
At this year’s Siggraph I had the honor of delivering
the keynote address in celebration of the 25th

annual conference. In my talk I reminisced about my
recollections of all the 25 conferences I had attended. I
compared the state of computer graphics then with its
state now. I predicted the future of the field. And I list-
ed my choice of 10 unsolved problems in computer
graphics. I have since realized that a keynote address is
like a PhD thesis: After you create it, you can extract it
chapter by chapter and publish it as several papers. Here,
then, is the first extraction—10 unsolved problems.

History
Let’s start by reviewing some past lists of unsolved

problems. Judge for yourself how many of these histor-
ical problems have been solved by now.

Sutherland 19661

The tradition of posing unsolved problems in com-
puter graphics goes back, as most CG things do, to Ivan
Sutherland. He started it all with a 1966 article in
Datamation with the following:

1. Cheap machines with basic capability
2. Basic interaction techniques
3. Coupling simulations to their display
4. Describing motion
5. Continuous tone displays
6. Making structure of drawings explicit
7. Hidden line removal
8. Program instrumentation and visualization
9. Automatic placement of elements in network

diagrams
10. Working with abstractions (scientific visualization)

Newell and Blinn 19772

In 1977 Martin Newell and I presented the following
thoughts at an ACM conference. The unsolved problems
we focused on related primarily to realistic rendering.
We were a bit lazy and could only think of six problems.

1. Increasing scene complexity
2. Fuzzy objects (hair, clouds)
3. Transparency and refraction
4. Extended light sources
5. Antialiasing
6. Systems integration

Heckbert 19873

Paul Heckbert presented an update to unsolved ren-
dering problems in 1987.

1. Converting implicit models to parametric
2. High-quality texture filtering
3. Antialiasing
4. Shadows without ray tracing
5. Practical ray tracing
6. Practical radiosity
7. Frame-to-frame coherence
8. Automating model culling
9. Smooth model transitions

10. Affordable real-time rendering hardware

Siggraph Panel 19914

By 1991 things had become complex enough that it
took a whole committee to identify key unsolved prob-
lems.

1. Managing scene complexity (Barr)
2. Tools for serious modeling (Brooks)
3. Large-scale user interfaces (Card)
4. Multimedia (Clark)
5. Automatic graphic design (Feiner)
6. Robust geometric algorithms (Forrest)
7. Better rendering (Hanrahan)
8. Graphics standards (van Dam)

When is a problem “solved”?
So now it’s my turn again. But, to keep you on pins

and needles, before I get into my list of unsolved prob-
lems I want to talk a bit about what “solved” means. Is
a problem solved when its solution has been proved pos-
sible even though very expensive? Or does a true solu-
tion need to be cheap and easy to implement?

Some of the problems I decry below have, indeed,
been solved in the theoretical sense. The problem
remains unsolved in the practical sense, though,
because cheap and fast solutions remain elusive. As you
will see, many of the problems I present are more soci-
ological and marketing issues than technical. Also, many
of them have multiple parts with much overlap. I do,
after all, have to come up with exactly 10 problems.

Blinn’s Unsolved Problems
So, here they are, my own personal top 10.

James F. Blinn

Microsoft
Research

0272-1716/98/$10.00 © 1998 IEEE

Ten More Unsolved Problems in Computer Graphics __

Jim Blinn’s Corner
http://www.research.microsoft.com/research/graphics/blinn

86 September/October 1998

.

1 Novelty
The first problem is simply finding something that

hasn’t been done yet. Let’s face it; all the easy problems
have been solved. Sometimes it seems that computer
graphics research consists of finding some new subtle
lighting effect that hasn’t yet been modeled.

2 Education
There are two parts to this – learning and teaching.
In learning (keeping up with what has been done),

not only do you have to find a problem that hasn’t been
solved, you have to know that it hasn’t been solved. It
used to be that the yearly Siggraph conference pro-
ceedings were the only place you could find computer
graphics advances published. Now lots of places pub-
lish results. You can no longer keep up with every new
development by reading only the Siggraph proceedings.
Sometimes it’s harder to discover an existing solution to
a problem than it is to reinvent the solution yourself.
There’s lots of reinvention in this field; computer graph-
ics is almost too easy in that regard.

In teaching (dissemination of new discoveries), just
because somebody solves some problem doesn’t mean
that others will use that solution. This happens because
other graphicists either aren’t aware of the solution or
they don’t understand it. You can think of this as a mar-
keting problem. Two examples that come to mind are
premultiplied alpha (more about this below) and spec-
ular reflection calculation by raising the cosine of some
angle to a power. I mean, Phong was a great guy and all,
but his use of the cosine power was a simple approxi-
mation to a function that we dramatically improved on
many years ago. Despite this, rendering systems still use
“cosine power” as a property of surfaces as though it
actually had physical meaning.

3 Systems integration
This is the problem of keeping all the balls in the air

at once, that is, how to use all the tricks in one produc-
tion. Just because one researcher can do cloth, one can
do faces, and one can do hair doesn’t mean that all ani-
mation systems can suddenly put them all together. The
new technology of component software and plug-ins to
existing software shows promise here.

