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ABSTRACT

A problem of long standing in vision research is the recovery of three-dimensional (3D) structure from two-dimensional
(2D) images. Work on structure from motion has focused on the recovery of 3D structure from multiple views of
feature points like the vertices of a cube. Recent work on the perception of four-dimensional (4D) structures has
prompted us to determine the circumstances under which 4D structure can be recovered from multiple views of feature
points projected onto 2D images. We present a computational algorithm to solve this problem under three assumptions:
1 . the correspondence of each feature point over different views is pre-determined; 2. the 4D object undergoes a rigid
motion, and 3. the projection from 4D space to 2D images is a orthographic (parallel) one. Four views of five points
are required. The algorithm can be generalized to treat the recovery of nD structure from mD views (lmn). We
give some results concerning the minimum number of points and views that are required to recover nD structure from
mD views by this algorithm.
Keywords: structure from motion, algorithm, correspondence, rigidity, orthographic projection, dimension

1. INTRODUCTION

One remarkable ability of our visual systems is the extraction of 3D information from 2D retinal images. It is
impossible to recover 3D objects completely from a single image, because all of the information along a single line of
sight is projected onto a single retinal location. One way that our visual systems solve this problem is by viewing
objects from different viewpoints. For example, when we study an object, we usually move the object and/or move our
heads. This way to learn about 3D structure from 2D images is often referred to as 3D structure from motion. Many
theoretical analyses and algorithms have been proposed to investigate under what circumstances 3D structure can be
recovered successfully from 2D images (rev. Heeger, 1992).

Under what conditions can our visual systems recover high-dimensional object structure from 2D images? We are
investigating currently whether humans can be trained to perceive 4D structure from interactive 2D images. A
theoretical prerequisite to that investigation is ascertaining that 4D object structure can be recovered, in principle, from
2D images. In this paper, we present a computational algorithm to recover 4D structure from motion under three
assumptions.

The first assumption is that the correspondence of each feature point over different images has been pre-determined.
In other words, we know which point in an image corresponds to a particular point in another image. With this
assumption, we can track the motion of all feature points. Establishing this correspondence is a complex visual
procedure which involves the detection and matching of feature points (rev. Aggarwal and Nandhakumar, 1988). Here
we assume that the correspondence is pre-determined.

The second assumption is rigidity. The structure of three- or higher-dimensional objects cannot be recovered from
motion by itself. Given a finite number of 2D images, there are infinitely many structures which produce the same
images. Further constraints are needed to determine structure uniquely. Rigidity is a very important constraint.
Many objects in our environment have rigid shapes, and even for non-rigid objects, it is often true that parts of them are
approximately rigid. Under the rigidity constraint, Ullman (1979) proved that 3D structure can be recovered uniquely
(up to reflection) from three views of four non-planar points. Other researchers have investigated other constraints that
our visual system might exploit to recover 3D structure. For example, Hoffman (1982) studied structure from motion
under the constraint of planarity: the motion is restricted to a plane. Bennett and Hoffman (1985, 1986) also studied
structure from motion under a fixed-axis constraint: all points rotate about a fixed axis. We use the rigidity constraint
in the algorithm presented below.

The third assumption is that images are formed through orthographic (parallel) projection. One consequence of
orthographic projection is that an object's 2D image does not depend on the distance of the object from the image plane.
Another standard projection method is perspective projection, under which an object's 2D image becomes smaller when
the object moves away from the image plane. Although perspective projection describes retinal images better than does
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orthographic projection, the latter is simpler to analyze and so provides a better starting point for our work on high-
dimensional structure from motion.

Under these three assumptions, we have the following 4D structure from motion theorem:

Given four distinct 2D orthographic projections offive non-covolumetric points in a rigid configuration, the 4D
structure ofthepoints can be determined up to reflection.

In this theorem, non-covolumetric means that not all five points lie in the same 3D volume. In section 2, we give
the proof of this theorem. The proof procedure itself is also an algorithm that can be implemented. In section 3, we
generalize the algorithm to higher dimensions, and give some results from this algorithm.

2. ALGORITIIM

In this section, first we introduce the basic idea underlying the algorithm. Then we show how to use the algorithm to
recover 4D structure from motion.

