
L ast time, in the November/December 2005 issue,
we derived an algorithm to find the real roots of the

homogeneous quadratic equation

Ax2 + 2Bxw + Cw2 = 0

Because the equation is homogeneous, a root consists of
an [x, w] pair where any nonzero multiple represents the
same root. We strove to find an algorithm that didn’t blow
up no matter what values of A, B, and C we were given,
including various combinations of zeroes. At the end of
the article I wrote the final algorithm in tabular form. For
reference, Figure 1 shows it in a more algorithmic form.
The big trick was that we found two possible formula-
tions for each of the two homogeneous roots:

(1)

The two formulations for [x1, w1] are homogeneous-
ly equivalent; one is a scalar multiple of the other.
Likewise for the two formulations of [x2, w2]. Having
two formulas was convenient because it allowed us, for
each root, to pick the formula that worked best numer-
ically. Even though Figure 1 is pretty much the last word
in quadratic solution stability, I’m still not done playing
with this problem. My main purpose, though, is to gain
some insights and establish some techniques that will
help us in future articles where we will ramp up to cubic
and quartic homogeneous equations. We’ll start by try-
ing to figure out what the existence of two quadratic
solution formulations really means. 

Derivation of quadratic formula
Let’s review the derivation of the quadratic formula 

by starting with a nonhomogeneous version of the 
equation:

Ax2 + 2Bx + C = 0

The standard trick is to apply a coordinate translation
to the parameter by the substitution

This is carefully engineered so that it makes the linear
term go away, leaving us with a much simpler quadrat-
ic in x̃:

We can easily solve this to get x̃:

and then apply the coordinate transformation to get the
answer, x, in the original coordinate space:
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1 Homogeneous quadratic root algorithm.
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Homogenizing the problem
Now let’s see how this looks when we switch to a

homogeneous quadratic and, further, write it in matrix
notation. The quadratic equation is

(2)

The parameter-space coordinate transformation is

(3)

Those of you who are experienced in homogeneous
transformation matrices can recognize this as a 1D ver-
sion of a standard 3D homogeneous translation matrix:

We can clear fractions from Equation 3 by homoge-
neously multiplying the whole matrix by A. With some
foresight, though, I’m going to do a bit more than that.
I am going to set the top left element back to 1 giving 

(4)

We can see that this still works to get rid of the linear
term by plugging the transformation (Equation 4) into
the quadratic (Equation 2), giving us

Our foresight has paid off by giving a result that has a
common factor of A, which we can homogeneously
throw out. (We’ll deal with the case A = 0 later.) This
leaves us with the easily solvable

(5)

which has the two solutions

Finally, to go back to original parameter space, we
apply the transformation matrix (Equation 4):

This gives us the first of the two root choices in
Equation 1.

The other homogeneous solution
But what happens when A = 0 (or, nearly as numeri-

cally disastrous, when A is quite small compared with
B?). The 2 × 2 transformation is singular (or at least ill
conditioned). In that case, we can use the following:

(6)

This transformation effectively reverses the polynomi-
al, swapping A and C, before applying Equation 4 (while
encoding all these transforms in the matrix for later
unraveling). Plugging Equation 6 into Equation 2, we
get

Tossing out the common factor of C gives us exactly
the same base quadratic to solve, Equation 5, so the
transformed answer is again

Applying Equation 6 to go back to original parameter
space gives the other solution from Equation 1:

A general solution
So what do we do if both A and C are zero (or small)?

Are there any other transformations that we can use?
Let’s see by writing the general parameter-space trans-
formation matrix as

(7)

Now transform the coefficient matrix by applying this
to Equation 2:

So we have

(8)

�

�

�

A t A tuB u C

B stA su tv B uvC

C s A s

= + +
= + +( ) +

= +

2 2

2

2

2 vvB v C+ 2

� �
� �
A B

B C

t u

s v

A B

B C

t s⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ uu v

t A tuB u C tsA us tv B uvC

tsA

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+ + + +( ) +2 22

++ +( ) + + +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥us tv B uvC s A svB v C2 22

