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Abstract

The first comprehensive overview of the final version of the general theory of

relativity was published by Einstein in 1916 after several expositions of prelim-

inary versions and latest revisions of the theory in November 1915. A historical

account of this review paper is given, of its prehistory, including a discussion of

Einstein’s collaboration with Marcel Grossmann, and of its immediate reception.
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1. The special theory of relativity

Some ten years before the first review of the general theory of relativity,

Einstein published his famous paper On the Electrodynamics of Moving Bodies

(Einstein 1905). That paper introduced what later became to be called the

special theory of relativity. It presented a conceptual analysis of the notions of

space and time, with a critical reassessment of the meaning of simultaneity at

its core. Length contraction and time dilation in a system that is in uniform

relative motion to an observer with a speed comparable to that of light are its

most salient features.

The 1905 paper was not a very sophisticated paper on the mathematical

side. Its author had obtained a diploma as secondary school teacher for math-

ematics and physics at the Polytechnic Zurich in 1900 (Pais 1982), (Fölsing

1998). His science education had been excellent with laboratory work in the

most up-to-date facilities and first-rate mathematics teachers, like Adolf Hur-

witz (1859–1919), Carl Friedrich Geiser (1843–1934), and Hermann Minkowski

(1864–1909). If more recent advances in theoretical physics were somewhat

neglected by his physics teacher Heinrich Friedrich Weber (1843–1912), the

young Einstein made up for it in extensive autodidactic studies. Fascinated
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by laboratory experience, Einstein seems to have skipped more than one of his

mathematics lectures, though, and obtained his knowledge when preparing for

examinations with the help of lecture notes that had been carefully worked out

by his more mathematically inclined friend Marcel Grossmann (1878–1936).

After initial attempts to start a traditional academic career had failed, Ein-

stein composed his theory of special relativity in the evening hours after office

work as a technical expert, especially for electrotechnology, at the Patent office

in Bern. Mathematically, the breakthrough of special relativity came in a rep-

resentation using only standard techniques of elementary calculus. Maxwell’s

electromagnetic equations were written component-wise, notwithstanding the

fact, that compact vector notation had already been well developed, if not stan-

dardized, in electrodynamics and hydrodynamics by the end of the nineteenth

century.

The subsequent generalization of the special theory of relativity to a gen-

erally covariant theory of gravitation proceeded in three major steps (Norton

1984), (Stachel 1995), (Renn and Sauer 1999), (Stachel 2002, sec. V), (Renn

et al. forthcoming). For further references, see the literature cited in these

works, and, on specific aspects, see also volumes 1 (Howard and Stachel 1989),

3 (Eisenstaedt and Kox 1992), 5 (Earman, Janssen and Norton 1995), and 7

(Goenner et al. 1999) of the Einstein Studies series. These steps are:

• the formulation of the equivalence hypothesis in 1907,

• the introduction of the metric tensor as the crucial mathematical concept

for a generally relativistic theory of gravitation in 1912,

• and the discovery of the generally covariant field equations of gravitation

in 1915.

2. The equivalence hypothesis

In 1907, Einstein saw himself confronted with the task of reflecting on the

consequences of the relativity principle for the whole realm of physics. He was

asked to write a review article On the Relativity Principle and the Conclusions

Drawn from It (Einstein 1907). The reinterpretation of the concept of simul-

taneity in special relativity was hinging on the finiteness of the speed of light for

signal transmission. It was therefore clear that the Newtonian theory of grav-

itation posed an embarrassment. In Newtonian mechanics, the gravitational

force is an action-at-a-distance force and thus contradicts the fundamental as-

sumption of special relativity that no physical effects can propagate with a speed
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superseding a finite value. In reflection on this difficulty, Einstein took a decisive

turn. He linked the problem of the instantaneous propagation of the gravita-

tional force in Newtonian physics to the problem of generalizing the principle

of (special) relativity to non-uniform relative motion. In a reinterpretation of

Galileo’s law of free fall, according to which all bodies in a gravitational field

undergo the same acceleration regardless of their weight, Einstein formulated

the so-called equivalence hypothesis. According to this hypothesis, there is no

conceivable experiment that could distinguish between processes taking place

in a static and homogeneous gravitational field and those that are only viewed

from a frame of reference that is uniformly and rectilinearly accelerated in a

gravitation free space. The value of this hypothesis was a heuristic one. It en-

abled Einstein to investigate the effects of gravitation in a relativistic theory by

analyzing the corresponding processes if interpreted from an accelerated frame

of reference.

Already in 1907, Einstein drew three important consequences from the equiv-

alence hypothesis. He concluded that the time and hence also the speed of light

must depend on the gravitational potential. Consequently, the frequency of

light emitted from the sun should be shifted towards the red, and light rays

passing through a gravitational field would be bent. He also concluded that

every energy should have not only inertial but also gravitational mass.

Incidentally, this is also the time when Einstein began to use the term ‘rel-

ativity theory’ (Relativitätstheorie) in print, e.g. (Einstein 1907, p. 439). The

term had first been used in print in the same year by Paul Ehrenfest (1880–1933),

after Max Planck (1858–1947) had earlier introduced the term Relativtheorie.

A suggestion by Felix Klein (1849–1925) in 1910, to use the perhaps more ap-

propriate term ‘invariant theory’ (Invariantentheorie) was not taken up (The

Collected Papers of Albert Einstein (CPAE), Vol. 2, p. 254).

While the equivalence hypothesis of 1907 provided a point of departure for a

generalization of the theory of relativity and for a new field theory of gravitation,

Einstein did not present a solution to the problem of instantaneous propagation

of the gravitational force. While Einstein remained rather silent on the topic of

the relativity principle for some years, these questions were taken up by others.

Hermann Minkowski and Henri Poincaré, e.g., proposed Lorentz-covariant gen-

eralizations of Newton’s law of gravitation. More importantly, Minkowski also

gave the theory of relativity a more sophisticated mathematical representation.