4 Simplicity
I could keep this section simple and just say, “make

things simple.” But I won’t, because life’s not so simple.
How can we keep this stuff simple enough to use?

Having a separate component for cloth, hair, skin, trees,
water, physically based motion, deformations, texture
synthesis, weathering, solid textures, multiresolution
models, image-based rendering, yadda, yadda, yadda .
. . could get a bit cumbersome.

But is simplicity even possible? Is it possible to make a
simple computer graphics system that can generate com-
plex images? Consider other systems that are complex
enough to do interesting things. The telephone system
has a conglomeration of old and new technology that
still pretty much works. The human brain has several lay-
ers of legacy processors from our reptilian and mam-
malian ancestors. Maybe simplicity is a hopeless goal.

Nonetheless, you should still strive for simplicity. Let’s
face it, people don’t read manuals any more. If a feature
of a program is not obvious from playing with its user
interface, then users assume that the feature either
doesn’t work or doesn’t exist.

5 Better pixel arithmetic theory
Our basic concept of pixels as red, green, blue, and

alpha channels is incomplete. I can see at least three
main problems. One is largely a matter of definition and
education, while the other two involve integration of
compositing with other parts of the imaging process.

Problem one concerns premultiplication of the color
channels by the alpha channel. We’ve long known that
premultiplication has many advantages. For example,
it allows compositing arithmetic on all channels to be
identical, linear filtering to commute with compositing,
and the set of pixel values to be closed under composit-
ing (This is because the result of any pixel compositing
operation is a premultiplied pixel. Therefore, the first
operation in a chain of operations moves us into the pre-
multiplied domain automatically.) Nonetheless, sever-
al systems store colors unmultiplied by alpha. This
indicates a fundamentally different interpretation of the
meaning of the alpha channel. We need to understand
this difference and realize that the alpha value has sub-
tly different meanings when used as a fundamental
component of a pixel and when used as a stencil to shape
an existing image. I call this the local/global alpha dis-
tinction. Both uses of alpha are important, and systems
should support both.

The second problem is that the conventional alpha
channel interpretation assumes that edges of a fore-
ground and background object are uncorrelated. Some
useful algorithms, on the other hand, divide the screen
into nonoverlapping polygonal regions. When two adja-
cent regions are rasterized, their boundaries coincide, of
course, and thus are completely correlated. These ras-
terized regions cannot be merged using the standard
uncorrellated compositing algebra.

Thirdly, we must consider combining compositing
operations with light reflection models. The funda-
mental operation of light reflection is the simulation of
colored light reflecting off a colored surface or trans-
mitting through colored glass. A single alpha channel
can only model partial geometric occlusion of a pixel.
It cannot adequately simulate a colored, partially trans-
parent surface. A separate alpha channel per color still
isn’t the ultimate answer, either. The complete physi-
cal simulation of spectral interactions seems necessary,
but might be overkill. In addition, other lighting-relat-
ed arithmetic operations that must be included include
the simulation of after-the-fact shadow application and
transparency effects at boundaries of fogged objects.

A complete algebra on pixel values will be embedded
in the deep innards of any rendering system. Currently
available compositing operations do not address the
above concerns. A more complete theory must be
devised and installed in the inner polygon tiling loops
of future 3D APIs.

IEEE Computer Graphics and Applications 87

.

6 Legacy compatibility
Time goes on, and we do things differently. Partly this

occurs because we have learned how to do things better
than we did before, and partly because technological
improvements change the trade-offs to make things prac-
tical that weren’t before. Unfortunately, our history
remains to haunt us in the form of legacy applications
and data. This applies to operating systems, 3D APIs, file
formats, and so forth. Simply pitching out all legacy items
isn’t a good idea. Instead, progress is a balancing act of
how to not abandon the old, while allowing the new.

One particularly interesting example of this is the
coming convergence (or collision) of television tech-
nology with computer imaging. We will have to face the
fact that TV pixels (even digital TV pixels) are not the
same as computer pixels. For one thing, TV pixels have
a different range than computer pixels. For digital TV
the byte value 16 corresponds to black, and the byte
value 235 corresponds to white (220 levels total.) For
another, TV pixel values do not linearly represent light
intensity; they have a gamma correction value burned
into them. Sometimes computer graphics pixels do this,
and sometimes they don’t. Gamma correction has the
advantage of giving better resolution to darker regions
of an image, but doing correct image compositing with
it is slow. The probable eventual solution to this prob-
lem is to convert everything to use 16 bits per color
channel and encode linearly. This will have roughly
equivalent dark resolution to 8-bit gamma corrected pix-
els. We still need to work out the best scaling within this
range, though, and to allow small negative values and
greater-than-one values.