2.1 Basic idea
We need five non-covolumetric 4D points to recover 4D structure from motion. With these points, one can construct
four vectors which originate from the same point (see figure la). We denote the origin point as 0, and the four vectors
as b1, b2, b3, and b4. The theorem states that we require four 2D views, of which one is shown in Fig. lb. Each 2D
view is represented by two orthogonal axes a1 and a2, or a3 and a4, and so on. We set the origin of each view tothe
projection of the origin point 0 of the structure, so that what we measure in each view are the projections of vectors b1,
b2, b3, and b4.

b1

(a) (b)

Figure 1 : (a) 4D structure. (b) Projection of4D structure onto 2D views.

The projection ofthe 4D structure onto the 2D views can be represented by the following matrix equation:

a11 a12 a13 a14 b11 b21 b31 b41 c11 c12 c13 c14

a21 a22 a23 a24 b12 b22 b32 b42 c21 c22 c23 c24. . . . = . . . . ,or (la): : : : b13 b23 b33 b43 : : :

a81 a82 a83 a84 b14 b24 b34 b44 c81 c82 c83 c84

AB=C. (ib)
In Eqn. 1 , the row vectors of matrix A are the axes of the 2D views, the column vectors of matrix B are the vectors of the
4D structure, and the elements in matrix C are the projection data. The problem of 4D structure from motion can be
stated formally as one of solving structure B and 2D views A, given projection data C.

Each element in the projection data matrix C provides a constraint on the values of the elements of A and B. Yet
the number of unknown parameters in matrices A and B is greater than the number of known elements of C. Further
constraints are provided by the assumptions that the axes of the 2D views are of unit length, and that the axes of each 2D
view are mutually orthogonal, i.e.,

(2)

0 01
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aaj=O, (3)
where a1 and a are the axes of the same 2D view.

Even with a sufficient number of constraints, solving Eqn. 1 is not an easy task, because the equations induced by
the unit-length (Eqn. 2) and the orthogonal (Eqn. 3) conditions are not linear ones. However, one can show that, by
supposing that the projection data C are generated from a specific view matrix of lower-triangular form, the problem can
be solved in a basically linear fashion.

We show first that, given a view matrix A, there is a lower-triangular matrix A' that can be generated from A
through a series ofrotations. Suppose we have a rotation matrix R1, where

cosO1 —sinG1 0 0
sinG cosO 0 0

R1=
' I

(4)
0 0 10
0 0 01

which rotates the coordinate system in the XYplane. Applying R1 to the view matrix A and setting an21 (if1
is zero, one can change the order of the row vectors of the matrix A), one finds that

a 0 a a
(1) (1) (1) (1)

A1 =AR = a21 a22 a23 a24
• (5)

(1) (1) (1) (1)
a81 a82 a83 a84

A second rotation matrix R2, where

cosO2 0 —sinG2 0

0 1 0 0R= (6)2 sine2 o cosO2 0

0 0 0 1

rotates the coordinate system in the XZplane. Applying R2 to matrix A1 and setting tanO2=d'13/a'11, one hasa 0 0 a
(2) (2) (2) (2)

A2=A1R2=
a22 a23 a24

(7)

(2) (2) (2) (2)
a81 a82 a83 a84

Byapplying a series of similar rotations, one can transform the view matrix A into the following lower-triangular form:

a'11 0 0 0

a'21 a22 0 0

a'31 a32 a'33 0

A'= AIR1R2 = a'41 a'42 a'43 a'44 (8)

a'51 a52 a'53 a'54

a'81 a'82 a'83 a'84

This lower-triangular form is essential to the algorithm, because it lets one solve the problem in a linear way, and
reduces the number of unknown parameters. Let R denote this series of rotations, i.e., R = R1R2.... Applying R to
Eqn. 1, we have

(AR)(R'B)=C,or (9a)
A'B'=C,or (9b)
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a'11 0 0 0

a' a' 0 021 22

, b'11 b'21 b'31 b'41 c11 c12 c13 c14
a a a 031 32 33 j., j, l' J'

' ' ' '
1/ 12 U 22 32 U 42 '21 22 23 C24

a 41 a 42 a a
b' ' b' b' : : : :

' (9c)
' ' ' ' 13 23 33 43 • . .