Reflecting on the symmetry of the Lorentz transformations, Minkowski used

elements from Cayley’s matrix calculus to give the equations a four-dimensional

representation and to interpret the Lorentz transformations as rotations in a
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four-dimensional vector space (Minkowski 1908). In a report of his work to the

80th general assembly of physicians and scientists in Cologne, he illustrated this

interpretation by the often-quoted words:

From this hour on, space by itself, and time by itself, shall be doomed

to fade away in the shadows, and only a kind of union of the two

shall preserve an independent reality. (Minkowski 1909, 105)

Minkowski’s four-dimensional representation was taken up by Arnold Sommer-

feld (1868–1951) who developed a four-dimensional vector algebra and vector

calculus and by Max Laue (1879–1960) who focused upon the tensorial repre-

sentation of the stress-energy-momentum complex.

3. The metric tensor

Einstein resumed work on the subject again in 1911. By then he had been

appointed ordinary professor of physics at the German university in Prague.

In a series of papers, he developed a theory of the static gravitational field,

following the heuristics of the equivalence assumption of static homogeneous

gravitational fields to systems in uniform and rectilinear acceleration (Einstein

1911), (1912a), (1912b). His work was boosted by a competition with Max

Abraham (1875–1922) who had picked up on Einstein’s idea of a variable speed

of light and had suggested a dynamic theory of gravitation. Abraham had

proposed a field equation where the d’Alembertian acting on the speed of light c

was proportional to the scalar mass density. In the course of the debate it quickly

became clear that with variable c Abraham’s equation was Lorentz covariant

at best in some ill-defined infinitesimal sense and could hardly be interpreted

consistently. But Abraham had demonstrated to Einstein the technical power

of a four-dimensional representation, and had prepared him to take the second

big step of introducing the metric tensor.

The second indication of where to go next in the course of generalizing the

relativity principle came from the analysis of rotating frames of reference. The

heuristic assumption of the equivalence hypothesis implied that also centrifugal

and Coriolis forces should be interpreted as gravitational forces. Looking at

the invariant c2dt2 − (dx2 + dy2 + dz2) in rotating frames of reference would

produce terms of the form 2ωdx′dt′ where the angular velocity ω would have

to be interpreted as a gravitational potential, just as in the theory of static

gravitation the speed of light c = c(x, y, z) had assumed the role of a variable

gravitational potential. Since moreover the measuring rods for determining the

circumference, but not the diameter, of a rotating disk are Lorentz contracted,
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the analysis of a rotating disk already pointed to a breakdown of Euclidean

geometry.

4. Einstein’s collaboration with Marcel Grossmann

At some point around this time, Einstein remembered Geiser’s lectures on

Gaussian surface theory which he had studied through his friend’s Grossmann’s

notes. It occurred to him that the invariant line element of differential geom-

etry might be the key to finding a proper mathematical representation for his

problem. Fortunately, Einstein had just accepted a call to the Zurich Poly-

technic where Grossmann had become professor of geometry in 1907. Einstein

asked Grossmann for help in studying the mathematical literature, and the two

embarked on an intense collaboration. About this collaboration, he wrote in

October 1912:

I am now working exclusively on the gravitation problem and believe

that I can overcome all difficulties with the help of a mathematician

friend of mine here. But one thing is certain: never before in my

life have I troubled myself over anything so much, and I have gained

enormous respect for mathematics, whose more subtle parts I con-

sidered until now, in my ignorance, as pure luxury. (CPAE, Vol. 5,

Doc. 421).

The question that Einstein put to Grossmann was to identify the mathematics

connected with the invariance of a four-dimensional infinitesimal line element

with metric tensor gµν

ds2 =

4
∑

µν=1

gµνdxµdxν . (1)

A research notebook with calculations from that time documents Einstein’s and

Grossmann’s cooperation (Norton 1984), (Renn and Sauer 1999), (Renn et al.

forthcoming). It is in this so-called ‘Zurich notebook’, that we find the first writ-

ten instance of the metric tensor for (3+1)-dimensional space-time (Renn and

Sauer 1999, 96), see also Call No. 3-006, image 39, on http://www.alberteinstein.info

(2003) for a facsimile. Realizing that the vector calculus for Euclidean space in

curvilinear coordinates is formally equivalent to the calculus of a general mani-

fold equipped with an invariant infinitesimal line element, Grossmann saw that

the task was to generalize the four-dimensional vector calculus developed by

Minkowski, Sommerfeld, Laue, and others using methods of an altogether co-

ordinate independent calculus. Scanning the literature, Grossmann soon found
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the necessary mathematical concepts in (Riemann 1892) on n-dimensional man-

ifolds, in (Christoffel 1869) on quadratic differential forms, and in (Ricci and

Levi-Civita 1901) on their so-called absolute differential calculus.

It seems that Einstein and Grossmann quickly saw how to formulate, in

outline, a generally covariant theory with the metric tensor gµν representing

the gravito-inertial field. In the following discussion, I will give all formulas

in a notation that is both slightly modernized and made consistent over the

various texts discussed. In particular, I will abbreviate coordinate derivatives

by subscript commas, use the Einstein summation convention of summing over

repeated indices, and denote functional derivatives by δ rather than ∂. In their

joint publications, Einstein and Grossmann also used Greek letters to denote

contravariant vectors and tensors rather than superscript indices.

Einstein and Grossmann found generally covariant equations of motion of a

material point of invariant mass m for a given metric field gµν in the absence of

non-gravitational forces as

δ

{
∫

Ldt

}

= δ

{

−m

∫

ds

}

= 0, (2)

with a particle Lagrangian L = −mds/dt. In a generalization to a continuous

distribution of matter characterized by an energy-momentum tensor for pres-

sureless flow of dust with rest mass density ρ0,

T µν = ρ0
dxµ

ds

dxν

ds
, (3)

the equation of motion turned into (g = det(gµν))

(√−ggσµT µν
)

,ν
− 1

2

√−ggµν,σT µν = 0. (4)

The latter equation is an explicit expression for the vanishing of the covariant

divergence of the mixed tensor density
√−gT ν

σ . It is as such closely related to

the conservation of energy-momentum as can be seen by integrating T µν over

a closed 3-surface and invoking Gauss’s theorem. In Einstein’s interpretation,

the first term of (4) gave the conservation law for special relativity for constant

gµν , and the second part consequently represented the energy-momentum flow

due to the gravitational field. This interpretation led Einstein to believe that

the gravitational force components are given by gµν,σ. The task remained to

find a field equation for the metric tensor field, i.e. a tensorial generalization of

the Poisson equation.

