
Several years ago, Jim Kajiya loaned me a copy of a
book called Diagram Techniques in Group Theory.1

This book described a graphical representation of the
algebra used to solve various problems in mathemati-
cal physics. I was only able to understand the first chap-
ter of the book, but even that was enough to excite me
tremendously about adapting the technique to the alge-
bra of homogeneous geometry that we’re familiar with
in computer graphics. I’ve written up my initial efforts
in two columns (“Uppers and Downers,” IEEE CG&A
March 1992 and May 1992, reprinted in the book Jim
Blinn’s Corner: Dirty Pixels.2) Recently I’ve been play-
ing more and more with these diagrammatic ways of
doing algebra and have come up with a lot of interest-
ing results. This column presents the first of these—
using diagrams to compute discriminants of
polynomials and solve a related problem: line-curve
tangency. To get into this, I’ll briefly review the parts of
“Uppers and Downers” that will be useful here.

2D homogeneous geometry
Two-dimensional homogeneous geometry uses three

element vectors, 3 × 3 matrices, 3 × 3 × 3 tensors, and so
on to represent various objects. I’ll denote such quanti-
ties in uppercase boldface to distinguish them from poly-
nomials discussed later. For example, a homogeneous
point P is a three-element row vector and a line L is a
three-element column vector. The point lies on the line if
the dot product P⋅L is zero. Figure 1 shows different ways
of expressing the dot product. Figures 1a, 1b, and 1c
should be familiar to you. I’ll explain Figures 1d and 1e
shortly. Moving
up to curves, the
points on a sec-
ond order (qua-
dratic) curve
satisfy the equa-
tion in Figure 2a.
We can write
this in matrix
form by arrang-
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1 Point on a line. 2 Point on a quadratic curve. 3 Point on a cubic curve.



ing the coefficients into the 3 × 3 symmetric matrix of
Figure 2b. Next up, the points on a third order (cubic)
curve satisfy Figure 3a. We can also write this by arrang-
ing the coefficients into a 3 × 3 × 3 symmetric general-
ization of a matrix. Doing this with conventional matrix
notation is a bit weird. About the best we can do is to show
it as a vector of matrices as in Figure 3b.

Now let’s talk about transformations. We geometri-
cally transform points by postmultiplying by a 3 × 3
matrix: PT = P′, and we transform lines by premulti-
plying by the adjoint of the matrix: T*L=L′. Table 1
shows various ways to write these expressions, as well
as those for transforming curves.

Finally, the cross product of two point-vectors P and R
gives the line passing through them: P×R=L (see Figure
4). In a dual fashion, the cross product of two line-vectors
L and M gives their point of intersection: L × M = P.

The problem 
In looking over these expressions, we see that our

notation has two problems. The first is the need to take
the transpose of P when multiplying by Q. This is very
fishy. Column matrices are supposed to represent lines,
not points. In fact, there’s something fundamentally dif-
ferent about matrices that represent transformations
and matrices that represent quadratic curves. We can’t,
however, distinguish between them with standard vec-
tor notation. The second problem is the inability to con-
veniently represent entities with more than two indices.
Our attempt to arrange the coefficients of a cubic poly-
nomial into a triply indexed “cubical matrix” is an exam-
ple of the problem.

Fortunately, we can adapt two notational schemes
from the world of theoretical physics to alleviate these
shortcomings—Einstein Index Notation (EIN) and the
diagram notation I referred to in my opening mono-
logue. I originally called these Feynman diagrams but
they differ enough to give them the more appropriate
name tensor diagrams. They’re more like the diagrams
from Kuperberg.3

2DH tensor diagrams
EIN differentiates between two types of indices for

vector or matrix elements: the point-like ones (which
we’ll call contravariant and write as superscripts) and
line-like ones (which we will call covariant and write as
subscripts). Thus an element of a point-vector is Pi and
an element of a line-vector is Li. (Note that superscript
indices aren’t the same as exponents. Mathematicians

ran out of places to put indices and started overloading
their notation. Live with it.). Dot products happen only
between matching pairs of covariant and contravariant
indices. Thus the dot of a point and a line is

We simplify further by omitting the sigma and stating
that any superscript or subscript pair that has the same
letter implicitly implies a summation over that letter. The
EIN form of a dot product is then simply PiLi. A more com-
plicated expression may have many tensors and super-
scripts and subscripts, and will implicitly be summed
over all pairs of identical upper and lower indices. (These
summations are also called tensor contractions.) We can
see this in the EIN for higher order curves in Figures 2d
and 3c. Note that the expression for EIN is basically a
model for the terms that are summed. Each individual
factor in the notation is just a number, so the factors can
be rearranged in any order, as Figure 3c shows.

Tensor diagram notation is a translation of EIN into
a graph. We represent a point as a node with an out-
ward arrow indicating a covariant index. A line, with
its covariant index, is a node with an inward arrow. The
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dot product—that is, the summation over the covari-
ant-contravariant pair—is an arc connecting two nodes.
See Figures 1e, 2e, and 3d for the diagram notation of
the expressions we’ve seen so far. For many of the dia-
grams I have labeled the arcs with the index they cor-
respond to in EIN. Some later, more complex, diagrams
will not need this.

