
Hello again. If you haven’t noticed, I’ve been spend-
ing most of the last year doing things other than

writing this column. I’ve primarily been writing up a
brain dump on tensor diagrams for a course given at
Siggraph 2001. A reprise of the course has been accept-
ed for the Siggraph 2002 conference, so if you’re inter-
ested, stop by. In addition, I have been gathering my
latest batch of columns to be published in a new com-
pilation book by Morgan Kaufmann in time for
Siggraph 2002. This time, however, I couldn’t resist the
temptation to do major surgery on most of them, includ-
ing ideas that I thought of or found out about after their
publication in IEEE Computer Graphics and Applications.
This column presents a few of these.

The quartic discriminant
In my November/December 2000 and January/

February 2001 CG&A columns, I talked about calculat-
ing discriminants of polynomials. The discussion here
extends those columns, but I’ll try to give a brief recap if
you haven’t seen them.

The discriminant is a function of the coefficients that
indicates if the polynomial has any double roots. In other
words, the discriminant being zero tells us that both the
function and its derivative are zero at the same para-
meter value. Quadratic and cubic discriminants are
moderately simple, but the discriminant of a quartic

or more generally, the discriminant of a homogeneous
quartic 

(1)

is considerably more complicated. (With some foresight,
I’ve built some constant factors into the coefficients and
given them new uppercase names.) Several Web refer-
ences give explicit formulas for the discriminant that,
in our notation, look like the incredibly gaudy

Simpler algebra
You can write this somewhat more simply using resul-

tants. We first define

In my January/February 2001 column, I showed that
the discriminant equals

This is pretty but not pretty enough. 

Simpler simpler algebra
Another representation of the discriminant of a quar-

tic exists that’s even better. It’s buried in some 100-year-
old lectures by David Hilbert, reprinted recently in
Hilbert’s Theory of Algebraic Invariants (Cambridge
University Press, 1993, pp. 72, 74). Hilbert defined two
quantities that, translated into our terminology, are

Then the quartic discriminant happens to be

You can verify this for yourself by simple substitution. I
won’t wait .…
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I won’t wait because I now have a simpler way to write
this using tensor diagram notation.

Tensor diagram review
First, a quick review of tensor diagrams. To make a

tensor, we arrange the coefficients of f into a 2 × 2 × 2 ×
2 hypercube of coefficients. In writing expressions
involving such 4-index quantities, about the best we can
do using conventional matrix notation is to use a 2 × 2
matrix of 2 × 2 matrices:

A better way is to use Einstein index notation (EIN).
First, we give a new name to the parameter vector and
its elements (here superscripts are indices rather than
exponents):

Then the EIN for the function is

The tensor diagram simply draws each tensor (p and f)
as a node, and draws each summed-over index as an arc
between the nodes.

Finally, we define a constant matrix epsilon whose dia-
gram is

Tensor diagram discriminants
Now let’s see how to write the discriminant as a ten-

sor diagram. The two simplest diagrams that you can
form from 4-arc f nodes and epsilon nodes are

and

Using techniques similar to those in my March/April
2001 column, I’ve been able to evaluate these diagrams
and verify that

(2)

Wow … cool! Hilbert’s invariants match up with the two
simplest possible tensor diagrams! Some fiddling with
constants gives us

A family portrait of the tensor diagrams for the dis-
criminants of polynomials of order 2, 3, and 4 appears
in Figure 1.
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1  Tensor diagrams for polynomial discriminants.



Tensor invariants
The discriminant of a polynomial is an example of an

invariant quantity. When you calculate such a quantity
for a polynomial its sign will remain unchanged if the
polynomial is transformed parametrically by a linear
transformation matrix T. This makes sense because the
number and multiplicity of roots of a polynomial don’t
change under parameter transformations like translat-
ing or scaling.

Tensor diagrams are particularly useful to express
invariant quantities because of the following identity:

We can easily verify this by explicit calculation:

Now, let’s apply this to the simplest of our discriminants.
The quadratic discriminant is

We now do a parameter transformation on q. I showed
in the original article in the January/February 2001
issue that the diagram notation of this is

Putting this into our discriminant equation and applying
our identity gives

In other words,

As long as we don’t do anything silly, like transform by
a singular matrix, the sign of the discriminant of a qua-
dratic doesn’t change under coordinate transformation.
This seems pretty obvious, but there’s a bigger idea lurk-
ing in it. The big punch line here is that any diagram
made up of a collection of polynomial nodes glued
together with the appropriate number of epsilon nodes
will represent a transformationally invariant quantity.

Actually, the invariant quantity will be multiplied by
det T raised to a power equal to the number of epsilons
in the diagram. If the diagram has an even number of
epsilons, we multiply the transformed invariant by a
positive number. The sign, or the fact of its being zero,
is what remains unmodified. An odd number of epsilons
implies multiplying by a nonzero number (could be plus
or minus). We simply preserve the zeroness of the
invariant. 