a
51

a 52 a a
L.' Z' I_' U

. . . . U 14 U 24 34 44 C81 C82 C83 C84

, , ,

81 82 83 84

where A' = AR, and B' = R'B.
We call A' the canonical views and B' the rotated structure. When using the projection data C and the canonical

view matrix A' to recover 4D structure, the algorithm produces as its solution the structure B', which is a rotated version
of the original structure matrix B (note that R', which is the inverse matrix of the rotation matrix R, is also a rotation
matrix). The colunm vectors ofthe rotated structure B' need not be the same as those ofthe original structure B, but the
structural information is the same, because B' is a rotated version of B.

The basic idea of the algorithm is to suppose that the projection data C are generated from the canonical views A',
and to solve for the canonical views A' and the rotated structure B' from the projection data C. In the next subsection,
we introduce the algorithm for solving the rotated stmcture B' from the projection data C. The symbols used in the
algorithm are listed in the following table.

A The original view matrix
A' The canonical view matrix
A'44 The first four rows of the canonical view matrix A'
B The original structure matrix
B' The rotated structure matrix
C The projection data matrix
c4x4 The first four rows of the projection data matrix C
R The rotation matrix
a'1 A row vector of the canonical view matrix A'

a'1 An element of the canonical view matrix A'
b'1 A colunm vector of the rotated structure matrix B'

b'1 An element of the rotated structure matrix B'
ci A row vector of the projection data matrix C

C1 An element ofthe projection data matrix C
k1 The linear coefficient between vectors a'1 or c1
K The coefficient matrix
A The vector of compound unknown parameters
A An intermediate data vector

Table 1 : The symbols used in the algorithm.

2.2 4D structure from motion
We begin the calculation from the known projection data C. If the first four rows a'1, a'2, a'3, and a'4 of the canonical
view matrix A' are independent, and the four columns b'1, b'2, b'3, and b'4 ofthe rotated structure B' are independent, then
the first four rows c1, c2, c3, and c4 of the projection data matrix C are also independent. The remaining row vectors c5,
c6, c-, and c8 of the projection data matrix C can be represented as linear combinations of the first four vectors:

c5 =k51c1 +k52c2 +k53c3 +k54c4

, (10)

c8 =k81c1 +k82c2 +k83c3 +k84c4
where k1 are coefficients to be determined. The first equation in the above set (Eqn. 10) can also be written as
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C51 C11 C21 C31 C41 k51

C52 = C12 C22 C32 C42 k52
(1 1)

C53 C13 C23 C33 C43 k53

C54 C14 C24 C34 C44 k54

Because c1, c2, c3, and c4 are independent, the matrix in Eqn. 1 1 is full rank, and one can solve for the coefficients k51,
k52, k53, and k54. One can determine the other coefficients in Eqn. 10 in like fashion.

The relationship between views A' and data C is (from Eqn. 9b)
A'=C(B')1, (12a)

which, when written out, provides eight equations:

a'1 =c1(B')'
. (12b)

a'8 =c8(B')1
Solving for the row vector a'5, one finds:

a'5 =c5(B')'

=(k51c1 +k52c2 +k53c3 +k54c4)(B')' (13)
= k51c1 (B' )_1 +k52c2 (B' )' +k53c3 (B')' + k54c4(B')'
—1 ' 1 ' 1 ' 1

"51 1 52 2 53 3 54 4

Similar expressions obtain for the remaining row vectors of the canonical view matrix:
a'6 = k61a'1 +k62a'2 +k63a'3 +k64a'4

a'7 =k71a'1 +k72a'2 +k73a'3 +k74a'4 (14)

a8 k81a'1 +k82a'2 +k83a'3 +k84a'4
Eqns. 13 and 14 show that the relationships among the row vectors of the canonical views A' are the same as those
among the row vectors of the projection data matrix C. Because a'5, a'6, a'7, and a'8 can be represented as linear
combinations ofa'1, a'2, a'3, and a'4, the unknown parameters within the canonical view matrix A' are the elements in row
vectors a'1, a'2, a'3, and a'4. Bearing in mind the lower-triangular form ofA', the total number ofunknown parameters in
the canonical view matrix is ten.

