
In my last column (January/February 2001 CG&A), I
talked about a notational device for matrix algebra

called tensor diagrams. This time I’m going to write some
C++code to symbolically evaluate these quantities. This
gives me a chance to play with some as yet untried fea-
tures in the C++ standard library, such as strings and
standard template library (STL) container classes. (For
more on STL, check out my favorite book on the subject:
The C++ Standard Library by Nicolai M. Josuttis,
Addison Wesley, Reading, Massachusetts, 1999.) I’m try-
ing to figure out if I like these new-fangled programming
tools by seeing how much code I can get away with not
writing these days. My initial impression is positive. So
this column is part demo, part advertisement of the STL’s
benefits. If you spend some time learning these tools, you
too can write less code that does more.

The basic objects
Since this column is mostly about C++, I’ll try to make

it independent of my previous columns and introduce
just enough algebra to motivate the code. We’re inter-
ested in algebraic curves defined by F(x, y, w) = 0. The
simplest of these is a straight line, represented by the
equation

Ax + By + Cw = 0

We represent a quadratic curve with the equation

Ax2 + 2Bxy + 2Cxw + Dy2 + 2Eyw + Fw2 = 0

and a cubic curve with the equation

Ax3 + 3Bx2y + 3Cxy2 + Dy3

+ 3Ex2w+ 6Fxyw+ 3Gy2w
+ 3Hxw2+ 3Jyw2

+ Kw3 = 0

(Note that I garbled this last equation in my previous col-
umn—see Figure 1a on page 86 in the January/February
2001 issue. This is the correct version.)

We want to relate various geometric properties of these
curves with algebraic combinations of the coefficients A
through K. First, we arrange the coefficients in arrays that,
in mathematical lingo, are called tensors. For a line, we
arrange the coefficients into a column vector:

For the quadratic, we define the symmetric matrix

For the cubic curve equation, we arrange the coefficients
into a 3 × 3 × 3 tensor that we can (clumsily) write as a
vector of matrices:

When we write an element of one of these tensors,
the convention is to label its location in the array with
indices written as subscripts. These are called covariant
indices, and they look like Li, Qij, Cijk.

A point, on the other hand, is written as a row vector
P = [x y w]. When we write an element of the point, we
label it with an index written as a superscript. (This does-
n’t mean exponentiation. It’s just a place to put the index.)
These indices are called contravariant and look like Pi.

Finally, we’ll have use for a constant 3 × 3 × 3 con-
travariant tensor called epsilon, whose elements we
define as

ε123 = ε231 = ε312 = +1
ε321 = ε132 = ε213 = –1

εijk = 0 otherwise

The basic operation
The basic quantity we want to calculate is a “contrac-

tion” of two or more tensors. Vector dot products and

C =

A B E
B C F
E F H

B C F
C D G
F G J

E F H
F G J
H J K

Q =

A B C
B C E
C E F

L =

A
B
C

James F. Blinn

Microsoft
Research

0272-1716/01/$10.00 © 2001 IEEE

Tensor Contraction in C++ __________________________

Jim Blinn’s Corner
http://www.research.microsoft.com/~blinn

88 March/April 2001

vector–matrix products are special cases of tensor con-
tractions. More generally, we want to evaluate expres-
sions such as

(1)

And being lazy, we’ll abbreviate Equation 1 by leaving
out the summation sign. We’ll assume a summation over
any index that appears exactly twice (once as covariant
and once as contravariant) in any expression.

So, I want to come up with a simple symbolic algebra
manipulation program that’s good at these sorts of
expressions and doesn’t really need to handle anything
more general. We saw last time that Equation 1 should
evaluate to six times the determinant of Q. So if we
translate Equation 1 into C++ code, we want the pro-
gram to print out something like this:

6ADF + 12BCE – 6C2D – 6AE2 –6B2F (2)

Incidentally, if this expression is zero it tells us that the
quadratic is the product of two linear factors—that is,
the equation stands for two straight lines.

