abigned with the 41D view

divectuon.

RESTANNRS VI

Examples of surfaces in 4D
In this scction we present our results for some classic exam-
ples of surfaces from 4D topology. Applications of the method
to other situations. such as the rendering of points and curves
cmbedded in four dimensions. have been published clse-
where!'!

General approach

Surfaces are intrinsically well defined tor shaded rendering in
three dimensions. but not in four dimensions. For surfaces in
four dimensions. we must identify the normal plane at cach
point and place a circle or ring with a small radius in this plane
centered at the point. We can find a description of the ring
attached at cach point by taking the local tangent vectors 2%,
vyand QM. v) ata point ¥*(u. v) ot a surface parameterized by
the two variables («.1) and using a Gram-Schmidt procedure to
lind candidates for an orthogonal coordimate basis (NI NS of
the plane perpendicular to the surface. Thatis.we require N, - P

N+ Q =Ny -N> = 0. Once we tind My and \L (1. ). we
normalize them and substitute the 41D normal vector

v ) = N vy cos 8+ N vy sin 8 (7)

into the 4D versions of Equations 3 and 6. The three vanabices
parameterize the corresponding 3-manifold A v 0y = M.
) - rr)“(zu v. ) for which #%r, v. 9y is the current normal
directionand ris the radius of the attached cirele. One technical
pointis that we may have difficults finding a smooth transition
among coordinate patches for the 3-manifold over the entire
surface. Withone-sided surfaces, for example. we might need to

cover the surface e,

Figure 7. A succession of viewpoints of a 4D hypercube as the
41) viewpoint rotates around the center of the scene.
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Figure 8. Cross-eved stereo pairs of two views of a Steiner surface differing by their 4D orientation. Top: the thickened Steiner
surface rendered in four dimensions with 4D lighting. Bottom: the standard Steiner surface projected to three dimensions and
rendered using 31D methods. The images on the left side are for the right eye, and the images on the right side are for the left eye.
To view in stereo, place a finger on the page hetween the two images and focus on the finger while moving it toward your nose until
vou see three distinct images. The center image should appear in three dimensions.

Steiner surface
Hilbert and Cohn-Vossen' gave a set of equations for a non-
singular embedding of the projective plane in four dimensions
known as a Steiner surface. We represent this surface paramet-
rically by the equations

> . , .
X =COSTHCOS V= SINT I COST 1
Vo= SIn U COS i Cos v

I =COSHSINYCOS Y

W= SN Sin v cos v

where 0 < u <, 0 <y < m We compute the tangent vectors
locally by taking partial derivatives with respect to ¢ and v and
orthonormalizing as required.

When we rotate this equation in four dimensions, it changes
smoothly from the classic “cross cap™ torm of the projective
planc to Steiner’s Roman surface. depending on the rotation
axes we choose. Figure 4 shows views of this surface from dit-
ferent4D viewpoints produced by projecting the surface and its
shadow to three dimensions before rendering using conven-
tional 3D lighting methods. The use of shadows greatly clarifies
the nature of the projection from four dimensions to three di-
mensions. If we animate this rotation, we can simultaneously
see the twostates of the shape and watch them exchange places
as the rotation proceeds.

Figure 8 shows sterco pairs of the shaded volume rendering of

the Steiner surface. We thicken cach point by placing a small
specular circle in the normal plane and illuminate the resulting
3-manifold by a single 4D point light source. To distinguish 4D
from 3D cftects. we render the full 4D thickened object along
with the 3D rendering of its projection. We give images for two
scparate 4D rotation angles. showing the dramatic changes in
the apparent shape and its 4D specular reflections as the orien-

tation ¢volves,
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4D torus

Next we look at the torus. another 4D surface described by
Hilbert and Cohn-Vossen.™ The familiar torus in three dimen-
sions is strongly curved: the 4D version is intrinsically flat. like
the surface of a cylinder in three dimensions. We formulate the
cquations in four dimensions simply by taking two separate
circles. once in the first two coordinates and the other in the
sceond two coordinates of the 4D space:

X =COS U
y=sinu
I=cosv
W =sin v

Figure 5 shows the 3D projection of the torus object (with 3D
rendering) and its shadow for two viewpoints in a 4D rotation
scquence. Again. an animation of this rotation shows how the
object and its shadow continually exchange appearances. Using
only the 3D projection. itis very difficult to grasp the flat nature
of the intrinsic surface in four dimensions.