5. Coming close to the solution, or so it seems
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From Riemann’s and Christoffel’s investigations, Grossmann and Einstein

learned that the crucial mathematical concept was the Riemann curvature tensor

{ik, lm} given in terms of the Christoffel symbols of the second kind (given in

the old-fashioned notation),

{

µ ν

τ

}

= gτλ (gµλ,ν + gνλ,µ − gµν,λ) , (5)

as

{ικ, λµ} =

{

ι λ

κ

}

,µ

−
{

ι µ

κ

}

,λ

+

{

ι λ

ρ

} {

ρ µ

κ

}

−
{

ι µ

ρ

} {

ρ λ

κ

}

, (6)

(see Figure 1). Since the right-hand side of the field equation would be given

by the stress-energy tensor of matter, a tensor of second rank, the left-hand

side of the field equation also had to to be a two-index object. But the obvious

candidate, the Ricci tensor

Rµν = {µκ, κν} , (7)

would not produce a field equation that was acceptable to Einstein and Gross-

mann at the time. Although a field equation,

Rµν + κTµν = 0, (8)

with some constant κ was considered as a candidate, they dismissed it because

they were unable to recover familiar Newtonian physics in the weak field limit

gµν = ηµν + hµν with ηµν = diag(1, 1, 1, -1), |hµν | ≪ 1, and |hµν,ρ| ≪ 1.

The dismissal of the candidate (8) has been a major puzzle for historians for

a long time. Since in the vacuum case, Tµν ≡ 0, (8) is equivalent to the final

field equations of general relativity (see (22) below), Einstein and Grossmann

had come by a hair’s breadth to arriving at general relativity already at this

point, or so it seems. However, a closer analysis of the Zurich notebook revealed

that Einstein had to overcome more conceptual difficulties before he was ready

to accept a generally covariant theory (Renn and Sauer 1999), (Renn et al.

forthcoming).

6. The Entwurf theory

After giving up the attempt to base a field equation on the Riemann cur-

vature tensor, Einstein and Grossmann constructed a field equation that was

closer to their heuristic requirements of energy conservation and recovery of the
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Figure 1: Top portion of p. 14L of the ‘Zurich Notebook’ (Einstein Archives

Call.No. 3-006). Next to Grossmann’s name Einstein writes down the Christof-

fel symbols of the first kind, and the fully covariant Riemann tensor (ik, lm)

which he calls a “tensor of fourth manifold” (Tensor vierter Mannigfaltigkeit).

Einstein then begins to investigate the Ricci tensor by contracting with the con-

travariant metric γkl. c© The Hebrew University of Jerusalem, Albert Einstein

Archives. Reproduced with permission.

Poisson equation in the Newtonian limit. The idea was to take the expression
(

gαβgµν
,β

)

,α
which would clearly reduce to the d’Alembertian and Laplacian op-

erators in the weak field and static limits and substitute it for T µν in the second

term of (4). If additional terms of higher order could be identified such that this

expression could be transformed into a total divergence, energy-momentum con-

servation in the form of (4) would automatically be satisfied. The field equations

they found read

1√−g

(√−ggαβgµν
,β

)

,α
− gαβgτρg

µτ
α gνρ

β +

+
1

2
gαµgβνgτρ,αgτρ

,β − 1

4
gµνgαβgτρ,αgτρ

,β = −κT µν. (9)

In early summer 1913, Einstein and Grossmann proceeded to publish their

findings in a little booklet under the title Outline [Entwurf] of a Generalized

Theory of Relativity and of a Theory of Gravitation (Einstein and Grossmann

1913). As the title page indicated, it was divided into two parts, a physical

part for which Einstein signed responsible, and a mathematical part for which

Grossmann signed as author.

The Entwurf theory, as it is frequently called in modern historical literature,

was a hybrid theory, if viewed from our modern understanding of general rel-

ativity. It presented a mathematical apparatus of tensor calculus that allowed
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to formulate a theory in a generally covariant manner, and it gave generally

covariant equations of motion. Just as in the final theory of general relativity,

the crucial concept was the metric tensor which was interpreted as representing

a gravito-inertial field. All these elements were later to be found in the final

version of general relativity. The only thing that was missing were generally

covariant field equations.

The hybrid character of the Entwurf theory is reflected in a certain am-

bivalence that Einstein showed with respect to their achievement. Initially and

also again and again over the following two years he expressed himself rather

pleased with the theory. He had settled on the Entwurf equations as acceptable

equations and began to elaborate their consequences. From an unpublished

manuscript we know that together with his friend Michele Besso (1873–1955)

he calculated the advance of the planetary perihelia. For Mercury, it was well

known that the observed perihelion advance was in discrepancy with the value

calculated on the basis of Newtonian mechanics, and this anomaly was the most

prominent quantitative failure of classical gravitation theory. Not surprisingly,

they found a value for Mercury that was significantly off the observed value:

theirs even came with the wrong sign (Earman and Janssen 1993).

Notwithstanding Einstein’s acceptance of the Entwurf equations, he also in-

dicated that the restricted covariance of these equations was a ‘black spot’ of

the theory. His initial heuristics clearly did not imply any reason for a restricted

covariance of the theory. In further reflection, Einstein convinced himself, how-

ever, that this restricted covariance was, in fact, to be expected. He devised an

argument to the effect that indeed no generally covariant field equations were

physically admissable. The argument was first published in an addendum to a

reprint of the Entwurf in the Zeitschrift für Mathematik und Physik.

He considered a hole in four-dimensional space-time, i.e. a finite region with

vanishing stress-energy Tµν ≡ 0. Let G(x) denote a solution gµν(x1, x2, x3, x4)

of the field equations, and perform a coordinate transformation within the hole,

i.e. consider a coordinate system x′ that coincides smoothly with the original

coordinate system x at the boundary of the hole. In the primed coordinates

the transformed field G′(x′) is the solution to the transformed field equations.