Transformations
A transformation matrix has one contravariant and one

covariant index. Multiplying a point by such a matrix will
“annihilate” its contravariant index leaving a result that
has a free covariant index, making the result be a point.
Table 1, row b, shows the EIN form of the transformation
of various quantities. Row c of the table shows how this
translates into diagram notation. Now we can see the dif-
ference between the two types of matrices. A transfor-
mation matrix has one of each type of index (denoted
with one arrow out and one arrow in); a quadratic matrix
has two covariant indices (denoted with both arrows in).
In Figure 2d the two covariant-contravariant index pairs
annihilate each other to produce a scalar.

Cross products and adjoints
We abbreviate the algebra for cross products and

matrix adjoints by defining a three-index 3 × 3 × 3 ele-
ment anti-symmetric tensor called the Levi-Civita
epsilon. The elements of epsilon are defined to be

(1)

Multiplying two vectors by epsilon forms their cross
product. Since epsilon has three subscript indices, mul-
tiplying in two points with superscript indices will result
in a vector with one remaining subscript index (a line).
The diagram form of epsilon is a node with three inward
pointing arcs. I show this node as a small dot as in Figure
4d. You can imagine a similar figure for the dual form,
the cross product of two lines: L ×M =P. Just use a con-
travariant form of epsilon εijk, so that LiM jεijk = Pk and
flip the direction of all arrows in the diagram.

We must be careful about how the anti-symmetry of
epsilon translates into a diagram. The convention is to
label the arcs counterclockwise around the dot. A mir-

ror reflection of an epsilon diagram will reverse the
order of its indices and therefore flip its algebraic sign.

Epsilon is also useful to form matrix adjoints. Figure
5 shows various ways to denote the adjoint. The raw EIN
expression QijQklεikmεjln gives twice the adjoint, so I had
to insert a factor of 1/2 to get the correct answer. I also
mirrored the diagram for the first epsilon in the EIN
(and introduced a minus sign) to make the whole dia-
gram a bit prettier. These factors and signs clutter things
up a bit but are necessary to get right.

Now that we have the adjoint, the determinant is not
far behind—multiply the adjoint by Q and take the trace
(connect the two dangling arcs). The result is three times
the determinant. Various notations appear in Figure 6.

Homogeneous polynomials
Now let’s go down a dimension and take a look at one-

dimensional homogeneous geometry. This is effective-
ly the study of homogeneous polynomials. Basically we
have the same thing as before, but everything is now
composed of two-element vectors, 2 × 2 matrices and 2
× 2 × 2 tensors, which I’ll write as lower case boldface.
A homogeneous linear equation is written in various
notations as Figure 7 illustrates. Figure 8 shows a homo-
geneous quadratic equation, and Figure 9 shows a
homogeneous cubic equation. (Unfortunately I find that
I have to use the letter C in two contexts, once as a coef-
ficient and once as a tensor name. Live with it.)

The 2D Epsilon
The only slightly subtle item is the form of the two-

element epsilon. Instead of having three indices, each
with three values, the two-element epsilon has two
indices (making it a simple matrix) each with two val-
ues. By analogy to Equation 1, the contravariant form
of epsilon is

In other words,
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The Einstein notation is simply εij or εij and the diagram
notation looks like Figure 10.

I purposely constructed Figure 10 to be asymmetri-
cal. The convention is that when the diagram points
down (as above) the first index is on the left. A mirror
reflection of this diagram will perform a sign flip on the
diagram’s value. If the diagram were not asymmetrical,
a mirror flip would not be detectable.

To drive this home, compare the EIN expressions

with their diagram counterparts. The first equality rep-
resents a rotation, the second has a reflection. See
Figure 11.

Now let’s use the epsilon. Figure 12 shows the adjoint
of a 2 × 2 matrix, by analogy to Figure 5.

We get the determinant by analogy to Figure 6.
Multiply Figure 12 by q and take the trace. This gives

twice the determinant. Flip one of the epsilons to make
the diagram neater. Figure 13 shows what we get.
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A 1DH application: Discriminants
The discriminant of a polynomial is a condition on the

coefficients that guarantees that the polynomial has a
double root. In our last installment (November/
December 2000 IEEE CG&A) we learned how to write
this quantity in matrix terms. Now let’s see how this
looks in diagram form. The discriminant of the qua-
dratic polynomial from Figure 4a is

Figure 14 shows this in diagram form. 
The discriminant of the cubic polynomial from Figure

5a is

(2)

where the matrix elements are defined as

What does this look like in diagram form? Let’s look
at the individual “slices” of the c tensor. We form these
by multiplying one index by a “basis vector” like (1, 0) or
(0, 1). See Figure 15. Figure 16 shows the determinants
of these two matrices. Now what happens if we mash
together c1 and c2 as a sort of “cross determinant” with
the diagram form shown in Figure 17? The value of this
diagram is, in conventional matrix form

