
Computer graphicists see the world as a big pile of
polynomials. Piles of linear polynomials (also

known as vector and matrix products) represent flat
things and straight things. To get curvy things you need
higher-order polynomials. In my last few columns1,2 I’ve
played with such higher-order polynomials and their
geometric interpretations in 1D and 2D projective
spaces. Before trying this in 3D space it’s a good idea to
make sure we understand the simple linear case. So in
the next couple of columns I’m going to look at homo-
geneous linear polynomials and their interpretation in
projective 3D space. Geometrically, this means that I’ll
discuss 3D points, lines, and planes and their intersec-
tion and incidence relations. These columns will basi-
cally update the ideas from an old Siggraph paper3 with
the tensor diagram notation described in past issues of
IEEE Computer Graphics and Applications.1,4

I’ll start by reviewing the algebraic machinery and its
geometric interpretation for the lower dimensional spaces.
We’ll begin in two dimensions, drop down briefly to one
dimension, and then bound off to three dimensions. Along
the way, I’ll also share my thoughts about notational con-
ventions for elements of vectors.

Two dimensions
We represent points in projective 2D space as 3D vec-

tors [x, y, w]. In fact, we generally represent points in
nD projective space by vectors in (n + 1) dimensions.
The vector components x, y, w are called homogeneous
coordinates or, perhaps more properly, Grassman coor-
dinates.5 The ordinary 2D coordinates of a point are
[x/w, y/w]; points with w = 0 represent points at infin-
ity. Any nonzero scalar multiple of [x, y, w] represents
the same geometrical point. 

We also represent lines as three-element vectors [a,
b, c] so that all points on the line satisfy

ax + by + cw = 0

If you’re under 30 or attended a private school, you’d
say that a point was a column vector and a line was a
row vector and write

If you’re over 30 and attended a public school, you’d say
that a point was a row vector and a line was a column
vector and write

But if you’ve been reading my last few columns,
you’d know that row-ness and column-ness aren’t
important properties. Rather, we categorize point vec-
tors as contravariant tensors and line vectors as covari-
ant tensors. I’ll visually distinguish between these by
using subscripts to label the covariant tensor compo-
nents and superscripts to label the contravariant ten-
sor components:

(In these equations, we start indexing with zero.) I do
realize that the indicated identification of points (or
lines) with contravariant (or covariant) tensors labeled
with superscript (or subscript) indices is only one of four
possible notational permutations. But I did make some
effort to examine standard mathematical and physics
notation and tried to match up the choices properly.

A dot product (which we now call a tensor contrac-
tion) can only happen between a covariant and a con-
travariant index pair:

Then we skip writing the summation sign explicitly and
make it implicit for any pair of equal covariant and con-
travariant indices. (This convention is called Einstein
index notation, or EIN). The EIN that point P lies on line
L will be
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When you achieve true enlightenment you learn to
embrace contradictions. You realize that a superscript
can either be a contravariant index or an exponent. And
a subscript can either be a covariant index or a simple
name extender. For example, we can name the compo-
nents of the vector L two ways, which emphasize either
the vector’s name or the components’ names:

We’re effectively referring to the vector elements on
either a first- or last-name basis, expressing various
degrees of familiarity. 

Notation gallery
One of our goals is to gain insight into the patterns

formed by algebraic combinations of tensor components
as they represent various geometric situations.
Sometimes one of the previously mentioned naming
schemes will be more illustrative, and sometimes the
other will be. Let’s muse a bit on some of the possibili-
ties, going from the familiar to the formal.

When there’s only one point or one line in a prob-
lem, you can give the components simple unadorned
names:

If there’s more than one point, we need more squig-
gles to distinguish between them. Let’s look at the var-
ious ways we could do this. For comparison purposes,
I’ll show how a particular naming convention looks
when writing out the first component of the vector cross
product.

To start with, we could continue to emphasize the
coordinate names by using them as the base symbol
and use subscripts as name extenders to indicate which
point we are talking about. For points P and S we
would have

(1)

We could also apply subscripts as name extenders to
the vector name itself. Rather than having subsub-
scripts, the components can just use this same name
extender, which can be alphabetic:

Or the extenders can be numeric:

(2)

I think this is my favorite notation. Unfortunately, it
doesn’t generalize too well as we’ll see in a minute.