But if the field equations are generally covariant, then G′(x) is also a solution

to the original field equations. We hence arrive at two distinct solutions in

the same coordinate system x for the same distribution of matter Tµν . Einstein

concluded that generally covariant field equations cannot uniquely determine the

physical processes in a gravitational field. Consequently, one had to restrict the

admissible coordinate systems to what he began to call ‘adapted coordinates’.
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Already in their Entwurf, Einstein and Grossmann had stated that the most

urgent unsolved problem of their theory was the identification of the covariance

group of their field equations. The solution to this question was made possible

by a variational reformulation of the theory. It was the topic of Einstein’s and

Grossmann’s second joint publication (Einstein and Grossmann 1914).

As acknowledged in a footnote, the hint of trying a variational approach

came from Paul Bernays (1888–1977), a student of David Hilbert (1862–1943)

in Göttingen. The idea was that a variational formulation might help to iden-

tify the group of ‘adapted coordinates’ since it would be easier to identify the

invariance group of the scalar action integral than the covariance group of the

explicit tensorial field equations. Einstein and Grossmann indeed succeeded to

cast the Entwurf theory in a variational formulation,

δ

{
∫

Ld4x

}

= 0, (10)

with a Lagrangian

L =
√−g

(

1

4
gαβgτρ,αgτρ

β − κL(mat)

)

, (11)

where the matter part L(mat) was not included explicitly.

Considering variations adapted to the hole consideration, they were now

able to identify the condition for ‘adapted coordinates’ governing the covariance

group of the Entwurf as

Bσ =
(√

−ggαβgσµgµν
,β

)

,να
= 0. (12)

With their second joint paper, the collaboration between Einstein and Gross-

mann came to an end. In spring 1914, Einstein moved to Berlin taking up a

position as member of the Prussian Academy of Sciences in Berlin, a move which

relieved him of his teaching load as professor at the Zurich polytechnic.

7. The 1914 review article on the Entwurf theory

In summer 1914, Einstein felt that the new theory should be presented in a

comprehensive review. He also felt that a mathematical derivation of the field

equations that would determine them uniquely was still missing.

Both tasks are addressed in a long paper, presented in October 1914 to the

Prussian Academy for publication in its Sitzungsberichte (Einstein 1914). It is

entitled The Formal Foundation of the General Theory of Relativity and Einstein

thus, for the first time, gave the new theory of relativity the epithet ‘general’ in

lieu of the more cautious ‘generalized’ that he had used for the Entwurf.
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The paper is divided into five sections, and thus anticipates the structure of

the final 1916 review. An introductory section on the basic ideas of the theory

is followed by a section on the theory of covariants. This section replaced Gross-

mann’s mathematical part of the joint Entwurf paper and gives an account of

the elements of tensor calculus employed in the theory. A third section discusses

the theory for a given metric field. It introduced the stress-energy-momentum

tensor and discussed the conservation laws associated with the vanishing of its

divergence, as well as the equations of motions and the electromagnetic field

equations.

The fourth section gave a new derivation of the Entwurf equations. Einstein

here tried to give a derivation that supposedly rendered them unique. He reiter-

ated the hole consideration and introduced adapted coordinates. The variation

is now done in a generic manner for the gravitational part H of the Lagrangian

L. In order to fix the Lagrangian, Einstein assumes H to be a homogeneous

function of second degree in the coordinate derivatives gµν
,σ of the metric, and

picks from the allowed combinations the one that conforms to the adapted co-

ordinate condition.

In a final, short section Einstein discussed approximations of the theory,

recovered the Newtonian limit and predicted both gravitational light bending

and red shift.

8. The demise of the Entwurf and the breakthrough to general

covariance

Einstein had known that the Entwurf equations produced the wrong peri-

helion advance for Mercury since 1913. A second set-back that undermined his

confidence in the theory came in spring 1915 when Levi-Civita carefully studied

Einstein’s long Academy paper and found fault with its derivation of the field

equations. After an intense epistolary exchange in March and April 1915, Ein-

stein had to admit that his proof of the tensorial character of the left hand side

of the field equations for admissible coordinate transformations was incomplete

(CPAE, Vol. 8, Doc. 80).

In September 1915, Einstein realized that the Minkowski metric in rotat-

ing Cartesian coordinates is not a solution to the Entwurf equations. Earlier

checks of this condition appear to have been flawed by trivial algebraic mistakes

that conspired to convince Einstein of the validity of this heuristic requirement

(Janssen 1999).

The final blow came quickly afterwards when Einstein discovered that the

alleged uniqueness of the field equations in his derivation of the Academy paper
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did not hold up.

At this point, Einstein began to reconsider alternatives for the gravitational

field equations. He reflected on considerations that he had done previously in his

search for the Entwurf equations. A closer analysis of the Zurich notebook in-

deed revealed that in the fall of 1915, Einstein reconsidered the same candidates

for field equations as he had done in 1912 (Norton 1984), (Renn and Sauer 1999),

(Renn et al. forthcoming). The return to general covariance is documented in

four communications to the Prussian Academy, presented on November 4, 11,

18, and 25, and each published a week later in the Sitzungsberichte.

In the first communication, Einstein announced that he had lost his faith in

the Entwurf equations and wrote

In this pursuit I arrived at the demand of general covariance, a

demand from which I parted, though with a heavy heart, three years

ago when I worked together with my friend Grossmann. As a matter

of fact, we were then quite close to that solution of the problem,

which will be given in the following. (Einstein 1915a, 778)

Einstein now split the Ricci tensor into two parts,

Rµν = {µκ, κν} = Nµν + Mµν , (13)

where

Nµν = −
{

µ ν

κ

}

,κ

+

{

µ κ

ρ

} {

ρ ν

κ

}

, (14)

and

Mµν = −
{

µ κ

κ

}

,ν

+

{

µ ν

ρ

}{

ρ κ

κ

}

. (15)

Since

{

µ κ

κ

}

= (ln
√−g),µ is a vector for all transformations that leave g in-

variant (unimodular substitutions), Mµν is a covariant derivative of a vector,

and hence all quantities in (13) are tensors under such substitutions.