Additional conditions are needed to determine the unknown elements of the canonical view matrix A'. These
conditions are provided by the equations expressing the unit length of the view vectors:

a'1 a'1 =1

(15)

a'8 a'8 = 1

and their mutual orthogonality:

a'1 a'2 =0
(16)

a'7 a'8 = 0

The first four equations in Eqn. 15,whenwritten out, are

a'112 =1

2 (17)
a'31 +a'32 +a33 = 1

2 ,2 ,2 ,2a 41 +a 42 +a +a = 1

The first two equations in Eqn. 16, when written out, are
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f a'11 a'21 = 0
1 —0a31a41 32 42 a33

The remaining six equations in terms of a'5, a'6, a'7, and a'8 in Eqns. 15 and 16 may be expressed as follows:
Kit = A,

where

2k51k53 2k51k54 2k52k53 2k52k54

2k61k63 2k61k64 2k62k63 2k62k64

2k71k73 2k71k74 2k72k73 2k72k74

2k81k83 2k81k84 2k82k83 2k82k84

k51 k63 + k53 k61 k51 k64 + k54k61 k52 k63 + k53k62 k52 k64 + k54k62

k7 k83 + k73 k81 k71 k84 + k74 k81 k72 k83 + k73k82 k72 k84 + k74k82

a'11 a'31

I,and
a'11 a'41

a'21 a31 +a22 a'32

a41 +a22 a'42)

1 1 2 2 2 2
I A52 It53
1 1 2 , 2 2 , 2
I 61 '62 '63 64
1 7 2 , 2 2 , 2A— '71 72 "73 "74 '22—
1 1 2 2 2 , 2
I 81 82 '83 84

—k51k61 k52k62 —k53k63 —k54k64

—k71k81 '72'82 k7383 —k74k84

The matrix equation in Eqn. 19 is a set of six linear equations in terms of four compound unknown parameters 1 a'31,

1 a'41 , a'21 a'31 +a'22 a'32 , and a'21 a'41 +a'22 a'42 . Two of these equations are redundant. If the coefficient matrix
K has full rank (we discuss this problem below), one can determine the four compound parameters. From these four
compound parameters, combined with Eqns. 17 and 18, one can find all ten original parameters, namely, the elements in
row vectors a'1, a'2, a'3, and a'4. These ten equations are listed together in Eqn. 23:

a'112 =

a'11 a'21 =0

a'11 a'31 =d1

a'11 a'41 =d2

' 2 , 2_
a21 a22 —

a'21 a'31 +a'22 a'32 = d3

a21 a'41 +a'22 a'42 = d4
2 , 2 , 2

a31 +a32 +a33 =1

a'31 a'41+a'32 a'42+a'33 a'43 =0

2 , 2 , 2 , 2a 41 +a 42 +a +a = 1

where d1, d2, d3, and d4 are the elements of the vector A solved from Eqn. 19.

K=

(18)

(19)

(20)

(21)

(23)
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[4i4J41
Figure 2. The order of solving for the original parameters

Solving for the view parameters in the order indicated in Fig. 2, we find 16 solutions for the canonical view matrix A'.
We show below (Section 3.3) that there are, in fact, only two structures related by a reflection which are associated with
these 1 6 solutions. One such solution is shown in Eqn. 24:

a'11 = 1

a'21 = 0

a31 d1
a41 d2
a22 1

a'32 = d3

a'42=d4 . (24)

a'33 =1_d12 —d32

' —d1d2—d3d4a — __________

\I 1—d12 —d32

, —
11 d 2 d 2 (d1d2+d3d4)2a — 2 4

1—d12 —d32

With the canonical views A' in hand, one may proceed to compute the rotated structure B'. Using the first four rows
A'44 ofthe canonical view matrix A' and the first four rows C44 ofthe projection data matrix C, one finds:

a'11 0 0 0

a' a' 0 0
A'44=

21

,22 , , (25)
a31 a32 a33 0

41 42 a43 a44
J' 1' l' I-.'

