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Abstract
The Foldy–Wouthuysen transformation of the Dirac Hamiltonian is generally taught
as simply a mathematical trick that allows one to obtain a two-component theory in
the low-energy limit. It is not often emphasized that the transformed representation
is the only one in which one can take a meaningful classical limit, in terms of particles
and antiparticles. We briefly review the history and physics of this transformation.

I. Introduction

In relativistic quantum mechanics, one often identifies those components of the wavefunc-
tion that represent “particles”, and those that represent “antiparticles”. But there always
exist canonical transformations of the wavefunction (changes of representation) that mix
these particle and antiparticle components together, while still leaving the physical quan-
tities represented by the theory unchanged, as long as the operators are complementarily
transformed. This means that the components of the wavefunction that appear to represent
antiparticles in one representation will actually be a superposition of particle and antiparticle
components in a different representation.

It would be difficult to recognize a classical limit of the relativistic quantum theory if
this arbitrariness in representation were to be permitted to run free. Classical physics does
not have any trouble with the concept of antiparticles per se: by Feynman’s interpretation,
antiparticle motion is simply effected by means of the “classical C” transformation

τ →−τ

on the corresponding particle motion, where τ is the proper-time of the particle. But the
discreteness of this classical C transformation—and the lack of any sort of “superposition”
principle—mean that classical physics does not admit any “mixing” of particle and antipar-
ticle motion.

II. Newton and Wigner

How, then, can one obtain a meaningful classical limit of relativistic quantum mechanics?
The clue to the path out of this dilemma was first found in 1949 by Newton and Wigner,2
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as almost a by-product of other, more abstract considerations. The findings of Newton
and Wigner eradicated some of the myths surrounding the position operator in relativistic
wave equations—in particular, that states localized in position cannot be formed solely
from positive-energy states; and that if a particle’s position is measured below its Compton
wavelength, one necessarily generates particle–antiparticle pairs, which renders the position
measurement of a single particle impossible. In pursuing some rather simple questions of
a group theoretical nature, they not only found what they were looking for, but also some
unexpected bonuses. These were explained and elaborated on by Foldy and Wouthuysen,3

who also obtained the explicit transformation that realized the goals of Newton and Wigner
for the physically important case of a spin-half particle. (Case4 later generalized their method
to spin-zero and spin-one particles.)

The original aim of Newton and Wigner was to rigorously formulate the properties of
localized states, for arbitrary-spin relativistic representations of elementary particles. They
proceeded simply on the basis of invariance requirements. They sought a set of states which
were localized at a certain point in space, such that any state becomes, after a translation,
orthogonal to all of the undisplaced states; such that the superposition of any two such
localized states is again a localized state in the set; that the set of states be invariant under
rotations about the point of localization, and under temporal and spatial reflections; and
that the states all satisfy certain regularity conditions, amounting to the requirement that
all of the operators of the Lorentz group be applicable to them.

From such a simple and reasonable set of requirements, a most bountiful crop was har-
vested. Firstly, Newton and Wigner found that the set of states they sought could , indeed,
be found, for arbitrary spin (provided the mass is non-zero); moreover, their requirements
in fact specify a unique set of states with the desired properties. Furthermore, these states
are all purely positive-energy states (or, equivalently, purely negative-energy). They further
belong to a continuous eigenvalue spectrum of a particular operator , which itself has the
property of preserving the positive-energy nature of the wavefunction.

Due to these remarkably agreeable properties, Newton and Wigner felt that one would
be justified in referring to the operator they had found as the position operator—in con-
tradistinction to the operator x in some arbitrary representation of the relativistic wave
equation, which only is the “position” operator in that particular representation, and hence
has no invariant physical meaning, since the representation may be subject to an (in general
position-dependent) canonical transformation, that by definition cannot change any physical
quantities, but which most definitely changes the expectation values of the fixed operator
x. The Newton–Wigner position operator had, in fact, been discovered previously in 1935
by Pryce,5 who found the operator a useful tool in the Born–Infeld theory, and, later,6 in a
discussion of relativistic definitions of the center of mass for systems of particles.

III. Foldy and Wouthuysen

A natural question to ask, given the findings of Newton and Wigner, is the following:
What does a given relativistic wave equation look like in the representation in which the
Newton–Wigner position operator is, in fact, simply the vector x? This is the question
effectively asked by Foldy and Wouthuysen in their classic 1950 paper,3 for the physically
important case of the Dirac equation. (Their stated aim was actually to find a representation
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in which the components for positive- and negative-energy states are decoupled, but from
the above it is clear that this is effectively the same as seeking the Newton–Wigner repre-
sentation.) What they found is, even today, simply astounding. Firstly, they found that
the canonical transformation from the Dirac–Pauli representation to the Newton–Wigner
representation of the free Dirac equation is, in fact, obtainable exactly. Secondly, they found
that the Hamiltonian for the free particle, in the Newton–Wigner representation, agrees
completely with that of classical physics,

HNW = β(m2 + p2)1/2 ≡ βWp (1)

(we use units in which h̄ = c = 1), in contrast to that of the Dirac–Pauli representation,

HDP = βm+α·p,

which—while having the important property of linearity—does not resemble the classical
expression at all.

