Techniques for Visualizing Fermat’s Last Theorem:
A Case Study

A.J. Hanson

P.A. Heng

B.C. Kaplan

Department of Computer Science and the Center for Innovative Computer Applications
Indiana University, Bloomington, Indiana 47405

Abstract

We describe some mathematical approaches and
computer graphics techniques for illustrating con-
cepts related to Fermat’s Last Theorem. We present
a selection of visualization methods, and describe
their interactions with the available software systems
and with the mathematical subject matter.

1 Introduction

Special techniques are required to effectively ex-
ploit computer graphics for the visualization of
concepts that are important in abstract math-
ematics. In this paper, we describe observa-
tions made in the process of creating a three
minute computer animated videotape dealing
with some elementary aspects of Fermat’s Last
Theorem, a famous unsolved problem in num-
ber theory.

Our approach to the representation of the dif-
ferent concepts presented in the video was in-
fluenced by many factors: the available hard-
ware, real and perceived constraints of the avail-
able software, constraints imposed by the video
medium, and a number of peculiarities and fea-
tures of the mathematical domain itself. In the
following sections, we describe the mathemati-
cal concepts that we tried to depict, our expe-
riences with the software systems that played
a part in our efforts, some specific successful
visualization techniques, and some unexpected
mathematical insights that we noticed.

CH2913-2/90/0000/0097/$01.00 — 1990 IEEE

97

2 Mathematical Ideas of Fer-
mat’s Last Theorem

In the margin of his copy of Arithmetica by the
Greek number theorist Diophantus of Alexan-
dria, the 17th century mathematician Pierre de
Fermat stated that

zn+yn:zn

(1)
cannot be solved with non-zero integers
(z,y, z) for any integer power n > 2,

and then wrote

I have discovered a truly marvelous
proof that this margin is too small to
contain,

No one has yet succeeded in proving or disprov-
ing Fermat’s declaration, although it is known
to be true for all integers n below an astronom-
ical number. Fermat himself never referred to
this “marvelous proof” in any of his other writ-
ings, so no one knows whether he had a proof
or not. For a very readable account of the early
history of the theorem, see Edwards [3]; a more
mathematical survey of the theorem’s status (no
longer quite up to date) is provided by Riben-
boim [5].

In our video, we touched on only a handful
of the vast variety of mathematical ideas that
are potentially relevant to the Fermat theorem.
We naturally chose those that were both rel-
atively understandable to a scientific but non-

mathematical audience, and adaptable to visu-
ally interesting graphical displays.

Explicit parametric solutions of the equa-
tion. We now show how to obtain a paramet-
ric solution for Eq. (1) in a particular local co-
ordinate system. First, we observe that the ex-
pressions

U1 % (exp (a + ib) + exp (—a — ib))

cosbcosha + isinbsinha

(2)
Uy % (exp (e + ib) — exp (—a — b))

sinbcosha — i cosbsinha, (3)
where 0 < b < 27 and e ranges over all real
values, behave like complex extensions of cos(b)
and sin(b), that is

(u1)? + (w2)® = 1. (4)

Next, we define
a== = s (5)
n=¥ = s(u) (6)

where s; and s9
form

are nth roots of unity of the

s(k,n) = exp(27xik/n) (M
for integers 0 < k < (n — 1). Rewriting Eq. (1)

(z)" + ()" (8)

and substituting the right hand sides of
Eqgs. (5,6) for 27,2, we see that Eq. (4) im-
plies that Eq. (8) is identically satisfied. Since
there are n possible distinct values for each of
the phases s; and sz, the entire finite surface
is obtained by patching together the n? differ-
ent quadrilateral regions found by evaluating
the pair (21,2;) for 0 < b < (7/2) and some
practical range of a.

- b

This technique is well known in computer
graphics in the real domain (see below); we are
unaware of whether or not this approach to rep-
resenting the complex surfaces has been noted
in the mathematical literature.

98

Y,

Figure 1: Superquadric 2D shapes for several
values of n.

Figure 2: The 3D Fermat equation for n = 7;
constant z cross sections of this cone-like surface
are 2D superquadrics.