The field equations of the first November communication were now given as

Nµν = −κTµν. (16)

Even though Einstein explicitly reverted to the general covariance of the Riemann-

Christoffel tensor, the field equations of the first November communication are

not generally covariant but only covariant under unimodular coordinate trans-

formations.
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The restricted covariance is immediately obvious also from the variational

formulation that Einstein provided. Looking again at the geodesic equation,

d2xτ

ds2
+

{

µ ν

τ

}

dxµ

ds

dxν

ds
= 0, (17)

as the equation of motion for a point particle in a given gravitational field, Ein-

stein now conceived of the negative Christoffelsymbols Γσ
µν = −

{

µ ν

σ

}

as the

components of the gravitational force rather than the simple coordinate deriva-

tives of the metric gµν,σ. These quantities now entered into the gravitational

part of the Lagrangian as

L = gστΓα
σβΓβ

τα − κL(mat). (18)

(cp. (11). He observed that weak fields now allow to go to the Newtonian limit,

and that the transition to rotating frames of reference is admissible since the

corresponding coordinate transformations have unit determinant.

Not only was the covariance of the theory restricted to unimodular transfor-

mations, Einstein also showed that energy-momentum conservation demanded

that a coordinate restriction,
(

gαβ
[

ln
√
−g

]

,β

)

,α
= −κT, (19)

had to be satisfied. Since, in general, the trace of the energy-momentum tensor

T = gµνTµν does not vanish, (19) implies that coordinates cannot be chosen

arbitrarily. In particular, (19) implies that one cannot set
√−g ≡ 1.

At this point, it needs to be mentioned that Einstein’s return to general

covariance in November 1915 was done in a hasty competition with Hilbert

(Sauer 1999). Einstein had given a series of lectures on the Entwurf theory in

Göttingen earlier in the summer, and Hilbert had then closely studied Einstein’s

theory over the fall. Apparently, Hilbert had found fault with Einstein’s deriva-

tion of the field equations, too, and Einstein had heard about Hilbert’s criti-

cism through Sommerfeld (CPAE, Vol. 8, Doc. 136). When he received proofs

of his first November communication, he forwarded them to Göttingen, and it

seems that Hilbert responded immediately with a report about his own progress.

Hilbert, at the time, believed in an electromagnetic world-view and had been

working on combining Einstein’s gravitational theory with a generalized version

of Maxwellian electrodynamics suggested by Gustav Mie (1868–1957). Mie had

proposed a theory of matter where non-linear, but Lorentz-covariant general-

izations of Maxwell’s equations should allow for particle-like solutions in the

14



microscopic realm. It seems likely that Hilbert had informed Einstein about the

basic characteristics of his approach which aimed at a unification of Einstein’s

and Mie’s theories.

The second of Einstein’s four famous November communications, in any case,

discussed the possibility of a purely electromagnetic origin of matter (Einstein

1915b). Since in classical electromagnetism, the stress-energy-momentum tensor

T µν is given in terms of the electromagnetic field tensor Fµν as

T µν =
1

4π

(

FµαF ν
α − 1

4
gµνFαβFαβ

)

, (20)

it is readily seen that its trace T vanishes identically. Einstein now entertained

the possibility that on a microscopic level all matter might be of electromagnetic

origin. In this case, the right hand side of the coordinate condition (19) would

vanish and hence coordinates with constant g would be admissible. In this case,

Einstein argued, one could take the fully covariant equations

Rµν = −κTµν, (21)

which he had already considered earlier, see (8), and reduce them to the field

equations (16) by choosing coordinates for which g ≡ 1.

The field equations (21) still differ from the final field equations but for the

vacuum case, Tµν = 0, they are already equivalent. Einstein therefore was able

to compute on the basis of (21) the correct unaccounted perihelion advance by

looking at the field of a point mass in second approximation. The calculation

produced the correct value of 43′′ per century without any arbitrary or ad hoc

assumptions. In the computation Einstein could take advantage of his having

calculated the advance before for the Entwurf theory. The new field equations, in

fact, only involved a modification of his earlier calculations (Earman and Janssen

1993). Einstein published these results in his third November communication

(Einstein 1915c).

With the success of the perihelion calculation, the return to general covari-

ance was definite. The final step (Einstein 1915d) was to add a trace term to

the matter tensor to obtain field equations of the form

Rµν = −κ

(

Tµν − 1

2
gµνT

)

. (22)

With the trace term added, the postulate of energy-momentum conservation no

longer produced a coordinate restriction since it was now automatically satisfied

by (22).
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Equations (22) are the final field equations of the generally relativistic theory

of gravitation, as we know them today. They are frequently referred to as the

‘Einstein equations’ of general relativity.

With the exception of the first November communication, where he had given

the Lagrangian (18) for the field equations (16), Einstein had not discussed the

subsequent field equations in a variational approach. The closure of providing

a variational formulation was contributed by Hilbert in his own approach to

a generally covariant theory of gravitation and electromagnetism. Since he

was being kept informed by Einstein about the latter’s progress, he rushed

ahead and presented an account of his own version to the Göttingen Academy

for publication in its Nachrichten on November 20. Page proofs of Hilbert’s

original paper show that the version submitted for publication on November 20

still differed from the version that was eventually published. But it did already

suggest to base the theory on a variational principle and emphasized that the

Lagrangian must be a scalar function for general coordinate transformations.

In the printed version of Hilbert’s paper, the Riemann curvature scalar R is

taken to be the gravitational part of the Lagrangian and it is stated, albeit not

derived by explicit calculation, that a variation of the action

A =

∫ √
−g

(

R − κL(mat)
)

d4τ, (23)

with respect to the metric tensor components gµν would produce the gravita-

tional field equations

Rµν − 1

2
gµνR = −κ

1√−g

δL(mat)

δgµν
, (24)

which is an equivalent version of Einstein’s field equation (22). (24) may be

transformed to (22) by looking at the trace of (22) and substituting R = −κT

into (24). The equivalence then follows from the non-trivial identification of

1√−g

δL(mat)

δgµν
= Tµν . (25)

In the latter step, Hilbert and Einstein differed considerably since Hilbert ax-

iomatically took L(mat) to be a function exclusively of the electromagnetic po-

tential Aµ, the electromagnetic field Fµν = Aµ,ν − Aν,µ, and the metric tensor

components gµν ,

L(mat) = L(mat)(Aµ, Fµν , gµν), (26)

in accordance with his electromagnetic world view. Einstein, however, had

entertained the hypothesis of an electromagnetic origin of matter only for a few
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days. With his fourth November communication at the latest, Einstein had

given up that hypothesis again and was allowing for an unspecified Tµν in his

final version of the theory.