Now, remembering the definitions of c1 and c2, we have
just shown the relations in Figure 18. What we have just
done is to find expressions for each of the elements of
the matrix in Equation 2. Figure 19 puts these back
together into a matrix. One interesting thing about this
demonstration is that it shows why there are factors of
two for the ∆1 and ∆3 terms, but not for the ∆2. Anyway,
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the final step is easy. The discriminant of the cubic c
equals the determinant of this matrix (with the appro-
priate minus sign and scale factor) as Figure 20 shows.
You can see this as a nice generalization of the discrimi-
nant diagram for the quadratic polynomial in Figure 14.

A 2DH Application: Tangency
Now let’s use this 1DH result to solve a 2DH geome-

try problem: tangency.

Quadratic with line
Figure 2 gave us the condition of a point being on a

quadratic curve. How can we generate an expression
that determines if a line L is tangent to curve Q? Let’s
start by assuming that we have two points, R and S, on
L. (We don’t need to know how we found these two
points. In fact, they will disappear shortly.) Then a gen-
eral point on the line is

In matrix notation

The 2 × 3 matrix is a sort of conversion from the world
of 2D (1DH) vectors (homogeneous polynomials) to
the world of 3D (2DH) vectors (homogeneous curves).
Figure 21 shows this in diagram form. (For these mixed
mode diagrams I made thicker arrows for the three-
element summations and thinner arrows for the two-
element summations.) If we plug this into the quadratic
curve equation we get a homogeneous polynomial in
(α, β) that evaluates the quadratic function at each
point on the line. So, plug Figure 21 into Figure 2e and
you get the results shown in Figure 22. This turns the 3
× 3 symmetric quadratic curve matrix Q into a 2 × 2
symmetric quadratic polynomial matrix q. Figure 23
shows just q by itself. The condition of the line being
tangent to the curve is the same as the condition that
the polynomial has a double root. That polynomial has
a double root iff its determinant is zero. Plugging this
into the diagram form of the determinant gives us the
condition that the polynomial has a double root, and
thus that the line hits the curve at exactly one point
(Figure 24).

Now look at the diagram fragment shown in Figure
25. Write this as a matrix product:

You can recognize the elements of this matrix as the
components of the cross product of the two points R and

S. But these are just the elements of the line-vector L
arranged into an anti-symmetric matrix. Figure 26
shows this in diagram form.
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Figure 27 sums it up. Note that the right hand side of
this doesn’t require explicit points on L, so if all you
have are the L components you don’t need to explicit-
ly find points on L. Putting Figures 24 and 27 together
we get that the line L is tangent to curve Q if Figure 28
holds true.

Figure 28, without the L nodes, is just the expression
of the adjoint of the matrix Q from Figure 8 (times
minus two). In other words, while we use Q to test for
point incidence, we use Q* to test for line incidence (tan-
gency) as shown in Figure 29

Cubic with line
So, going up an order, what’s the condition of line L

being tangent a cubic curve C? That is, we want an
expression involving the vector L and the cubic coeffi-
cient tensor C that’s zero if L is tangent to C. With the
groundwork we’ve laid, this is easy. First, compare
Figures 14 and 28 to see how I converted the quadratic
discriminant into a quadratic curve tangency equation.
I just replaced each 2D epsilon with a 3D epsilon
attached to a copy of L, and replaced q with Q. Now do
the same thing with the discriminant of a cubic polyno-
mial (Figure 20). Figure 30 shows what we get. Figure
30 represents a polynomial expression that is fourth
order in C and sixth order in L. Since it has 18 arcs, the
EIN version of this would require 18 index letters. All in
all, it’s something that would be rather difficult to arrive
at in any other, nondiagram, way.

Notation, notation, and notation
A lot of the notational language of mathematics con-

sists of the art of creative abbreviation. For example, a
vector-matrix product PT is an abbreviation for a lot of
similar looking algebraic expressions. However, clunky
expressions like Figure 3b showed that this notation isn’t
powerful enough to allow us to easily manipulate the sort
of expressions that we’re encountering here. EIN has this
power, but often gets buried under an avalanche of index
letters. The tensor diagram method of drawing EIN is a
better way to handle the index bookkeeping. What I’ve
shown here is only the tip of the iceberg. There are a lot
of other things that diagram notation can do well that I’ll
cover in future columns.

Our languages help form how we think. I believe that
this notation can help us think about these and similar
problems and allow us to come up with solutions that
we wouldn’t find any other way. ■
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27 Two equivalent diagrams for a line.

L = 0

Q

Q

L

28 The condition that line L is tangent to curve Q.

= 0Q* LL

LT(Q*)L=0

29 The test for line tangency uses of the adjoint of Q.

L

C C

L

L

C C

L
= 0LL

30 The condi-
tion that line L
is tangent to
curve C.