Superquadrics and cones. When a = 0
and 0 < b < (7/2), in Egs. (2,3), the family
of real 2D solutions to |z;|* + |z2|? = 1 with
81 = +1, s = +1 are known as superquadrics
in the computer graphics literature {1]; we plot
the resulting curves in Figure 1 for various val-
ues of n.

The full 3D form of Eq. (1) is cone-like, in-
terpolating between a true cone for n = 2 and
an inverted, square-based pyramid as n — oo.
The planar cross sections of the 3D equations
are of course 2D superquadrics; Figure 2 shows
the 3D shape for n = 7.

Figure 3: A perspective view of the cubic integer
lattice.

Integer crossings of the curve. The fun-
damental statement of Fermat’s last theorem
translates graphically into the following obser-
vation: if we vary the superquadric exponent
n continuously with n > 2, so that the curve
with a fixed integer value of z sweeps a portion
of the zy plane, the curve of necessity passes
through many integer pairs (z,y), but none of
these intersections occurs for integer n. We also
see that for any z, there is always a particular
value of n, n = log 2/(log z — log(z — 1)) (corre-
sponding to the point (2 — 1,z — 1, 2)), beyond
which no more integers can be intercepted. The
3D space of integers for which intersections of
the curve might be sought can be viewed as a
cubic lattice, shown in Figure 3.

Inverting the deformation transform. In
computer graphics, Barr [2] introduced a tech-
nique for ray tracing deformed superquadrics by
inverting the original deformation transforma-
tion and tracing the deformed ray. We may
perform an analogous transformation on the in-
teger grid,

(n/2)

y Y =2

(n/2)

z)

z

Y

z

r =z

We then see the integers sliding into the center
of the plane as n — o0, as illustrated in Figure
4.

Figure 4: The deformed integer grid at z = 7
corresponding to the deformed conical curve of
Figure 2.

Figure 5: A portion of the grid of rational points
in the unit square for denominators up to 24.

Projecting the homogeneous equation to
the unit square. For many mathematical
purposes, it is preferable to look at Fermat’s
equation not as a homogeneous equation for a
cone in 3-space, but as the 2D inhomogeneous
equation found by dividing both sides by z". In
this framework, the curve deforms from the unit
circle to the unit square as n increases, and our
3D integer lattice is replaced by the set of ra-
tional points in the unit square. We show the
set of such points with denominators up to 24
in Figure 5.

Extending the real curve to a surface in
two complex dimensions. The full complex
equations (5,6) produce a surface of one com-
plex dimension in the space CP2 of two com-
plex dimensions (that is, a surface of two real
dimensions embedded in a real four dimensional
space). To display this surface, we therefore had
to choose particular ways of projecting the ob-
ject from four dimensions into three, and then
into two dimensions for computer graphics dis-
play. We accomplished this by transforming
the two imaginary components of 2; and 2,
into a single three-dimensional value z; the full
4D = 3D projection then became

z = Re(z)
= Re(z3) (10)
z = cosalm(z)+ sinaIm(z;).

The finite part of the resulting surface for n = 3
looks like Figure 6a. Typically, we chose a dif-
ferent color for each value of the phases 31, 3; in
Eq. (7), so that the surface appeared as a patch-
work quilt of n? distinct square pieces sewn to-
gether to make the full 2D surface. The fixed
points of the cyclic group were then distinguish-
able as the centers of “pie charts” with n wedges
meeting at a single point on the surface.

Global topology and transforming to the
generalized Riemann sphere. For each in-
teger power n, the complete Fermat surface is a
closed manifold with the topology of a 2-sphere
having g handles attached. g is known as the
genus of the surface and, according to the genus
formula [4], has the value

g:(n 1)2(n 2)' (11)
The Euler characteristic of the surface is related
to the genus by x = 2 — 2g.

To depict these closed surfaces for computer
graphics purposes, we perform the following
transformation:

u; = SL']/¢, Uz = yl/¢7
uz = 22/P, ug = Y2/,

uo = o/,

(12)

100

where z, Re(z), 1 = Im(z),z2 =
Re(z), y2 = Im(z2), o = ((z1)* + (m1)* +
(z2)? + (y2)%)/2r, and ¢ = 1 + zo/2r. Since

(u1)? + (u2)? + (u3)® + (ua)® + (wo)® = 1,

Eq. (12) parameterizes a 4-sphere embedded in
a 5-dimensional space. This transformation is
the analog of the transformation from CP1 to
the Riemann sphere S%, except that CP2 is not
precisely equivalent to S*, while CP1 is equiva-
lent to S2. An example of the result of the pro-
jection of this transformation to 3D from 5D is
shown in Figure 6b. We have considered sev-
eral other approaches, some more topologically
consistent than this one, for representing and
depicting the surface within a finite volume; we
hope to investigate these alternatives later.