11 21 31 '-'41

b' b' b' b'
B'=

,12

22 32 42
, and (26)

13 23 U33 U43
b'14 b'24 b'34 b'44

and

C13 C14

C23 24
(27)

C33 C34

C43 C44

One can thus solve for the rotated structure B' using the known projection data C4<4 and the computed canonical view
matrix A'44 as follows:

B' = (A'44)1C44. (28)
Note, again, that the column vectors of the rotated structure B' have the same structural information as the original
structure B.
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To summarize, one can determine 4D structure from 2D views using the following steps:
(1). Solve for the coefficients k1 using the projection data C (Eqn. 1 1);
(2). Construct Eqn. 19 from coefficients k1;
(3). Solve the compound parameters from Eqn. 19;
(4). Solve the canonical view matrix A'44 from Eqn. 23, and
(5). Calculate the rotated structure B' from the canonical views A'44 and projection data C4<4 (Eqn. 28).

3. GENERALIZATION

The algorithm for recovering 4D structure from 2D views introduced in the previous section may be generalized to treat
problems of recovering nD structure from motion in which the dimension of the views need not be two, rather any
dimension in the range one through n. However, before we generalize the algorithm to higher dimensions, some
questions must be considered. First, how many nD points are necessary? Second, how many mD views (1mn) are
needed? Third, do solutions exist and are they unique? We give some results concerning these questions in the
following section.

3.1 How many points are necessary?
To solve an nD structure from motion problem, one needs at least n independent column vectors within the structure
matrix B. Otherwise, the data matrix (Eqn. 1 1) would not be of full rank, and the coefficients k1 could not be
computed. These n column vectors are sufficient: any additional column vectors could be represented as linear
combinations of these n vectors, and so provide no extra information to the algorithm. To construct n vectors, one
needs at least n+ 1 points (e.g. ,Fig. la). In a word, to solve for nD structure, one needs a minimum number of points nj,,
given by:

np=n+1. (29)
This number is reasonable, because the smallest number of points that can span nD space is n+ 1 . This number of points
also can be used to describe the simplest structures in nD space. For example, in the 2D plane, the simplest polygon is
a triangle with three vertices; in 3D space, the simplest polyhedron is a tetrahedron with four vertices, while in 4D space,
the simplest polytope is a hypertetrahedron with five vertices, and so on.

3.2 How many views are needed?
In the nD structure from motion problem, the canonical view matrix A' has the following form:

a'11 0 ... 0

a21 a22 0
A'= ... , (30)

a'1 a'2

which has (n+1) n/2 unknown parameters. We thus need at least (n+l) n/2 independent equations to solve for the nD
structure.

For the nD structure from lD views problem, each 1D view gives a single equation. So the minimum number of
views n, is given by:

[n±lJ
(n±1)n

(31)

For the nD structure from mD views problem, each mD view provides m unit-length equations. In addition, each mD
view provides m(m-1)/2 orthogonal equations. In total, each mD view provides (m+1) m/2 equations. Therefore, the
minimum number of views n,, must comply with the following condition:

(m+1 (n+l"
2 2

(32)
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The minimum number of views given by Eqns. 3 1 and 32 need not guarantee a full rank for the matrix K in Eqn. 20. It
may be the case that the minimum number of views provide row vectors in K that are not independent. There are two
sources for such a lack of independence.

First, if we use a vector a'1 as an axis of a view, any other vectors of form aa'1 will produce a dependent row inthe
matrix K. This example is trivial, but shows that one should use views which produce independent rows in the matrix
K. Because generating the matrix K from the elements k1 is a non-linear transformation (Eqn. 20), some views may
produce dependent rows in K, even when these views themselves are independent.

The second source of dependence is the fact that some of the orthogonal equations may be deduced from others.
For example, in the 3D structure from 2D views problem, we need two 2D views according to Eqn. 3 1 . These two 2D
views consist of four row vectors, a'1, a'2, a'3, and a'4 in the canonical view matrix A', where a'1.ta'2,a'3J..a'4, and a'4 =
k41a'1 + k42a'2 + k43a'3. Then the matrix K has two rows that are deduced from a'4a'4 = 1 and a'3a'4 = 0:

K = 12k41k43 2k42k43 (33)\ k41 k42 )
This matrix K is not full rank. Unlike the first source of dependence, this second source applies to all views, and so
cannot be avoided.