9. The 1916 review paper

Ever since Levi-Civita had found a gap in Einstein’s covariance proof of the

Entwurf equations, Einstein had meant to update or rewrite his 1914 Academy

article on the general theory of relativity. With the return to general covariance,

the success of explaining the perihelion advance of Mercury, and the new field

equations (22) of the fourth November communication, Einstein decided to write

an altogether new account of the general theory of relativity.

The new review was received by the Annalen der Physik on 20 March 1916,

some four months after the last November paper. Its structure is not much

different from the earlier 1914 Academy article. It is again divided into five

sections:

A. Fundamental Considerations on the Postulate of Relativity,

B. Mathematical Aids to the Formulation of Generally Covariant Equations,

C. Theory of the Gravitational Field,

D. Material Phenomena,

E. [Newtonian Limit and Observable Consequences].

In an introductory paragraph Einstein called the theory to be expounded in the

review ‘conceivably the farthest-reaching generalization’ of the special theory of

relativity. While the latter is assumed to be known to the reader, he sets out

to develop especially all the necessary mathematical tools

—and I tried to do it in as simple and transparent a manner as

possible, so that a special study of the mathematical literature is

not required for the understanding of the present paper. (Einstein

1916, 769)

Nevertheless, in this first paragraph Einstein did mention Minkowski’s formal

equivalence of the spatial and time coordinates, the investigations on non-

Euclidean manifolds by Gauss, Riemann, and Christoffel, and the absolute dif-

ferential calculus of Ricci and Levi-Civita. Echoing a theme of Felix Klein’s

but also of later commentators, he wrote that especially the absolute differen-

tial calculus had provided mathematical means which simply had to be taken
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up—as if he had not struggled hard for years to apply them in a physically

meaningful way. He also acknowledged Grossmann’s help again in studying the

mathematical literature and in searching for the gravitational field equations.

The first section then introduces the postulate of general covariance, arguing

to a large extent from purely epistemological considerations. Einstein denounces

the existence of an absolute space by considering two massive bodies far away

both from other masses and from each other and in relative rotation along their

line of connection. If one body were observed to be of spherical shape and

the other to be an ellipsoid, Newtonian mechanics would have to attribute the

cause for the different shapes in a rotation relative to absolute space. But this

is unsatisfactory because a causal agent is introduced which itself can never be

an object of causal effect nor of observation. Hence, one is forced to attribute

the cause for this change of shape to the distant masses of the fixed stars, an

argument that follows Mach’s critique of classical mechanics.

The second argument is the equivalence hypothesis based on Galileo’s em-

pirical law of free fall. Next, Einstein discusses the rotating disk to argue for the

fact that in general relativity coordinates no longer have an immediate metric

meaning. A fourth argument in this section was new and replaced the earlier

hole consideration. The hole argument had supposedly proven that no generally

covariant field equations could be given a physical meaning in accordance with

our notions of causality and the demand that the field equations are determined

uniquely by the energy-matter distribution. Einstein did not explicitly retract

the argument but gave a new consideration, known as the point coincidence

argument. He argued that what we observe in physical experiments are always

only spatio-temporal coincidences. If all physical processes would consist in the

motion of material points, we could only observe those events where two or

more of their worldlines coincide. Then the coordinates of the four-dimensional

space-time manifold are merely labels for those coincidences, and no coordinate

system must be preferred over any other. The implicit objection to the hole

argument that invalidates its conclusion is that the different metric fields G(x)

and G′(x) obtained by dragging the metric tensor over the hole, do not, in fact,

represent different physical situations since they agree on all point coincidences.

In the second, mathematical section, Einstein summarily develops the ele-

ments of tensor algebra and tensor calculus. He introduces contravariant and

covariant vectors and general tensors which are defined by the transformation

laws of their components. He introduces the algebraic operations of external

multiplication and contraction, and of raising and lowering of indices. Among

the properties of the metric tensors, he discusses the invariance of the volume
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element
√−gd4x. He repeats the derivation of the geodesic equation, introduces

Christoffel’s symbols and discusses covariant differentiation by considering in-

variance along the geodesic line. He mentions the fact that the covariant deriva-

tive of the metric vanishes and derives a number of explicit formulas for the dif-

ferentiation of contravariant, covariant and mixed tensors. The last paragraph

introduces the Riemann-Christoffel curvature tensor and discusses its splitting

into two parts, as in (13). Perhaps the most noteworthy point of the section,

compared to earlier expositions of the mathematical foundations of general rel-

ativity, is what came to be called the ‘Einstein summation convention’. It is in

this section that Einstein for the first time in print introduced the convention

that in any tensor expression a summation over two repeated indices is implied

with out writing down the summation sign.

The third section derives the gravitational field equations. They are given

here as

Γα
µν,α + Γα

µβΓβ
να = −κ

(

Tµν − 1

2
gµνT

)

, (27)

√−g = 1. (28)

Somewhat surprisingly, from a modern point of view, Einstein did not give the

field equations in a generally covariant form. Instead he fixed the coordinates

by condition (28) in all equations that he gave in the section. He emphasized,

though, that this is a mere specification of the coordinates introduced for con-

venience. The introduction of the field equations, in fact, proceeded by arguing

that the vanishing of the Ricci tensor Rµν is the unique equation that determines

the metric field in the absence of masses if we demand that the expression de-

pends only on gµν and its first and second derivatives and depends on the latter

only linearly. The possibility of adding a term proportional to gimR, equivalent

in the vacuum case, (but not of adding a cosmological term proportional to gim)

is mentioned in a footnote.