7 Arithmetic sloppiness
We’re doing a lot of things wrong in image rendering,

and we know it. We do it anyway, though, to appease
the great god of speed. Surprisingly, this problem wors-
ens because modern computers are so fast—just fast
enough that some algorithms are borderline real time.
Programmers are tempted to do a sloppy job of pixel
arithmetic to get their speed just over the line into real
time. This can often lead to an embarrassing amount of
arithmetic sloppiness in pixel calculations. I’ll mention
a couple of examples of this:

■ When processing pixel values, we usually ignore any
of the above-mentioned nonlinear gamma encod-
ing—we simply do linear calculations on this nonlin-
ear data. I discussed this problem in more detail in
my January/February 1998 column, “A Ghost in a
Snowstorm” (pp. 79-84).

■ Conversions between, say, 5 bits per color channel
and 8 bits per color channel proves trickier than most
people realize. Proper conversion isn’t a simple 3-bit
shift and mask operation. A 5-bit quantity is a number
of 1/31 st’s, an 8-bit quantity is a number of 1/255
th’s. Proper conversion requires multiplying or divid-
ing by the quantity 255/31 ≈ 8.22.

■ Texture filtering often takes the form of simple bilin-
ear interpolation between the four nearest texels to
the desired pixel. This bad interpolation adds ugly
diamond-shaped artifacts to the image.

The problem with all these picky details is that often
the proponents of bad arithmetic show images that are,
visually, pretty much the same as correct ones. The bot-
tom line is that we need better criteria for just how accu-
rate we need to be.

8 Antialiasing
At the turn of this century the director of the US

Patent Office stated that all possible inventions had
already been invented. Bill Gates is often quoted as hav-
ing said that 640K of memory is enough for anybody (he
was right, too). I think I can become famous, too, by cat-
egorically stating what will not happen (thus guaran-
teeing that it will happen). I therefore proclaim that
nobody will ever solve the antialiasing problem. It does,
you will note, appear twice on our list of historical
unsolved problems. No one will ever figure out how to
quickly render legible antialiased text in perspective.
Textures in perspective will always be either too fuzzy or
too jaggy. No one will ever build texture-mapping hard-
ware that uses a 4 ×4 interpolation kernel or anisotrop-
ic filtering. And no one will ever send me tickets to the
Digital Domain Siggraph party.

9 A modeling, rendering, animation challenge
OK. So much for the hard sociological problems. How

about a simple straightforward rendering challenge?
Here it is:

Spaghetti.
No, really. Consider that we can do cloth pretty well

now (possibly due to our obsession with rendering the
human body). We can model how it drapes and folds
without self-intersections. Now cloth is a basically two-
dimensional shape. Spaghetti is an essentially one-
dimensional shape. It should be even easier to model.
Such algorithms could also apply to piles of rope or
string and even conceivably to protein folding.

And remember, to respond to this challenge you must
solve all three problems: modeling (shape), rendering
(making pictures), and animation (showing evolution
over time). Don’t forget the sauce.

This will give new meaning to the term spaghetti
code.

10 Finding a use for real-time 3D
We all know that real-time 3D is cool. And what’s

incredibly cool, and astonishing to us old timers, is the
fact that you can now get real-time 3D hardware for
about a $100. What’s not cool is that the companies
making these hardware cards are having a tough time
staying solvent. The main applications for cheap 3D
hardware, games, simply don’t have enough adherents
to support the industry. To keep 3D hardware cheap, we
need more large-scale uses for it. And I mean large scale,
uses that virtually everybody owning a personal com-
puter will lust after. Fruitful areas might include elec-
tronic commerce and business data visualization.

Here’s another idea: a vision of better 3D user inter-
faces. Currently, operating systems and applications have
a lot of persistent settings that indicate preferences and
system setup information. In order to examine and
change these settings, you have to hunt around through

Jim Blinn’s Corner

88 September/October 1998

.

a maze of windows and menus to find the particular one
that applies. Suppose we could represent this system
state in terms of 3D shapes rather than list settings. The
internal state of your program would then look some-
thing like an old-fashioned car engine (one simple
enough to understand, I mean). You would see interre-
lations between components as shapes plugged into the
“system” shape. Direct manipulation of these shapes via
a mouse or data glove would make configuring your sys-
tem a much more understandable process. (I am remind-
ed of the scene from the movie Johnny Mnemonic. . . .)

Get hopping
I realize that people will mostly attack the easiest of

these: spaghetti. The other problems will likely require
group participation but are, probably, rather more
important. Whichever challenges you—hop to it! And
let me know what you find. ■

References
1. I.E. Sutherland, “Ten Unsolved Problems in Computer

Graphics,” Datamation, Vol. 12, No. 5, May 1966, pp. 22-27.
2. M. Newell and J. Blinn, “The Progression of Realism in

Computer Generated Images,” ACM 77 Proc., Oct. 1977,
pp. 444-448.

3. P. Heckbert, “Ten Unsolved Problems in Rendering,” Work-
shop on Rendering Algorithms and Systems, Graphics Inter-
face 87, April 1987, Toronto, http://www.cs.cmu.edu/
afs/cs/user/ph/www/unsolved.ps.Z.

4. “Computer Graphics: More Unsolved Problems,” Siggraph
Panels 1991, http://www.siggraph.org/publications/pan-
els/siggraph91/p04.html.

Contact Blinn by e-mail at blinn@microsoft.com.

IEEE Computer Graphics and Applications 89

.