More views are needed in both varieties of dependence. It is difficult to find a uniform expression to check the
dependence of the matrix K. We therefore suggest a practical way to check the rank of matrix K step by step. Use
the number n in Eqn. 3 1 or 32 as an initial value and then check the rank of the matrix K. If the matrix is not full rank,
add one more view and check the rank again, and so on until one has a full rank matrix.

The following table gives some results concerning the minimum number of views for determining structure in two
through five dimensions. All of the cases have been tested with simulated data using MatLab.

Dimension of structure Dimension of views Number of views
2 1 3

3
1 6
2 3

4
1 10
2 4
3 3

5

1 15
2 5
3 3
4 3

Table 2: The minimum number of views for the recovery of nD structure.

3.3 Existence and uniqueness of solution
The existence of solutions is obvious: because the projection data are generated by projecting a structure onto sub-
dimensional views, there exists at least one solution which is the structure itself.

Uniqueness is more complex. When one computes the canonical view matrix A'44 from compound parameters, all
of the unknown parameters of the matrix A'44 are solved in a linear way except those along the diagonal. The diagonal
elements are solved for in the following way:

a'2 = C , (34)
where c is a positive constant. For each a',,1, there are two values of opposite sign. Correspondingly, the two solutions
are reflections of one other along the nth dimension. This can be seen more clearly by transforming the matrix A'44
into a diagonal one:

a'11 0 0 0 b'11 b'2 b'31 b'41 c'11 c'12 c'13 c'14
A ' A A l' L.' l' I.' ' ' '1 a22 i 'j 12 '-'22 U32 U42 C21 C22 C23 C24
( A ' A I-.' 1.' I-S' ' ' ' '
'I J a33 i U13 U23 U33 U43 C31 C32 C33 C34
A ( ( ' l' l' J' 7' ' ' ,

'-I J ki a 14 24 U 44 C 41 C 42 C C
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For example, if one takes the opposite sign for a'22, then the second coordinate of structure B' will also have the opposite
sign. For the nD structure from motion problem, there are 2" solutions if we take different signs for a',. Each
solution can be represented by a transformation ofthe original structure, i.e.,

B'=TB, (36)
where T is the transformation matrix. The determinant of matrix T divides the solutions into two classes. Solutions
of the first class have the determinant T=l . Solutions of the second class have the determinant TI=-1 . Solutions of
the first class are rotations of the original structure. Solutions of the second class are rotations of the reflection of the
original structure. In conclusion, the solution is unique up to a reflection.

4. DISCUSSION

In this paper, we present an algorithm for reconstructing 4D structure from motion and find that 4D structure can be
determined uniquely up to a reflection by four or more 2D views of five or more 4D points. Generalizing the algorithm
to arbitrary dimension lets us determine the minimum number of points and views needed to recover nD structure from
mD views (Table 2).

We do not suppose that the analysis describes human visual function. In the case of recovering 3D structure from
2D views, the algorithm presented here suggests that we need at least three views, a result consistent with that of Ullman
(1979). With fewer views, the algorithm will fail. Bennett and Hoffman et a!. (1989) have proved that, with two
orthographic views, there are a family of 3D structures which are compatible with the 2D projection data. Yet
psychophysical experiments (Braunstein et al. 1987) reveal that one can perceive a single 3D structure when presented
fewer views or fewer points. Note also that it is not the case that the rigid body motion in 3D leads necessarily to the
perception of rigid body motion; Weiss and Adelson (2000) have shown that the structure of certain 3D rigid objects
appears highly nonrigid under rotation.

Standard methods for projecting 4D points onto 2D image planes are detailed by Hollasch (1991). These involve
choosing either orthographic or perspective projection from 4D to 3D, followed by a second projection from 3D to 2D
which is, again, either orthographic or perspective. In addition, one can take a 3D cross-section of 4D space and
project that cross-section onto the 2D image plane, as in our previous work (D'Zmura et a!., 2000, 2001 ; Seyranian,
2001). Because a finite number of 3D cross-sections cannot sample adequately a discrete number of points in 4D
space, one cannot pursue with the present methods the theory of4D structure from motion using 3D cross-sections. We
have implemented the 4D-to-3D orthographic projection followed by a 3D-to-2D perspective projection in current
psychophysical work on 4D object recognition, and we plan to extend the present results on 4D structure from motion to
this case.
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