Figure 9 shows stereo pairs of the torus rendered in four
dimensions with 4D lighting and in two different 4D orienta-
tions. The 3D projection with 3D lighting is shown beneath for
comparison. Here the 4D specularities again give a dramati-
cally different picture and provide some insightinto the flatness
of the surface in four dimensions.

Knotted sphere

Finally. we examine the 4D version of a knot. Knotted curves
can exist only in three dimensions, since in four dimensions a
knot can alwavs be undone by jumping outin the fourth dimen-
sion. In four dimensions. however, we can have two surfaces
that clash at a point and cannot pass by onc another. Thus. in

IEEE Computer Graphics & Applications
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Figure 9. Cross-eyed sterco pairs of two 41 srientations of the torus rendered both in four dimensions and three dimensions,

four dimensions, knots are formed by closed surfuces such as
the sphere, rather than by closed curves.”

We construct a knotied sphere by taking a frechand curve of
a single overhand knot and rotating that koot into the &

dimension about an axis containing both end
rotation. the knot rejoins itsell and forms a closed surfs
slice through this surface by a hyperplane in four dime
knotted curve in three dimensions. Figure 10 presents a
reo rendering of this knotted sphere fn four dimensic
the 3D projection of the surface below for comparison.

vith

Conclusion

We have proposed a fami

- of techniques for
creating intuitively informative shaded images of
4 mathematical objects. We deliberately concen-
trated on depiction methods close to familiar 3D
shaded images. as opp and
shees. which have an ¢

>d to range images
cial appearance.

If we consider the requirements for a robust 4D
visualization system. our work raises a number of
unanswered guestions. In particular, we have not
proved that the shaded ima we produce are
interpretableby human observers, We do not know
how the necessary interpretation techaiques ca

be taught to human users, nor do we know that the
desired interpretation of the images is cognitively
feasible within the Hmitations of the human intel-
lect.

A robust approach to visualization should ad-
dress sich issues, leading us to propose a general
visualization paradigm™ for applications of the

sort described here:

A use

ful data depiction must allow the viewer

foreconstruct a consistent model of the origing
data.

July 1992

hatis, wecanargue
thatsome intellect, aninfact understand
e 4D images we produ

Further study of the
the fourth dime
hope the method
tal tool for the fascinatin

pres

Figure 0. Cross-eyed stereo view of the knotted 2-sphere rendered in four
dimensions with 4D lghting and also rendered in its 31 projection with 3D
lighting.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 11:39 from IEEE Xplore. Restrictions apply.



1951-1991

)
0
-l
3
1
0
=
-
=
2
O
L
>
1o
W
-
=
X
=
0
0
2
W
2

COMPUTER VISION:
Principles
edited by Rangachar Kasturi and Ramesh Jain

Computer Vision: Principles describes principles, concepts,
and commonly used algorithms for vision systems that
generate scene interpretations fromimage data. Itincludes
30 articles covering intensity and range images, edge
detection, region-based and model-based image analysis,
object recognition schemes, optical flow techniques, and
knowledge analysis and representation.  This volume
discusses image capture, enhancement, and image
segmentation; feature extraction; exploitation of
constraints and image cues to recover lost information;
and domain knowledge to recognize objects.

The book serves as a tutorial text, a guide to practical
applications, and a reference source of recent research
advances in computer vision. It describes applications of
machine vision technology for the practicing engineerand
investigates recent research advances for the active
researcher in the field.

Contents: Image Formation, Segmentation, Feature
Extraction and Matching, Constraint Exploitation and
Recovery of Shape, Three-Dimensional Object
Recognition, Dynamic Vision, Knowledge-Based Vision,
Applications.

728 PAGES. NOVEMBER 1991.
HARDBOUND. ISBN 0-8186-9102-6.
CATALOG NO. 2102 $85.00 MEMBERS $65.00

COMPUTER VISION:
Advances and Applications
edited by Rangachar Kasturi and Ramesh Jain

Computer Vision: Advances and Applications delves into new
research results and technological advancements in this
maturing field. Itis comprised of more than 45 papers on
topics such as modeling light reflection, active perception,
object recognition and localization, shape schemes from
interreflections, depth recovery, CAD-based vision, 3-D
object features, motion field and optical flow, estimation
of object motion, and perceptual organization and
representation. The text follows the same chapter
organization as its companion volume Computer Vision:
Principles.

The book also contains a special representative set of
papers that describe five machine vision application areas:
aerial image analysis, document image interpretation,
medical image analysis, industrial inspection and robotics,
and autonomous navigation.