The epsilon routine
The most obvious first step is to define a routine to

calculate epsilon as follows:

int epsilon(int i, int j, int k)

{

if(i==1 && j==2 && k==3) return 1;

if(i==2 && j==3 && k==1) return 1;

if(i==3 && j==1 && k==2) return 1;

if(i==3 && j==2 && k==1) return -1;

if(i==1 && j==3 && k==2) return -1;

if(i==2 && j==1 && k==3) return -1;

return 0;

}

We’re ultimately going to define a class Expression to
hold the final answer and a subroutine Q(i, j) that
returns the symbolic value of element i,j. If we design
these properly, we can write code to evaluate Equation
1 that simply loops through all values of i, j, k, l, m, and
n and adds up the terms like so

#define forIndex(I) //

for(int I=1;I<=3;++I)

Expression E;

forIndex(i)

forIndex(j)

forIndex(k)

forIndex(l)

forIndex(m)

forIndex(n)

E += epsilon(i,j,k)*

epsilon(l,m,n)*

Q(i,l)*Q(j,m)*Q(k,n);

cout << E << endl;

This, however, gets out of hand pretty quickly. The
epsilon tensor is mostly zeroes; in fact, only 6 out of the
27 entries are nonzero. If you have two epsilons in your
expression, only 6*6 out of the 27*27 possible combi-
nations are nonzero (about 1 in 20). Some of the dia-
grams we’ll be ultimately interested in can have eight or
more epsilons. This means that only 68 out of the 278

iterations (about 1 in 168,151) actually adds anything to
E. And for each epsilon, you have three nested loops.
There must be a better way.

There is. We’ll turn the loops inside out. Instead of
generating all combinations of indices, we’ll have each
loop go through the six nonzero epsilon values and
return to us their indices and signs. The new epsilon
function looks like

int epsilon (int which,

int* pI, int* pJ, int* pK)

{

static int Ix1[6]={1,2,3, 3, 1, 2};

static int Ix2[6]={2,3,1, 2, 3, 1};

static int Ix3[6]={3,1,2, 1, 2, 3};

static int Sgn[6]={1,1,1,-1,-1,-1};

*pI=Ix1[which];

*pJ=Ix2[which];

*pK=Ix3[which];

return Sgn[which];

}

The loop to evaluate Equation 1 looks like

#define forEpsilon(e) //

for (int e=0; e<6; ++e)

Expression E;

forEpsilon(e1)

forEpsilon(e2)

{

int i,j,k,l,m,n;

int sign=epsilon(e1,&i,&j,&k)

*epsilon(e2,&l,&m,&n);

E +=sign*Q(i,l)*Q(j,m)*Q(k,n);

}

cout << E<<endl;

Note that I broke the summation statement into two,
because the calls to epsilon return the index values
and must be executed before the calls to Q. Putting these
into the same statement might work but it’s a bit dicey.
The code as shown guarantees correct operation.

The Expression object
Now let’s look at what we must do, in C++ terms, to

make the statement

E +=sign*Q(i,l)*Q(j,m)*Q(k,n);

make sense. The result we expect from this, Equation 2,
is a sum of five terms, each of which is some integer
times the product of three elements of the Q matrix. So,
program-wise, an Expression is some sort of list of
Terms. And each Term consists of an integer factor that

ε εijk lmn
il

ijklmn

jm knQ Q Q∑

IEEE Computer Graphics and Applications 89

I’ll call Ifactor and some sort of list of variable-name
factors that I’ll call Vfactors. There are many ways to
manage lists in C++, but to see which one is best, we
must look at how we’ll use the lists.

What must happen when the statement executes? The
code for the operator+= must search through the
existing elements of E to see if there is already one there
that has the same Vfactors as the Termbeing added.
If there is, it adds sign to the Ifactor field of the
Term. If such a Term doesn’t exist, we must insert one
and initialize the Ifactor field to sign. So, what are
the basic operations we’ll be doing a lot of? We’ll search
the Expression list for an entry containing the desired
Vfactors, which implies doing a lot of comparisons
between various Vfactors lists.

My first design decision, then, is to only allow single
characters for symbolic variables and to make the
Vfactors list be a C++ standard string. A simple,
built in, string comparison can then compare two
Vfactors lists.

Now, what kind of list should we use for the
Expressionobject? My first try (as all first tries should
be) was to use an STL vector and all the standard STL
operations for searching and inserting into it. Then, after
reading a bit further in the STL manual, I found anoth-
er collection object that’s better suited for the
Expression class—it’s called a map. A map is a col-
lection of key–value pairs that are kept sorted on the key
for easy lookup. We’ll make the key the Vfactors
string and the value field the Ifactor integer. That is,
instead of making Expression be an explicit list of
Terms we’ll make it a map from Vfactors values to
Ifactor values. What’s really nice about the STL
implementation of map is that we can syntactically
access it as though it were an associative array; the sub-
scription operator is overloaded to do a lookup (and
insertion if necessary) and return a reference to the
appropriate value field. The whole Expression class
becomes almost trivial:

struct Term

{

int Ifactor;

string Vfactors;