Thirdly, Foldy and Wouthuysen found that the velocity operator (obtained from the
position operator by means of its Heisenberg equation of motion) in the Newton–Wigner
representation—or, equivalently, the corresponding Newton–Wigner velocity operator in any
representation—satisfies the classical relation for a free particle:

vNW ≡
d

dt
xNW = β

p

Wp
. (2)

That (2) is an amazing result is recognized from the fact that, from the very inception of the
Dirac equation, it was known that the “velocity” operator in the Dirac–Pauli representation
does not make any classical sense whatsoever: its sole eigenvalues are plus or minus the speed
of light; it is not directly related to the momentum p; and its equation of motion has non-
real “zitterbewegung” oscillatory motion (see, e.g., Ref. 7). In drastic contradistinction, the
Newton–Wigner velocity operator vNW of (2) has the physically understandable continuum
of eigenvalues between plus and minus the speed of light; its relationship to the momentum
of the free particle is identical to that valid in classical physics; and, when one considers in
turn its Heisenberg equation of motion, then one finds that, for a free particle, the velocity
vNW is a constant, since p and W are also.

Fourthly, Foldy and Wouthuysen found that the free-particle spin and orbital angular mo-
mentum operators in the Newton–Wigner representation—defined to be simply lNW ≡ x×p
and σNW ≡ σ in this representation—are constants of the motion separately ; again, it is well-
known7 that, in the Dirac–Pauli representation, these operators are not separately constants
of the motion, even for a free particle. (The peculiarity of the Dirac–Pauli representation in
this respect can be traced back to the fact that the “position” operator in that representation
exhibits the non-physical “zitterbewegung” motion, which thus enters into the motion of the
“orbital angular momentum” operator xDP×p in this representation.)

As a fifth and final accomplishment, Foldy and Wouthuysen attacked the problem of find-
ing the canonical transformation from the Dirac–Pauli representation to the Newton–Wigner
representation, in the case of the electromagnetically-coupled Dirac equation. Unfortunately,
this cannot be done in closed form. Nevertheless, Foldy and Wouthuysen showed how one
can obtain successive approximations to the required transformation, as a power series in
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pα/m, qAα/m, for an arbitrary initial Hamiltonian HDP in the Dirac–Pauli representation;
this is the transformation that is presented in almost any textbook on relativistic quantum
mechanics (see, e.g., Ref. 8).

An unstated assumption, crucial to the validity of the power series implementation of
the transformation, is that the “odd” part of the Hamiltonian is in fact of no higher order
in m than m0. This is usually the case, but the assumption has the latent ability to trip one
up. For example, if one tries to transform a Hamiltonian in which the mass term βm has
been multiplied by eiθγ5—say, by a canonical transformation of the representation,—then
one can be led to quite erroneous conclusions if one assumes that the terms omitted in the
subsequent power series Foldy–Wouthuysen expansion are of high order in pα/m and qAα/m;
in fact, the omitted terms are of exactly the same order as the terms that are retained; the
power series method is, if applied in this way, completely useless. In such cases, the correct
procedure is to first perform a simple canonical transformation to remove the order m+1

terms from the “odd” parts of the Hamiltonian; the resulting representation may then be
fruitfully subjected to the power series Foldy–Wouthuysen transformation.

IV. The Dirac–Pauli representation

It may be wondered, after hearing of all of the wonderful properties of the Newton–
Wigner representation, why one should bother with any other representation at all. In
particular, why do we usually only concentrate on the Dirac–Pauli representation of the
Dirac equation? (Or representations “trivially” related to it; we shall define this term with
more precision shortly.) The answer is subtle, but beautiful. The charged leptons in Nature
are well described by a minimal coupling of their Dirac fields to the electromagnetic field, in
the Dirac–Pauli representation only. It is not often stressed that minimal coupling—the use
of the prescription

p→ p− qA

in the corresponding non-interacting formalism—is not a universal, representation-indep-
endent transformation. The reason is that, in general, a canonical transformation used to ef-
fect a change in representation may be momentum-dependent ; indeed, the Foldy–Wouthuysen
transformation itself is an important example. Clearly, the processes of using minimal cou-
pling, and then performing a momentum-dependent transformation, on the one hand; and
that of performing the momentum-dependent transformation first, and then using minimal
coupling, on the other; will lead to completely different relativistic wave equations, in gen-
eral. A priori, one cannot know which representation one should use the minimal coupling
prescription on.

(Clearly, “trivial” changes of representation, in the sense used above, are therefore those
in which the canonical transformation does not involve the momentum operator.)

We thus see that, by his insistence on a linear relationship between p and H—for reasons
that were rendered obsolete by second quantization—Dirac was led to the one representation
of the spin-half Hamiltonian in which the assumption of minimal coupling gives the correct
electromagnetic interactions for the electron, and in particular the correct gyromagnetic ratio
and hydrogen spectrum. With hindsight, we can see that Dirac was both brilliant and lucky.
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V. The two faces of the electron

We therefore come to recognize that there are two representations of the Dirac equation
that are singled out above all others—each having qualities unique to itself—that have a
truly direct correspondence with Nature: The Dirac–Pauli representation is unique due
to its linearity; it is the representation in which the charged leptons are minimally coupled.
The Newton–Wigner representation is unique due to its decoupling of positive- and negative-
energy states; it is the representation in which the operators of the theory correspond to their
classical counterparts.

We may go even further, conceptually speaking, in our description of the charged leptons:
they are, in effect, two types of particle in the one being. On the one hand, in the Dirac–
Pauli representation, all four components are inextricably coupled, but the particles are pure,
pointlike, structureless electric charges. On the other hand, in the Newton–Wigner repre-
sentation, operators act quite in accord with classical mechanics, but the electromagnetic
interactions are more complicated: they still have electric charge, but through the Foldy–
Wouthuysen transformation they acquire a µ ·B magnetic moment interaction, and (less
well-known) an electric charge radius (manifested in the “Darwin term” in the Hamiltonian;
see Refs. 9, 10, 11, 12).
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