The surfaces that we deal with intersect in
extremely complex ways in the 3D projection,
but they are in fact nonintersecting in 4D. Thus
in 4D it is relatively simple to get a complete
topological description in terms of a unique and
nonredundant set of vertices, edges, and faces
giving an Euler characteristic =V —-E+4+ F =
2 — 2g agreeing with Eq. (11).

3 Constraints and Features of
the Software Environment

In a project of this type, the result and the tech-
niques used can clearly be driven as much by
the software capabilities (and the ability of the
designers to exploit documented and undocu-
mented features of the software systems) as by
the methods one would ideally like to use for
visualizing the problem.

The whole visualization process that was un-
dertaken in the production of our video can be
divided into three parts. The first part was
the development of the script and explicit algo-
rithms for generating the desired mathematical
objects; these elements were laid out in a Mathe-
matica notebook (running on a Macintosh Ilcx)
that served as a storyboard and a rough draft of
the animation sequences. The second part dealt
with animating integer grids and was done by

using Wavefront Technology’s design and ren-
dering package. The third part, which focused
on animating surfaces in CP2, was carried out
using an object-oriented graphics library based
on Stardent Computer’s Doré — Dynamic Ob-
ject Rendering Environment. All rendering and
animation were done on a Stardent Titan inter-
faced to a SONY VO-9850 single-frame anima-
tion video recorder using a Lyon Lamb MiniVas
controller, with controlling software provided by
Wavefront and Stardent.

3.1 Experience with Mathematica

The first task in creating the animation was to
develop a storyboard showing approximate tim-
ing and the expected content of typical frames
from each scene. We used Wolfram Research’s
Mathematica system on the Macintosh for this
purpose, as well as for studying various visual
approaches to the material. Equations needed
by the animators were checked in the story-
board, which then served both as a source of
explicit algorithms and as a rough draft for the
animation. We were very impressed by Math-
ematica’s ability to handle almost anything we
needed — we found it to be a very powerful tool
for our purposes, with only a handful of draw-
backs.

Strengths. Among the particular strengths
of Mathematica were:

¢ Complex arithmetic is handled transpar-
ently. This was very useful given our em-
phasis on experimenting with the Fermat
equations in the complex domain.

The parametric plotting packages both in
2D and 3D were extremely flexible and easy
to use. This made small experiments in vi-
sualizing aspects of the equations very con-
venient. Figures 1, 2, 3, 4, and 5 were all
generated and printed by Mathematica.

Numerical computation is handled very
carefully in Mathematica. Thus some
of the problems we had when computing

101

surfaces using standard programming lan-
guages could be circumvented in Mathe-
matica, at the price of reduced speed.

Drawbacks. Among the drawbacks we expe-
rienced in our 8 megabyte Macintosh Ilcx envi-
ronment were the following:

e While graphics animation is supported in
Mathematica, there is no way to specify
a sequence of times for a set of graphics
frames. This prevented us from being able
to test the exact timing of the rough draft
storyboard specified by a set of representa-
tive still frames.

Memory limitations caused unending prob-
lems and loss of time; virtual memory sup-
port and graceful recovery from memory
overflows would have been invaluable. We
were prevented from discovering certain ba-
sic properties of the equations in Mathe-
matica because we never had enough mem-
ory to finish; the discoveries were made
instead after much programming effort in
the Doré graphics package described below.
We had originally expected to be able to
carry out all such investigations of math-
ematical properties directly within Mathe-
matica.

The speed of 3D graphics is painfully slow
as well as being very memory intensive even
for very simple objects. It would have been
very useful to have some sort of support for
high-speed 3D graphics once the polygon
tables had been reduced to pure numbers;
in principle, Mathematica should be able to
know that a polygon table has been evalu-
ated numerically, thus enabling high-speed
3D graphics routines to be used on the nu-
merical results.