Moving on to the last-name-first variants, we use the
vector name as the base symbol for its components and
label the positions with either letter names: 

Or we label them with numbers: 

(3)

Numerical indices can sometimes show relationship pat-
terns better, but names for the elements x, y, z, and w
are friendlier.

One further possibility is to label points and their com-
ponents numerically. This would give us the following
somewhat mixed metaphor where the superscript is a
contravariant index and the subscript is a numeric name
extender:

Mathematicians tend to like this form because it lets
them generalize formulas by making the indices into
algebraic expressions instead of specific numbers. I have
reservations about it, though, for two reasons. First, it
places all the information in the superscripts/subscripts,
which are typographically small and harder to see.
Second, this notation gets out of hand when applied to
covariant (line-like) vectors. That is, the subscript must
serve double duty as a component index and as a name
extender, perhaps separated by a semicolon. Equation 2
shares this problem, which is why I don’t use it here.

The choice of which notation to use should be made
based on clarity. I’ll typically start out with Equation 1
for a friendly introduction to some computations, and
then proceed to Equation 3 for more generality.
Sometimes I’ll even resort to writing points as rows and
lines as columns, when I think that it will help you tran-
sition to the new notation.

Because I want to shy away from using subscripts to
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distinguish different tensors, I’ll use the following nam-
ing convention for my tensors:

� Point names will come from near the end of the alpha-
bet: P, S, T, U (I want to reserve Q for something else,
and I’m skipping R since it looks too much like P).

� Line names will come from the middle of the alpha-
bet: L, M, N.

� Plane names will come from near the beginning of the
alphabet: D, E, G, H (I won’t use F since it looks too
much like E).

The line through two points
Two points determine a line. You can calculate the

components for the line L through the points P and S
by expressing the condition that both points are on L.

(4)

If you temporarily stop thinking of the vectors as 2D
points in projective space and think of them as 3D vec-
tors in Euclidean space, the question changes to how to
find a vector perpendicular to two given vectors. We
know that the answer is the cross product. The standard
mnemonic for the cross product elements is as subde-
terminants of the 2 × 3 matrix in Equation 4. Here is
where our choice of component naming helps out visu-
ally. We are most interested in which columns of the 
2 × 3 matrix to select for each 2 × 2 subdeterminant, and
the column indicators x, y, and w are the largest and
most visible parts of this notation. The anwer is:

(5)

Let’s transition to EIN. If we were to write it in
Equation 3’s notation, we’d have

In the late 1800s, the mathematician Tullio Levi-Civita
devised a way to express the cross product as a tensor
contraction by using a magic three-index tensor typi-
cally named epsilon. We define the elements of the
epsilon tensor as

(6)

Writing epsilon out in its full glory gives a 3 × 3 × 3 cube
of numbers. The best we can do with conventional
matrix notation is as a vector of matrices:

Then the EIN for the cross product of contravectors P
and S is 

PiSjεijk =Lk (7)

Remember that a summation is implied over indices i
and j because they appear twice in the expression. Of
course, most of the terms in this summation will be zero
since most of the elements of the epsilon are zero. Let’s
take a look at the summation that generates L0 = a. Of all
the nine terms for i = 0, 1, and 2 and j = 0, 1, and 2, the
only nonzero ones are

L0 = PiSjεij0

= P1S2ε120 + P2S1ε210

= P1S2 − P2S1

a = ypws − wpys

This gives the expression for the first component of a
cross product, as Equations 1 and 3 show.

Tensor diagrams
Tensor diagram notation is simply another way of

writing EIN. A tensor becomes a node and a summed-
over index becomes a directed arc between nodes. The
arc connects from the contravariant (point-like) index
to the covariant (line-like) index. For example, the dot
product of P and L would be

In more complicated diagrams, I’ll skip labeling the arcs
with index names. They’re really, after all, just local vari-
ables for the summation and could be any unique tem-
porary variable name.