You can imagine any number of diagrams formed in
this way. Each of them represents some invariant prop-
erty under parameter transformation. However, many of
them will be uninteresting. For example, you can show
that the following diagram for a cubic polynomial is
identically zero:

Hilbert’s book is all about some rather complicated
algebraic rules for generating invariant quantities. We
can do this much more simply with tensor diagrams. For
example, we can tell that all the discriminants in Figure
1 are invariants simply because we can write them as
tensor diagrams.

2DH diagrams
Adding a dimension moves us from the world of

homogeneous polynomials—which I think of as 1D-
homogeneous (or 1DH) geometry—to 2D-homoge-
neous (2DH) geometry (curves in the projective plane).

Points on a second order, or quadratic, curve (typi-
cally a conic section) satisfy the equation written in var-
ious notations as

P⋅Q⋅PT=0

P Q = 0P
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Points on a cubic curve satisfy the equation

The 2DH epsilon is the same as the 3D Levi-Civita
epsilon used in theoretical physics. Its diagram has three
arcs leading to it, and it has a similar identity involving
transformation matrices that we had in 1DH:

This means that any 2DH tensor diagram consisting of
polynomial nodes and epsilons represents a transfor-
mational invariant.

Tangency
Given the diagrams for the discriminant of a 1DH

polynomial, I showed that you can use them to solve line
tangency problems in 2DH geometry. For example, the
line L is tangent to a quadratic curve Q if

The line L is tangent to the cubic curve C if

This diagram represents a polynomial expression that
is fourth order in C and sixth order in L.

Because it’s sixth order in L, it’s reasonable to expect
that it’s possible to find a situation where there are six
tangents to a cubic from a given point. This seems exces-
sive but it’s possible as Figure 2 shows.

Finally, it’s pretty easy to imagine the 2DH diagram
that tells whether a line L is tangent to a fourth order
curve F now that we have the 1DH diagram for the dis-
criminant of a quartic.

Discriminants
The concept of the discriminant also bumps up from

1DH land to 2DH land. Again, the discriminant being
zero tells us that there are places where both the func-
tion and its derivatives are zero. Geometrically this
means that there are places on the curve (function = 0)
where the tangent isn’t defined (derivative = 0). This
can happen if the curve is factorable into lower order
curves—the points in question are the points of inter-
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2 Six tangents from a point to a cubic curve.



section of the lower order curves. Or it can mean that
there are cusps or self-intersections in the curve. We’ll
see examples of all these below.

Quadratic. The discriminant of a quadratic curve is
just the determinant of the matrix Q. In diagram nota-
tion, this looks like 

If this discriminant is zero it means that the quadratic is
factorable into two linear terms. Geometrically, it means
that the curve isn’t a simple conic section, but a degen-
erate one consisting of two intersecting straight lines
(see Figure 3).

Cubic. An equivalent expression for the cubic curve
case is considerably more complicated. Paluszny and
Patterson1 describe the cubic discriminant as a polyno-
mial that’s degree 12 in the coefficients A … F and that
has more than 10,000 terms. Manipulating this thing
explicitly is inconvenient. Actually, it’s not that compli-

cated. George Salmon2 showed that the discriminant is
a function of two simpler quantities:

where S is degree 4 in A … K and has 25 terms, and T is
degree 6 in A … K and has 103 terms. Salmon worked
out all these terms by hand (it’s amazing what people
had time to do before the invention of television). Figure
4 shows the relation between the cubic discriminant and
the geometry of the cubic curve. Notice the varieties of
cusp, self-intersection, and lower-order-curve intersec-
tion that can happen when ∆3=0. (The tick marks on
the figure show the locations of inflection points on the
curves.)

How can we express ∆3 as a tensor diagram? Let’s
work backwards and see what sort of simple diagrams
we can make out of C nodes and epsilons. After some
fooling around I came up with the following two:

Again, using the program described in my March/April
2001 column, I’ve been able to verify that

Pastafazola! Salmon’s invariants correspond to the two
simplest tensor diagrams we can make for cubic curves!
It’s things like this that make me believe that I’m really
onto something with all this tensor diagram nonsense.
Some more fiddling with constants gives us

  

∆3
6

2
4

3

3
6

2
4

3

6
64

24

1

6
6

=
−









 +

−











= ( ) −( )






C C

C C

  

C S

C T
4

6

24
6

= −
= −

C6 = C C

C

C CC

C

C

C

C

C4 =

  ∆3
2 364= +T S

Q

Q

Q∆2 = − 1
6

Jim Blinn’s Corner

90 March/April 2002

∆2 ≠ 0 ∆2 = 0

3 Relation between quadratic discriminant and
geometry.

∆3 < 0

∆3 = 0

∆3 > 0

4 Relationship between cubic discriminant and
geometry.



Relationships
There’s something even more interesting going on

here. Notice the similarity between the formula for the
discriminants of a 1DH quartic polynomial and a 2DH
cubic curve:

This means that a relationship exists between the pos-
sible root structures of a fourth-order polynomial and
the possible degeneracies of a third-order curve. That’s
one of the things I’m currently trying to understand. I’ll
update you as I learn more. �
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