3.2 Experience with Wavefront

One member of the team was fresh from an
intensive training course given by Wavefront
Technologies. Thus we felt confident using

Wavefront for certain types of rendering tasks
that were familiar from the course and the docu-
mentation. However, we should note that other,
undocumented, Wavefront features are covered
in a more advanced course we could not commit
resources to attend.

Wavefront was designed for commercial an-
imation, not for visualization, so naturally
Wavefront handles those aspects of animation
that are used in commercial applications (i.e.,
camera movement, special effects, etc.) better
than it does mathematical objects. Wavefront
has excellent tools for creating visual excitement
in an animation, something that Doré cannot
easily match. In particular, the user interface
for the Wavefront choreography program Pre-
view is one of the best available.

Tasks Attempted. Among the specific tasks
attempted with Wavefront for the video were
the following;:

¢ Provide visual support while the introduc-
tory narration explains the history and def-
inition of the theorem.

e Give the viewer a feeling for the Fer-
mat equation by conducting a visual tour
around and through the surface as =
changes from 2 to infinity. (See Figure 2.)

¢ Show visually how, even though the graph
goes through integer points for various val-
ues of n, this never occurs when n is an
integer > 2.

o Show how an inverse transformation of the
integer grid can be used as an alternate
means of viewing the graph of the equation
as n varies. (See Figure 4.)

o Show how a camera motion transforms the
3D integer lattice into the rational points
of the 2D unit square. (See Figure 5.)

¢ Tie all parts of the animation together us-
ing the Wavefront Compositor to create
titles, dissolves, and other special effects.
We found this essential as a substitute for

traditional video special effects equipment
which was not available to us.

Advantages. We found that good visual ef-
fects could be achieved using our knowledge of
Wavefront for the following sorts of images:

¢ Simple graphs not involving complicated
mathematics.

e Linear and spline movements between cam-
era positions.

¢ Visually exciting camera moves to help the
viewer get a real “feel” for the geometry of
the surfaces.

¢ Compositing dissolves from one scene to
another.

o Special effects such as transparency, tex-
tures, and changes in camera projection
types from perspective to orthographic.

Constraints. However, for the particular
mathematical domain at hand, the methods
available to us in Wavefront presented the fol-
lowing difficulties:

¢ We would have found a “compiled-in” rep-
resentation for spheres, cones, splines, and
other smooth, nonpolygonal surfaces to be
extremely useful.

o We needed automatic retessellation of ob-
jects depending on the camera distance.
Figure 7a shows an anomaly resulting from
the need to use one fixed sphere tessellation
to represent mathematical points.

¢ Mathematical objects such as points, lines,
and planes could not be represented in
Wavefront as idealized graphical icons
whose size did not change with distance
from the camera.

¢ Wavefront’s built-in interpolation methods
did not support many of the specialized
interpolations among key frames that we

102

needed (e.g., perspective transformations
of the camera focal length tied in tandem
with an overall scene scaling that kept one
object the same size in the view field).

o Since Wavefront deals with “object files”
that are polygon lists, simple mathemati-
cal objects, such as a 20 x 20 x 20 grid of
spheres, had to be represented as astronom-
ically large object files. (See, e.g., Figure
3)

3.3 Experience with Doré

We quickly found that Doré was a much more
appropriate tool to use than Wavefront for ex-
amining our complex parametric surfaces in
CP2. However, we also found that Doré im-
posed its own undesirable constraints, many dis-
covered while doing video recording,.

Tasks Attempted. We implemented the fol-
lowing kinds of animation with Doré in order to
visualize the complex surfaces:

o The easiest animation to implement was
the “cutaway” view. This was accom-
plished simply by moving the front clip
plane back and forth. More complex styles
of cutaway would clearly have been useful.

o Surface sweeping was another good way of
visualizing these mathematical objects. By
gradually increasing the a bounds in the
parametric equations (2,3), we could see
the surface grow from thin slices to its full
topology. Changing the zoom factor and
viewpoint while the object grew made the
growing process even clearer. However, this
technique was time-consuming because the
vertices had to be recomputed at each step.