Because the epsilon is a three-index tensor, its dia-
gram node would have three arcs, and because it’s
covariant, the three arcs point inward. This is so com-
mon that we further abbreviate it by using just a small
black dot:
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The diagram form of the cross product, giving the line
through two points, is then

(8)

Note that indices i, j, k proceed counterclockwise around
the epsilon. This takes account of the fact that a cross
product has the property

P × S = −S × P

This, in diagram form, means that a mirror reflection
of a diagram containing an epsilon will flip the alge-
braic sign.

Two coincident points
The one situation where this algorithm won’t work is

if you feed it two vectors that actually represent the same
geometrical point. That is, one is a homogeneous scale
of the other. What you get back is a vector of all zeroes
(a 3D vector crossed with itself gives the zero vector).
We can turn this around and use Equation 9 to test the
homogeneous equivalence of points P and S: 

(9)

Three collinear points
The condition that a point T lies on the line formed

from P and S is another way of saying that points P, S,
and T are collinear. Given the technique noted previ-
ously for representing line PS, the test for collinearity
is simply

(P × S) • T = 0

This is called the scalar triple product of P, S, and T. We
can actually write this in several ways, which, somewhat

obscures the symmetry of the relation with respect to
permutations of P, S, and T:

P × S • T = S × T • P = T × P • S = 0

The EIN form and its tensor diagram represent this sym-
metry more prettily, giving equal attention to all three
vectors. They just involve plugging T into Equations 7
and 8 as follows:

PiSjTkεijk = 0

and

(10)

Another way to think of this is to say that the three vec-
tors are linearly dependent. If you then stack them on
top of each other to make a 3 × 3 matrix, the determi-
nant of that matrix will be zero. The diagram of
Equation 10 thus gives the determinant of the matrix
PST.

The point on two lines
The principle of duality lets us turn the statements

and equations discussed in the last section around and
generate the analogous computation for finding the
intersection of two lines. The coordinates of the point P
common to two lines M and N again come from the
cross product

To write this in EIN you do the double summation using
a contravariant version of the epsilon (same numbers,
but with superscript indices):

LiM jεijk = P k

The diagram for the contravariant epsilon is, again,
a black dot but with outward pointing arrows:

Two coincident lines
If lines L and M coincide, this cross product will pro-

duce a zero vector:
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Three copointar lines
If three lines meet at one common point, then the

scalar triple product of their vectors is zero. Various alge-
braic ways to detect this would be

L × M • N = M × N • L = N × L • M = 0
LiM jNkεijk = 0

One dimension
Dropping down a dimension, we enter the world of

homogeneous bivariate polynomials. Because we’re
only dealing with linear things this time, I only use the
ridiculously simple linear equation

I like to think  of the parameter pair [x, w] as a 2D homo-
geneous coordinate of points on the 1D projective num-
ber line. This number line consists of all normal points
at locations x/w, with the addition of a parameter at
infinity at [x, w] = [1, 0]. 

One point determines a line
Given one such 1D point, the line (that is, the linear

polynomial) that it satisfies is just

We can generate this with a matrix multiplication by
inventing a 2D specialization of the 3D Levi-Civita
epsilon:

This 2 × 2 antisymmetric matrix is our epsilon:

We can see that its definition is analogous to Equation 6:

ε01 = +1
ε10 = −1
εij = 0  otherwise

For the diagram version of the epsilon I use

The 2D specialization of Equation 8 is then

Two coincident points
Two vectors, [xp wp] and [xs ws], represent the same

point on the 1D projective number line if

Of course, this isn’t the best expression of this equiva-
lency test because it dies horribly for parameters at infin-
ity (where w = 0). A better test is the homogeneous
equivalent:

xpws − wpxs = 0

This is a specialization of the coincidence condition on
two 2D points—that is, a specialization of the 3D cross
product. We can write this as a matrix product with the
epsilon:

So, the condition that two 1D points are equivalent
(the 2D analog to Equation 9) is

The definition of the epsilon implies that swapping its
indices flips its sign:

PiεijSj = −SjεjiPi

This is reflected in the following diagram by noting that
a mirror reflection flips its sign, while a rotation doesn’t:
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Three dimensions
Now that we have the pattern, let’s generalize the con-

cepts from one and two dimensions into three dimensions.
We represent 3D points by 4D contravariant vectors:

And we represent 3D planes by 4D covariant vectors:

Three points make a plane
Three points determine a plane. To generate plane E

common to three points P, S, and T, we solve (by anal-
ogy to Equation 4) for a, b, c, and d in

We can think of the solution as a 4D generalization of
the 3D cross product. Again, by analogy to Equation 5,
the answer comes from the four 3 × 3 subdeterminants
of the previous 3 × 4 matrix.