x w x w
t u

s v
⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� �

x w B AC
C B

C B B AC

⎡
⎣

⎤
⎦ = ± −⎡

⎣⎢
⎤
⎦⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − ± −

2

2

1
0 1

⎡⎡
⎣⎢

⎤
⎦⎥

� �x w B AC⎡
⎣

⎤
⎦ = ± −⎡

⎣⎢
⎤
⎦⎥

2 1

� �
�
�

x w
C

C AC B
x

w
⎡
⎣

⎤
⎦ −( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
0

0
02

x w x w
C B

⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � 0 1

x w B AC
B A

B B AC A

⎡
⎣

⎤
⎦ = ± −⎡

⎣⎢
⎤
⎦⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − ± −

2

2

1
1 0

⎡⎡
⎣⎢

⎤
⎦⎥

� �x w B AC⎡
⎣

⎤
⎦ = ± −⎡

⎣⎢
⎤
⎦⎥

2 1

� �x AC B w2 2 2 0+ −( ) =

� �x w
B A

A B

B C

B

A
⎡
⎣

⎤
⎦ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢
⎢

⎤1 0 1
0 ⎦⎦

⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

⎡
⎣

⎤
⎦ −( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥

�
�

� �

x

w

x w
A

A AC B

0

0 2 ⎥⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
�
�
x

w
0

x w x w
B A

⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � 1 0

1 0 0 0
0 1 0 0
0 0 1 0

1Δ Δ Δx y z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x w x w
B A

⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � 1 0
1

x w
A B

B C

x

w
⎡
⎣

⎤
⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0

IEEE Computer Graphics and Applications 83



We want to pick s, t, u, v to make B̃ = 0. As you might
expect, a whole bunch of matrices (choices of s, t, u, v)
can make this happen. How can we characterize them?
First, pick any two values for t and u (this selection will
effectively parameterize our class of transformations).
Next, rewrite the expression for  B̃ from Equation 8 as

An appropriate choice for s and v will be 

So any transformation of the form 

will result in a B̃ coefficient of zero. In fact, we can scale
either of the two rows [t, u] and [s, v] by any arbitrary
nonzero factor and it will still work. We will only get into
trouble if this matrix is singular, which will happen if
the determinant is zero:

So the only time this won’t work is if the (t, u) we pick is
already a root of the quadratic.

Now let’s look at the value of  C̃:

Expanding this out and doing some obvious factoring
we get

This means that, no matter what (t, u) we pick, the trans-
formed coefficient matrix is

and the solutions will be

Transforming back to the original coordinate system
gives us

(9)

These are just the two solutions from Equation 1,
blended by t and −u. So okay, we haven’t uncovered any-
thing radically new here, but at least we’ve investigat-
ed all possible transformations that make B̃ = 0. (When
we go to cubic and quartic polynomials, this question
will become meatier.) Now let’s see what Equation 9
looks like geometrically. 

Geometric interpretation
We can tinker with Equation 9 a bit to write 

[x, w] as 

(10)

Remember that [t, u] can be any vector. The only
restriction is that it cannot itself be a root of the qua-
dratic. So what’s going on here? We take an arbitrary
vector [t, u], transform it by the matrix M, and then add
and subtract the scalar √B2 – AC times the original vec-
tor [t, u]. Figure 2 illustrates this. It shows a plot of x, w
space with the two dark lines representing the two roots
of the quadratic (different points on each line are just
homogeneous scales of each other). 

Note the following geometric relationships. First, the
double-ended arrow (representing plus and minus 
√B2 – AC times [t, u]) is parallel to [t, u]. Second, the
vector [t, u]M points halfway along it. You can enhance
your intuition by imagining an interactive program that
lets you grab [t, u] and drag it around, having [t, u]M

automatically calculated and plotted. You would find
that as you rotate [t, u] around the origin, the vector 
[t, u]M rotates in the opposite direction. Whenever
[t, u] crosses a root, the vector [t, u]M also crosses
that root, either pointing in the same direction as 
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2 Geometric interpretation of Equation 10.



[t, u] or in the opposite direction. In other words, the
roots of the quadratic are the same as the eigenvectors
of M.

The transformation used in Equation 4 is just the spe-
cial case where [t, u] = [1, 0] and looks like Figure 3a.
The transformation used in Equation 6 has [t, u] =
[0, 1] and looks like Figure 3b. Now we can see why the
small-root–large-root situation gives us headaches.
Figure 4 shows a mild form of the problem for visual-
ization purposes. In Figure 4a you can see that the vec-
tor [t, u]M and the vector –√B2 – AC[t, u] are almost
antiparallel to each other; their vector sum will be
numerical noise. In Figure 4b you can see that the vec-
tor [t, u]M and the vector +√B2 – AC[t, u] are almost
antiparallel to each other and their vector sum is
noise. Also, note how each diagram has the good
and bad numerical roots swapped.

An idea
The transformations in Equations 3 and 6 are both

shearing transformations. If the values of |B|>>|A|or
|B|>>|C|, then these matrices are horrible numeri-
cally. They are nearly singular and it serves us right
that we get into trouble using them. Wouldn’t it be nice
if we could find a single, well-conditioned matrix that
works for both roots? To avoid problems caused by
adding almost-antiparallel vectors, we would really
like to find a [t, u] so that the vector [t, u]M is per-
pendicular to it. This is easily done by solving for 
[t, u] in

which gives

This gives the situation in Figure 5. Note that [t, u] and
[t, u]M both point halfway between the roots. Having
these two vectors perpendicular (that is, having the two
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5 Picking [t, u] to be perpendicular to [t, u]M.



rows of the 2 × 2 transformation perpendicular) means
just one thing: the 2 × 2 transformation looks a lot like
a rotation in [x, w] space. This seems much nicer than a
nasty old shear.