// definition shown below

};

struct Expression

{

map<const string,int>TermList;

Expression&

operator+=(const Term& T)

{

TermList[T.Vfactors]+=

T.Ifactor;

return *this;

}

};

That’s really all there is to it. The C++ compiler pro-
vides anything else you need by default. (I know I’m bad

for making these struct instead of class. In the real
world, you should provide accessor functions for all
internal variables and make the variables private. Doing
so here would clutter up the code and obscure some of
my main points.) For printing purposes, we add an
inserter operator that uses the standard STL mechanism
for iterating through the map:

ostream&

operator<< (ostream& out,

const Expression& E)

{

map<const string, int>::

const_iterator i;

for(i =E.TermList.begin();

i!=E.TermList.end(); ++i)

out <<showpos<< i->second

<<” “<< i->first;

return out;

}

The Term object
Now we need to gen up some arithmetic operators

that will allow the C++expression

sign*Q(i,l)*Q(j,m)*Q(k,n)

to construct the appropriate Term object to pass to
Expressions’ operator+=. Recall that the vari-
able sign is the integer result of multiplying several
calls to epsilon. Simply having Q return a single char
won’t work because C++ is perfectly happy to add ints
and chars as numeric quantities. No, we must have a
user-defined class Symbol that wraps the return from
Qand lets us define some multiplication operators with-
in Term that accept ints and Symbols:

class Symbol

{

char c;

public:

Symbol(const char ci):c(ci) {}

char name() const {return c;}

};

The automatic conversion from char to Symbol lets
us write the Q routine simply

Symbol Q(int i, int j)

{

static char V[]=”ABCBDECEF”;

return V[(i-1)*3+(j-1)];

}

Next, we make a Term constructor that will convert
the integer sign into a Term with a null Vfactors
string. Then, we make a multiplication operator for
Term*Symbol that simply takes the character from
Symboland appends it to the Vfactors string. Finally,
to make these strings mathematically comparable by
doing a string comparison, we’ll keep the Vfactors
sorted. Fortunately, there’s a handy algorithm in STL

Jim Blinn’s Corner

90 March/April 2001

that makes this easy. The final Term class looks like

struct Term

{

int Ifactor;

string Vfactor;

Term(int s): Ifactor (s),

Vfactor () {;}

Term&

operator*=(const Symbol& s)

{

Vfactor += s.name();

sort(Vfactor.begin(),

Vfactor.end ());

return *this;

}

};

const Term

operator*(const Term& lhs,

const Symbol& S)

{return Term(lhs) *= S;}

It works
That’s all there is to it. We just mash this together with

the header files,

#include <string>

#include <iostream>

#include <algorithm>

#include <map>

using namespace std;

and the code prints out the desired result:

+6 ADF-6 AEE-6 BBF+12 BCE-6 CCD

Close enough. I can handle rewriting this using expo-
nents myself.

Examples
Now let’s play with this. We first define some more

constant tensors:

//// LINES /////

Symbol L(int i)

{

static char V[]=”abc”;

return V[i-1];

}

Symbol M(int i)

{

static char V[]=”def”;

return V[i-1];

}

/// Arbitrary Transformation

Symbol T(int i, int j)

{

static char V[]=”abcdefghj”;

return V[(i-1)*3+(j-1)];

}

/// GENERAL CUBIC CURVE ///

char C(int i, int j, int k)

{

static char V[]=

“ABEBCFEFHBCFCDGFGJEFHFGJHJK”;

return V[(i-1)*9+(j-1)*3+(k-1)];

}

Cross product
The original motivation for defining epsilon was as

an abbreviation for the cross product. Here, we verify
that it works by evaluating Ck = εijkLiMj. The cross prod-
uct has one free index (k here) so it necessitates use of
an array of Expression objects where:

Expression C[3];

forEpsilon(e)

{

int i,j,k;

int sign = epsilon(e,&i,&j,&k);

C[k-1] += sign*L(i)*M(j);

}

forIndex(k)

cout <<”C(“<<k<<”)=”<<

C[k-1]<<endl;

Line quadratic tangency
The condition that a line L is tangent to a quadratic

curve Q is εijkεlmnQilQkmLjLn = 0:

Expression E;

forEpsilon(e1)

forEpsilon(e2)

{

int i,j,k,l,m,n;

int s = epsilon(e1,&i,&j,&k)

* epsilon(e2,&l,&m,&n);

E += s*Q(i,l)*Q(k,m)*L(j)*L(n);

}

cout << E<<endl;

An epsilon identity
Here’s a confirmation of an identity that will become

important later: applying three copies of a transforma-
tion matrix to the three indices of epsilon results in a
bare epsilon times the scalar detT.