(11)

Let’s write this in EIN. We first turn the previous equa-
tion into the tensor-friendly notation:

(12)

Then we define a 4D generalization of the epsilon ten-

sor. This will be a four-index gadget: a 4 × 4 × 4 × 4 ele-
ment array with elements defined by

εijkl = +1 if ijkl is an even permuation of 0123
εijkl = −1 if ijkl is an odd permuation of 0123
εijkl = 0 otherwise

So we have plane E generated by three points P, S, and
T in EIN as

PiSjTkεijkl = El

For a bit of intuition, notice that each term in this
implied summation contains one component from each
of P, S, and T. And the indices must be unequal or the
epsilon factor will be zero. Now look at Equation 12 and
think of the standard algorithm for calculating the deter-
minant of a 3 × 3 matrix.

In diagram form, we represent the epsilon as a spot
with four inward arrows. (In my next column, I’ll com-
ment on the shape of the spot.)

So the diagram form for the plane E through points P,
S, and T is 

Detecting three collinear points
If we feed three collinear points into this calculation

we won’t get a reasonable plane as a result. Sure enough,
the components of plane [a b c d] will all be zero:

(13)

This is the 3D analog to Equation 10, which represents
collinearity in 2D. Note that in 2D it took one value
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equaling zero to mean collinear. In 3D, it takes four val-
ues equaling zero to determine collinearity.

Detecting four coplanar points
Four points will be coplanar (again by analogy to

Equation 10) if their scalar quadruple product is zero.
This is just the determinant of the 4 × 4 matrix formed
by stacking the four point vectors on top of each other.
The diagram for this is

The point common to three planes
Now let’s list the dual statements in the last three sec-

tions. We simply swap the terms point and plane and
swap the covariant and contravariant indices. 

First, given three planes E, G, and H, the point P com-
mon to them must satisfy

By analogy to Equation 11, the solution is

In diagram form this is

Three collinear planes
If the three planes intersect along one common line,

finding the single point common to them will result in
four zeroes. By analogy to Equation 13 we have

Detecting four copointar planes
Intersecting four planes will generally generate four

points. In the special case where they all meet at one
point (by analogy to Equation 10), their scalar quadru-
ple product is zero. This is just the determinant of the 4
× 4 matrix formed by placing the four plane vectors next
to each other. The diagram for this is

Lines in space
Now we come to the point of this series of columns.

We have an algebraic representation for points in 3D (a
four-element contravariant vector) and for planes in 3D
(a four-element covariant vector). All the typical geo-
metric operations correspond to various tensor con-
tractions between these vectors and the epsilon tensor.
What, then, is a reasonable algebraic representation for
lines in 3D? We want some other tensor-like object that
will generate tensor-contraction-like answers to all the
usual geometric questions.

Table 1 lists some of the geometric questions we might
want to answer. Each question has a dual nature (formed
by swapping the terms point and plane), so I’ll write them
in pairs. Then I’ll write the desired calculation as an over-
load function named ε to preview our ultimate answer.
The list appears in Table 1. The answer will turn out to be
fairly straightforward, but there are some subtleties and
surprises. We’ll see them all next time. �
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Table 1. Interesting questions about lines.

Questions Calculations Questions Calculations

Are two points coincident? ε (point1, point2) = 0 Are two planes coincident? ε (plane1, plane2) = 0
If not, find the line If not, find the line at the
through the two points. ε (point1, point2) = line intersection of the two planes. ε (plane1, plane2) = line
Is a given point on a Does a given plane contain
given line? ε (point, line) = 0 a given line? ε (plane, line) = 0
If not, what is the plane If not, at what point does the
containing them both? ε (point, line) = plane line intersect the plane? ε (plane, line) = point

Questions Calculations

Do two lines intersect (or are they skew)? ε (line1, line2) = 0
If they intersect, what is the point of intersection and ε (line1, line2) = point
the plane containing them both? ε (line1, line2) = plane
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