¢ Another interesting parameter animation
was what we called “r-animation.” By
varying the value of r in the transformation
(12) taking the equation to a 4-sphere of ra-
dius 7, we could see the surface evolve from

an open surface to a compact one. This ani-
mation was much better from some viewing
angles than others; we found these angles
by rotating the surfaces interactively. In-
teractively testing out various ideas was a
critical part of our approach with Doré.

Constraints. We encountered a number of
difficulties peculiar to the Doré graphics library.
Among these were:

103

¢ Dissolves. During video recording, we

had no natural utility function available in
Doré to do dissolves between two different
scenes. The only simple way to do this was
to fade the first scene to a black screen,
switch to a blacked-out second scene, and
gradually increase the light intensity back
to the normal value. A tedious alternative
was to do X-window dumps of both Doré
scenes, convert the file formats, and use the
Wavefront Compositor.

Transparency. Transparency worked un-
expectedly well with the dynamic renderer
in Doré. However, there was no way to
change smoothly between an opaque sur-
face and a transparent surface. In Doré,
a surface with transparent intensity equal
to 1 is totally transparent, but a surface
with transparent intensity equal to 0 is not
totally opaque as we expected. It already
looks rather transparent.

Single scenes. The standard user in-
terface provided with the Titan demon-
stration package includes many nice com-
mands, buttons and knobs for interactively
manipulating scenes in a single window.
Support for multiple windows in the user
interface would have been useful.

Lighting. The effectiveness of particular
views was strongly influenced by the light-
ing choices; unfortunately, the default user
interface does not allow the lighting po-
sitions to be changed interactively. This
capability would have given much needed
flexibility.

e Animation. The default user-interface

controls for orientation choices are awk-
ward to use in an exploratory manner, and
there is no support for interpolation or
splining among orientations or viewpoints.
To accomplish these effects, we had to add
several commands by hand to the user in-
terface code, including a command to read
other commands from a file for scripting.
This ultimately allowed us to write a sin-
gle script for the entire video recording run.
Improving the animation facilities would be
very desirable.

Patch glitches. When the integer n
is greater than 8, there are gaps in be-
tween patches; this appears to be due to
rounding error in computing the vertices
of those patches, as well as some “butter-
fly twists” of square patches where the sur-
face is rapidly varying. This phenomenon
is illustrated in Figure 7b. The gaps are re-
duced by substantially increasing the patch
grid size, but this is very time-consuming.
As a result, we used n = 6 as the most
complicated case in our video recording.

Advantages of Doré

¢ Doré programming itself is object-based, so
it was quite easy to build an object-oriented
graphics library based on it. One of the
classes that we used for this project was an
analytical surface object designed for rep-
resenting parametric equations. There are
methods associated with this class of ob-
ject for setting various parameters on the
surface; diffuse color, transparency, bounds
for parameters in the equation, mesh size,
and many other features can all be set or
changed by sending a message to the ob-
ject.

The library has classes of objects such
as buttons and sliders that can easily be
added to manipulate the graphics. We used
many such controls to interactively deter-
mine the parameter settings that were used

104

in the final animation script. The same
controls can be used for interactive visu-
alization as well.

¢ The dynamic renderer in Doré is quite fast.
Consider an image made up of 36 patches,
each of which contains more than 100 poly-
gons and is rendered with features such as
Gouraud shading, transparency, and spec-
ular highlighting, together with frequent
sin, cos, tan~!, cosh, sinh, and exponen-
tial function calls. It took approximately
8 seconds to generate such an image using
only one Stardent Titan processor. When
the values of n and the mesh detail are
small, we can have almost real time anima-
tion. Furthermore, we can use options such
as backface culling, flat shading, wireframe
representation and multiple processors to
make the program run even faster.

4 Useful Visualization Meth-
ods

The following techniques are among those that
we used in the videotape or found very helpful
for visualizing mathematical data:

1. Cutaway surfaces. Cutaways of self-
intersecting or centrally detailed structures
can be accomplished almost trivially by
adjusting the position of the front clip
plane. Arbitrary “negative” cutaway vol-
umes would give more flexibility. Another
useful cutaway variant not used in our
video is to divide the surface into ribbons
and cut out alternate ribbons, so that one
can see the interior through the missing
strips.

2. Surface evolution. By animating the
bounds of the parameters used in the para-
metric equation, we can see how the surface
evolves.