This expression has three free indices (l, m, and n), but
we can do this one without an array of Expressions:

forIndex(l)

forIndex(m)

forIndex(n)

{

Expression E;

forEpsilon(e1)

{

int i,j,k;

ε εijk

i
l

j
m

k
n lmnT T T = ()detT

IEEE Computer Graphics and Applications 91

int s=epsilon(e1,&i,&j,&k);

E += s*T(i,l)*T(j,m)*T(k,n);

}

cout <<l<<m<<n<<” “<<E<<endl;

}

Some cubic identities
The following quantity is identically zero for all values

of C:

We verify this by

forIndex(l)

{

Expression E[3];

forEpsilon(e1)

{

int i,j,k;

int s = epsilon(e1,&i,&j,&k);

E[k-1] += s * C(i,j,l);

}

forIndex(k)

cout <<”Z(“<<l<<k<<”)=”

<<E[k-1]<<endl;

}

This means that if we see such an expression embedded
in a larger expression, we can immediately say that the
whole thing is zero.

Likewise, the following expression containing a cubic
is also identically zero for any tensor C.

εijkεlmnεpqrCilpCjmqCknr

Expression E;

forEpsilon(e1)

forEpsilon(e2)

forEpsilon(e3)

{

int i,j,k, l,m,n, p,q,r;

int s = epsilon(e1,&i,&j,&k)

* epsilon(e2,&l,&m,&n)

* epsilon(e3,&p,&q,&r);

E +=s*C(i,l,p)*C(j,m,q)*C(k,n,r);

}

cout <<E<<endl;

The final example is a bit more complex. For reasons
that I’ll explain in a later column, I call it the “cube invari-
ant”:

εijkεlmnεpqrεtuvCnqvCjruCkmtCilp

I’m going to do something slightly different this time
for the C++code. All our examples so far have made the
code mimic the algebraic expression. This is easy to use
but can be a bit slow. That’s because there’s a lot of cre-
ation, copying, sorting, and destruction of temporary
Termvariables during their execution. I’ll write the code
for this example to show an alternate way to generate

the Term that uses our existing machinery but avoids
unnecessary creation and deletion:

Expression E;

forEpsilon(e1)

forEpsilon(e2)

forEpsilon(e3)

forEpsilon(e4)

{

int i,j,k, l,m,n, p,q,r, t,u,v;

Term T(epsilon(e1,&i,&j,&k)

* epsilon(e2,&l,&m,&n)

* epsilon(e3,&p,&q,&r)

* epsilon(e4,&t,&u,&v));

T *= C(n,q,v);

T *= C(j ,r,u);

T *= C(k,m, t);

T *= C(i,l,p);

E += T;

}

cout << E<<endl;

How do I like this?
C++ giveth and C++ taketh away. The internal

machinery of the map object keeps its key–value pairs
stored in some sort of binary tree thingy so that search-
ing is very fast. This is something I wouldn’t have felt
like getting into myself. That’s good. But the simple
mimicking of an algebraic expression by a C++ expres-
sion implies a lot of strange jiggery pokery going on dur-
ing the creation of each Term. That’s not so good. But
who cares really. The execution time of the examples
shown here is negligible. It’s only when you get upwards
of eight epsilons that the program takes a noticeable
amount of time. Rewriting the expression as in the final
example helps here. For even more complex situations,
it would be easy to add an explicit Term constructor
that’s passed a sign and some fixed number of Symbols.
This constructor could resize Vfactors once, explic-
itly assign the Symbols to it, and only need to sort it
once.

What’s next
One can imagine any number of extensions to this

code to handle more general expressions. But what we
have here is good enough to serve as a check on our the-
oretical investigations to make sure we don’t miss any
constant factors or stray minus signs. I’ll post the source
code for these examples on my Web site at http://www.
research.Microsoft.com/~blinn.

Now that we can verify some of our computations, in
my next column I’ll define and calculate some algebra-
ic quantities that are invariant under coordinate trans-
formation. In particular, there’s an interesting
geometric meaning to the quantity calculated by our
final example. ■

Readers may contact Blinn by email at blinn@
microsoft.com.

 Z Cl
k ijk

ijl= ε

Jim Blinn’s Corner

92 March/April 2001