The Lagrangian for the variational form of the field equations in vacuum is

given as

L = gµνΓα
µβΓβ

να, (29)

together with the explicit stipulation of condition (28). The introduction of the

matter term proceeds by defining the stress-energy complex of the gravitational

field as

κtασ =
1

2
δα
σ gµνΓα

µβΓβ
να − gµνΓα

µβΓβ
νσ, (30)

an expression which is not a tensor under general coordinate transformation

in accordance with the fact that the field energy associated with the gravito-
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inertial field is not a localizable quantity. Using tασ , Einstein rewrote the field

equation (27) as
(

gσβΓα
µβ

)

,α
= −κ

(

tσµ − 1

2
δσ
µt

)

, (31)

and demanded that the non-gravitational energy-momentum tensor T σ
µ enters

in the equation on the same footing as tσµ. The latter requirement is equivalent

to demanding that a divergence equation,

(

tσµ + T σ
µ

)

,σ
= 0, (32)

holds for the total energy of the system.

While the derivation of the field equations differs considerably from earlier

accounts, the fourth and fifth sections take up material from earlier expositions.

In these sections, Einstein discussed Euler’s hydrodynamic equation with an

energy-momentum tensor

T αβ = −gαβp + ρuαuβ, uα = dxα/ds, (33)

for non-dissipative, adiabatic liquids, characterized by the two scalars of pres-

sure p and density ρ. Electrodynamics is governed by Maxwell’s equations in

generally covariant form, and, in the last section, Einstein discussed the New-

tonian approximation of weak fields, Minkowski flat boundary conditions, and

slow motion of the particles. In the consideration of the Newtonian limit the

constant κ may be related to the gravitational constant G by comparison with

Poisson’s equation as κ = 8πG/c2. Einstein explains a subtlety of the Newto-

nian limit that had played a role in his earlier dismissal of generally covariant

equations. In first Newtonian approximation only the g44 components enter into

the equations of motion, even though the postulate of
√−g = 1 demands that

the other diagonal components are non-trivial of the same order. The first-order

diagonal components, however, do enter into the geodesic equation for a light

ray passing in a centrally symmetric gravitational field. For this reason, the

predicted expression for the light bending of a light ray grazing the edge of the

sun, came out with a factor of 2, compared to earlier considerations that were

based on the equivalence hypothesis alone. The slowing of clocks in a gravita-

tional field and the gravitational red shift of spectral lines is discussed explicitly

but the calculation of the perihelion shift for Mercury obtained in second ap-

proximation of a spherically symmetric field is only mentioned with reference

to the pertinent November communication.

10. Early reception of the final version of general relativity
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The first exact solution to the field equations—and to date the most impor-

tant one—was found almost simultaneously with Einstein’s 1916 review by the

astronomer Karl Schwarzschild (1873–1916). He computed the static, spheri-

cally symmetric field outside a spherically symmetric mass distribution of total

mass m. His solution allowed to compute the light bending of light rays and

the planetary perihelion motion without approximation. The solution is regu-

lar everywhere except at the origin but at a radius rS = 2Gm/c2, now called

the Schwarzschild radius, the time coordinate changes its sign relative to the

spatial coordinates. This coordinate singularity is responsible for what came

to be known as the black hole horizon and its interpretation presented a major

difficulty for many years.

While more exact solutions were found over the following years, approxi-

mation schemes played an equally important role for an interpretation of the

theory. An approximate solution was discussed by Einstein in the summer of

1916 in a first paper on gravitational waves. The existence of gravitational waves

was expected in a field theory of gravitation by analogy to the electromagnetic

case. Einstein’s first paper on this topic was marred by a mistake which made

him conclude that waves should exist that do not transport energy. The error

was corrected in a second paper of 1918. Until now, the topic of gravitational

waves is an active field of research and their existence has been shown indi-

rectly only in 1974 through the energy loss of binary pulsars (Nobel prize 1993).

Experimental efforts to observe gravitational waves directly are still underway.

The question of energy transport in gravitational waves is connected to the

question of identifying an expression for the gravitational field energy and a

corresponding conservation law. The question was debated in the years 1916–

1919 by a number of mathematicians, most importantly by Felix Klein. The final

solution came with Noether’s theorems on the connection of conservation laws

and symmetries of the variational formulation. These theorems were anticipated

for a special case in Hilbert’s 1915 paper and published in its general form in

1918 by Emmy Noether (1882–1935).

Einstein tried to encourage experimental efforts aimed at testing the two

main predictions of the theory. A confirmation of the gravitational red shift

was difficult to determine due to the many competing effects that result in a

shifting or broadening of solar or stellar spectral lines. An unequivocal confir-

mation of the gravitational red shift only came in 1960 in a controlled terrestrial

experiment making use of the Mössbauer effect.

But the results of a British expedition led by Arthur Eddington (1882–1944)

to test the predicted gravitational light bending during a solar eclipse on 29
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May 1919 in Sobral, Brazil, and on the island of Principe in the gulf of Guinea,

were established and reached Europe later in the fall of that year. The results

confirmed Einstein’s prediction, and within weeks, Einstein turned into a world

celebrity and the theory of relativity into a household term.

A popular, non-technical account of both the special and general theories of

relativity that Einstein had written in 1917 (Einstein 1917) became a best-seller.

A fourth edition in 1919 was reprinted in a fifth through tenth edition in 1920

and saw a fourteenth edition in 1922. It was also translated into many languages.

The increased interest in Einstein’s theory is also witnessed by an uncountable

number of more or less popular accounts and other books and articles dealing

with relativity. A bibliography of relativity from 1924 lists close to 4000 entries

(Lecat 1924).

The consequences of both special and general relativity began to be discussed

in many circles. Early interpretations of general relativity from a philosophi-

cal point of view had been published by Moritz Schlick (1882–1936) and Hans

Reichenbach (1891–1953). In the early 1920’s philosophical interpretations of

relativity came to abound, the analysis in (Hentschel 1990) carries a bibliogra-

phy of over 3000 items. The public interest in Einstein’s new theory was not

always untainted by political partisanry. Antisemitic attacks against Einstein

focussed not only on Einstein’s person or on his political and pacifist stance but

targeted his theory as well. As early as 1920, antisemitically motivated objec-

tions against the theories of relativity were expressed in a public meeting at the

Berlin philharmonic in summer 1920 and again at the first post-war meeting of

the Society of German Scientists and Physicians in Bad Nauheim in September

1920. On the other hand, Einstein began to be recognized worldwide as a lead-

ing physicist. He received international invitations and honors, and began to

travel extensively giving talks about his theory at a time when post-war German

science was still boycotted by many scholars and scientific institutions.