Sadly, this does not seem to help us much. Some
numerical experiments show that the algorithm in
Figure 1 still wins. This is because our new rotation-
based algorithm spreads its numerical errors equally to
each root. The Figure 1 algorithm, for each choice of 
[t, u], places all its accuracy into one root while doing
badly with the other. But because it uses two transforms
it gets the best of both worlds.

But this exercise is not wasted. It raises an impor-
tant question with which I will close. We are playing
around with transformations of parameter space 
represented by Equation 7. This transformation
implies a transformation of the quadratic coefficients
[A, B, C] shown in Equation 8, which I will write 
in matrix form:

(11)

So our final goal is to get some intuition about the rela-
tionship between the transformation in Equation 7 and
the transformation in Equation 11.

Relating spaces
Let’s begin by looking at the catalog of all possible

quadratics in Figures 6 and 7. Figure 6 contains five
regions in the [A, B, C] space, represented by the five
examples in Figure 7. The transform in Equation 7 oper-
ates on the [x, w] space of Figure 7. It can rotate, scale,
or shear the shape of the function, but (as long as it’s
nonsingular) it cannot change the number of roots or
change a positive definite matrix (rightmost) to a neg-
ative definite matrix (leftmost). The corresponding
transform in Equation 11 operates on points in Figure
6, but it cannot move a point from one of the numbered
regions into another one. For example, any point on the
cone represents a quadratic with a double root. A coor-
dinate transformation cannot change this property, so a
transformation of a point on the cone must stay on the
cone. On the other hand, for any two points within a par-
ticular numbered region, there will always exist a trans-
formation that connects them.

Now let’s see what happens if we transform the qua-
dratic by a rotation in parameter space. We have

Plugging these values for s, t, u, v into Equation 11 gives

(12)

This 3 × 3 matrix is itself almost a rotation matrix in 3D.
The vector [A, B, C] = [1, 0, 1] remains unchanged upon
applying this matrix, so it’s like an axis of rotation. The
glitch is that the cone in Figure 6 isn’t a circular cone; it
has an elliptical cross section. So the transformation in
Equation 12 is a sort-of squashed rotation that keeps
cone points on the cone.

We can make what’s going on more obvious by 
writing the original quadratic in polar coordinates. 
If we define

the quadratic becomes
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=
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B 2–AC = 0

B 2–AC > 0

B 2–AC < 0
A > 0,  C > 0

Type 1

6 The space of possible quadratic coefficients.
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7 Possible types of quadratic functions.



If we now define new values D and E such that

A = D + E
C = D − E

we have

Acos2α + B(2cosα sinα) + Csin2α
= D + E(cos2α − sin2α) + B(2cosα sinα)

Now applying a trigonometric double angle identity
gives us the net result:

Ax2 + 2Bxw + Cw2 = r2(D + Ecos(2α) + Bsin(2α))

So we’ve turned the polynomial into a biased sine
wave. (Imagine surrounding the plots of Figure 7 with
a unit radius cylinder. The sine wave is the intersection
of the function and the cylinder.) This new coordinate
system [D, B, E] is a more natural way to represent the
quadratic’s properties. For example, the condition of
having real roots is just that the amplitude √E2 + B2 is
greater than the magnitude of the bias|D|. Equivalently,
the discriminant of the quadratic becomes

B2 − AC = B2 − D2 + E2 = 0

This is the equation of a circular cone around the D axis.
Now writing the new coordinates as

and plugging into Equation 12 gives us

Again, with the double-angle formulas we have

In other words, rotating the function in 2D [x, w]
parameter space by the angle θ rotates the quadratic
coefficients in 3D [D, B, E] space by 2θ around the D
axis. I think that’s pretty neat. But wait ‘til you see
what happens when you do this analysis with cubic
polynomials. ■

Readers may contact Jim Blinn at blinn@
microsoft.com.

�
�
�

D

B

E

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
1 0 0
0 2 2
0 2 2

cos sin
sin cos

θ θ
θ θ

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

D

B

E

�
�
�

D

B

E

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − −
1 0 0

0 2

0

2 2cos sin cos sinθ θ θ θ
22 2 2sin cos cos sinθ θ θ θ−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

D

B

E

⎥⎥
⎥
⎥

1 0 1
0 1 0
1 0 1−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤D

B

E

A

B

C ⎦⎦

⎥
⎥
⎥

Ax Bxw Cw

A r B r C r

2 2

2 2

2

2

+ +

= ( ) + ( )+cos cos sin sinα α α αα

α α α α

( )
= + ( )+( )

2

2 2 22r A B Ccos cos sin sin

IEEE Computer Graphics and Applications 87

By Robert J. Muller
Standford University

Data modeling and database  
design are slowly making the  
transition that programming  
made a decade ago to object- 
oriented (OO) techniques. Most  
software professionals know the  
basics of OO programming. This  
ReadyNote provides data  
modelers with some ideas about  
how to apply OO thinking to  
data modeling.  $19  
www.computer.org/ReadyNotes

Here Now! 
Designing Databases with Object-Oriented Methods

IEEE ReadyNotes