3. Transparency. The interior properties of
the object can be seen using transparency,
whose effectiveness is greatly enhanced by

judicious choice of view angles and rota-
tional motion.

4. Rotations. Rotating the mathematical
object in 3D as well as in 4D (or higher
dimensions if appropriate) is very effective
in generating additional spatial intuition
about the object due to the extra informa-
tion carried by motion parallax cues.

5. Focal length. Varying 3D or 4D (or
higher dimensional) focal length parame-
ters generates a hierarchy of foreshortening
cues that help the viewer to develop a feel-
ing for the relative spatial position of ob-
jects that have been projected from a high
dimensional space down to the computer
graphics screen.

6. Model parameters. Varying the model
parameters is useful to understand such
phenomena as the limiting behavior of the
mathematical object. For Fermat’s equa-
tion, for example, we can watch the true
cone change to a pyramid as n — oo.

7. Compactification. For surfaces whose
defining equations pass through the man-
ifold at infinity, a view of the global topol-
ogy can be achieved by mappings that
bring all the points, including those at in-
finity, within a compact sphere.

5 Mathematical Serendipity

While carrying out this project, we encountered
a handful of pleasant surprises when the com-
puter graphics techniques and the mathematical
subject matter joined together in unexpected
ways. Among these were the following:

1. The projection from the 3D grid of integers
used to test Eq. (1) to the 2D grid of ra-
tional numbers is accomplished by a simple
viewpoint change! That is, certain proper-
ties of projective geometry in mathematics
can be visualized as a graphical operation
consisting of a simultaneous camera motion
and a focal length change.

2. When finite size spheres were used to
represent grid points, the perspectively
projected image of the rational numbers
just described has the following property:
spheres with larger distances in the denom-
inators of their projective transformations
are displayed smaller than spheres closer to
the camera. Thus, families of equivalent ra-
tios (e.g., (3,4), (6,8), (9,12)) are shadowed
by the nearest point of the family, i.e., the
one with the smallest denominator.

3. We had to display complex surfaces made
of dozens of patches with intricate local
topology, multiple intersections, and mul-
tiple local common points. We color-coded
the patches by their complex phase for vi-
sual interest. We then noticed the acciden-
tal side-effect that we could easily see when
corners of many distinct square patches
shared a common point — a fixed point of
the action of the cyclic group.

4. The topology of the surface as a collec-
tion of patches was never computed explic-
itly; from a computer graphics standpoint,
we just added each patch to the graph-
ics context as an independent object. The
“sewing together” of the patches to repre-
sent a complete analytical surface was ac-
complished automatically by the graphics
package without our having to work it out
in detail.

Acknowledgements

Among the many people who contributed to this
effort we would like to thank Dennis Gannon,
Rick McMullen, Eric Ost, and the staff of CICA
(the Indiana University Center for Innovative
Computer Applications). Special thanks go also
to John Ewing and Chuck Livingston of the In-
diana University Department of Mathematics,
and to Amy Thomas of WTIU.

References

[3] H.M. Edwards, “Fermat’s Last The-

[1] A.H. Barr, “Superquadrics and Angle- orem,” Scientific American (October,
Preserving Transformations,” I[EEE 1978).
Computer Graphics and Applications [4] P. Griffiths and J. Harris, Principles
1, 1981, 11-23. of Algebraic Geometry (Wiley, 1978).
(2] A.H. Barr, “Global and Local Defor- [5] P. Ribenboim, 13 Lectures on Fer-
mations of Solid Primitives,” Com- mat’s Last Theorem (Springer-Verlag,
puter Graphics 18, 1984, 21-30. New York, 1979).

(Color Plate 47, page 467) (Color Plate 48, page 467)
Figure 6: (a) One view of the surface obtained by projecting the Fermat equation for n = 3 from
4D to 3D. (b) The n = 3 surface obtained by projecting the entire infinite surface into a compact
four-sphere, and then projecting that to 3D.

(Color Plate 49, page 468) (Color Plate 50, page 468)
Figure 7: (a) Coarsely tessellated spheres, meant to represent integer lattice points, do not have
the right effect if they are too close to the camera. (b) Rounding error and butterfly-twisted square
patches cause gaps in the patchwork approach to the surface for large exponents n.