720 PAGES. SEPTEMBER 1991.
HARDBOUND. ISBN 0-8186-9103-4.
CATALOG NO. 2103 $85.00 MEMBERS $65.00

ORDER TOLL-FREE:
1-800-CS-BOOKS
or FAX:

714/ 821-8380
(in CA call 714/ 821-8380)

IEEE Computer Society Press

Acknowledgments

We thank Brian Kaplan for his assistance with Figures 2 and 3. and

gratefully acknowledge the role of CICA. the Indiana University Cen-

ter for Innovative Computing Applications. in supporting this work.

References

. T.E Banchoff, Bevond the Third Dimension: Geometry, Computer
Graphics, and Higher Dimensions. Scientific American Library. New
York. 1990.
. S. Feiner and C. Beshers, *Visualizing #-Dimensional Virtual Worlds
with n-Vision.” Computer Graphics. Vol. 24, No. 2. Mar. 1990, pp.
37-38.
. C. Bajaj. "Rational Hypersurtace Display.” Computer Graphics. Vol.
24, No. 2, Mar. 1990, pp. 117-128.
4. F. Apcry. Models of the Real Projective Plane. F. Vieweg und Sohn,
Braunschweig/Wicsbaden, Germany. 1987.
5. 'I.F. Banchoff, " Visualizing Two-Dimensional Phenomena in Four-Di-
mensional Space: A Computer Graphics Approach.™ in Statistical
Image Processing and Computer Graphics. E. Wegman and D. Priest.
eds.. Marcel Dekker. New York. 1986, pp. 187-202.
6. G.K. Francis. A Topological Picturebook, Springer-Verlag. New York,
1987.
7. J.R.Weeks., The Shape of Space. Marcel Dekker, New York. 1985,
8. D.W. Brisson. ed.. Hypergraphics: Visualizing Complex Relationships
in Art, Science and Technology. AAAS Sclected Symp.. Vol. 24,
Waestview Press. Boulder, Colo., 1978.
9. K.V.Steiner and R.P. Burton, “Hidden Volumes: The 4th Dimension.™
Computer Graphics World, Feb. 1987, pp. 71-74.
10. S.A. Carcy. R.P. Burton. and D.M. Campbell. “Shades of a Higher
Dimension.™ Computer Graphics World, Oct. 1987, pp. 93-94.

1t. AJ. Hansonand PA. Heng. “Visualizing the Fourth Dimension Using
Geometry and Light.”™ Proc. Visualization 91. IEEE CS Press. Los
Alamitos, Calif.. 1991, pp. 321-328

2. J.D. Foley et al.. Computer Graphics: Principles and Practice, 2nd ¢d..
Addison-Wesley. Reading, Mass.. 1990.

13. A.H. Barr, "Superquadrics and Angle-Preserving Transformations.”™
IEEE CG&A Vol 1. No. 1 Jan. 1981 pp. 11-23.

14, D. Hitbert and S. Cohn-Vossen. Geometry and the Imagination. Chel-
sca Publishing Co.. New York, 1952.

15. B.K.P. Horn. Robor Vision. MIT Press. Cambridge. Mass.. 1986.

=

2

Andrew J. Hanson is an associale professor of
computer science at Indiana University. Pre-
viously. he worked in theorctical physics at a
number of institutions and with the Perception
research group in the SRI Artificial Intelligence
Center. His research interests include the exploi-
tation of computer graphics for visualizing ab-
stract concepts in mathematics and physics,
design of user interfaces for visualization applica-
tions. modeling methods in computer graphics
and machine vision. object recognition. and artificial intclligence.

Hanson reccived his BA in chemistry and physics from Harvard
College in 1966 and his PhD in thcorctical physics from MIT in 1971.
He is amember of AAAIL American Physical Society, ACM Siggraph,
IEEE Computer Society. and Sigma Xi.

Pheng A. Heng is a PhD candidatc in the Com-
puter Science Department at Indiana University.
His disscrtation topic is interactive visualization
tools for topological exploration. and his research
interests include interactive mathematical visual-
ization. scientific visualization, object-oriented
graphics. and user interface design.

Heng received his BS in computer science in
1985 from the National University of Singapore.
and his MS in computer science in 1987 and his
MA in applicd mathematics in 1988 from Indiana University. He is a
member of ACM Siggraph and the IEEE Computer Socicty.

Address correspondence to Hanson at the Dept. of Computer Sci-
ence. Indiana University., Bloomington. IN 47405, ¢-mail han-

son@iuvax.cs.indiana.cdu.

IEEE Computer Graphics & Applications

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 11:39 from IEEE Xplore. Restrictions apply.