11. Going on and beyond general relativity

For Einstein, the victory of the breakthrough to general covariance in Novem-

ber 1915 was not to be regarded as establishing a final theory that would not

be subject to further revisions. Already in 1917, he modified the gravitational

field equations by adding a term proportional to λgµν to (22). The modification

was motivated in the context of a cosmological consideration. Einstein wanted

to avoid the stipulation of boundary conditions at infinity in order not to have

to account for inertial effects that might not have been caused by masses, in

accordance with what he called Mach’s principle. He suggested to consider the
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cosmological model of a spatially closed and static universe but had to mod-

ify the field equations by introducing the cosmological constant λ in order to

allow for the possibility of such a solution. An alternate vacuum solution to

the modified field equations advanced by Willem de Sitter (1872–1934) soon

showed, however, that the new field equations did not automatically satisfy

Mach’s principle as had been Einstein’s hope.

In 1919, Einstein entertained the possibility of a gravitational field equation

where the trace term in (22) would be added with a factor of 1/4 instead of

1/2. The modification was motivated by considerations concerning the consti-

tution of matter and implies that it is no longer the covariant divergence of Tµν

that is automatically vanishing but rather its trace. Other modifications of the

field equations or generalizations of the underlying Riemannian geometry were

investigated by Einstein and others in the following decades in attempts to find

a geometrized unification of the gravitational and electromagnetic fields.

In fact, a geometric interpretation of the general theory of relativity, if con-

sidered at all, originally pertained only to the geodesic equation. Until 1916,

the Riemann and Ricci tensors were only interpreted as algebraic invariants. A

geometric interpretation in terms of parallel transport of tangent vectors was

elaborated in the following years mainly through the work of Tullio Levi-Civita

and Hermann Weyl (1885–1955).

In the course of elaborating the geometric meaning of general relativity,

it was Hermann Weyl, who took the first steps to go beyond a purely (semi-

)Riemannian framework for general relativity and, at the same time, first pro-

posed a truly geometrized unification of the gravitational and electromagnetic

fields. First published in 1918, it was later incorporated into the third edition

of his widely read exposition of general relativity (Weyl 1918), (Scholz 2001).

In accordance with more general philosophical concerns about the foundations

of mathematics, Weyl’s point of departure was the observation that in Rie-

mannian geometry, no integrable, or path-independent comparison of vector

directions at different points of the manifold is possible, whereas the length

of a vector remains unaffected during parallel transport. In order to realize a

true ‘infinitesimal geometry’ (Nahegeometrie), Weyl in 1918 introduced an ad-

ditional geometric structure, a length connection, i.e. a linear differential form

dϕ = ϕidxi that governed the transport of vector lengths l by the definition

δl ≡ (∂l/∂xi)dxi + lϕidxi ≡ 0. At the same time, the Riemannian metric gµν

had to be replaced by the class of conformally equivalent metrics [g] where two

representatives of a class are connected through g̃µν = λgµν with a scalar func-

tion λ. For consistency, the length connection ϕ has to be transformed, too, as
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ϕ̃idxi = ϕidxi − d log λ. For these transformations, Weyl introduced the term

‘gauge transformations.’

The (semi-)Riemannian manifold with metric tensor field gµν was hence

generalized to a manifold with conformally equivalent classes [g], [ϕ] of (semi-

)Riemannian metrics and length connections. The geometric meaning of this

generalization was realized by investigating the affine connection, governing the

parallel transport of vectors. It turned out that the curvature associated with

the length connection, i.e. the exterior derivative of f = dϕ, in coordinates,

fij = ϕi,j−ϕj,i, could be interpreted as the representation of the electromagnetic

field tensor (Scholz 2001, esp. pp. 63–69).

Einstein’s reaction to Weyl’s theory was highly ambivalent. Fascinated by

the mathematical analysis, he quickly pointed out that the theory was inaccept-

able from a physics point of view since it implied, e.g., that the wavelength of

light emitted by radiating atoms should depend on the prehistory of the atom,

contrary to experience. Despite this argument, Weyl’s theory proved extremely

influential as the first (more or less) successful attempt to achieve a geometric

unification of the gravitational and electromagnetic fields. During the twenties,

many attempts were tried to achieve a unification of gravitation and electromag-

netism by generalizing Riemann geometry. These investigations both stimulated

and profited from parallel developments in differential geometry.

With the advent of quantum mechanics in 1926, the discovery of the weak

and strong interactions and the proliferation of elementary particles in nuclear

and subnuclear physics, the parameters for a unification program changed dras-

tically. Many aspects of the original unified field theory program have conse-

quently fallen into oblivion but the history of modern differential geometry can

hardly be understood without taking into account this context of searching for

generalizations of Riemannian geometry.

In essence, Einstein’s general theory of relativity of 1916 remains today’s

accepted theory of the gravitational field, and notwithstanding the expectation

that a generally relativistic theory of gravitation should also be quantized—an

unsolved problem until today—, classical general relativity, in the sense of an

exploration of the solutions and implicit consequences of its gravitational field

equations, has been an active field of research ever since.
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Studies 7].

Hentschel, K. 1990. Interpretationen und Fehlinterpretationen der speziellen

und der allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins.

Basel, Boston, Berlin: Birkhäuser.
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Minkowski, Hermann. 1908. ‘Die Grundgleichungen für die elektromagnetischen

Vorgänge in bewegten Körpern’. Königliche Gesellschaft der Wissenschaften zu

Göttingen. Mathematisch-physikalische Klasse. Nachrichten, 53–111.

Minkowski, H. 1909. ‘Raum und Zeit’. Physikalische Zeitschrift, 10, 104–111.

Norton, J. 1984. ‘How Einstein Found His Field Equations’. Historical Studies

in the Physical Sciences 14(1984), 253–316 [reprinted in (Howard and Stachel

1989, 101–159)].

26



Pais, A. 1982. ‘Subtle is the Lord...’ The Science and the Life of Albert Einstein,

Oxford: Oxford University Press.

Ricci, G., and Levi-Civita, T. 1901. ‘Méthodes de calcul différentiel absolu et
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