
Abstract
Isosurfaces are an important tool for finding features in 3D
scalar data. This paper describes how recursive contour mesh-
ing is applied to extract similar features in 4-dimensional
space. In the case of time-varying isosurfaces f(x, y, ,z, t) = c,
the technique constructs a solid mesh for the isosurface that
sweeps a volume in space-time. An instance of an isosurface at
a particular time results from applying a second constraint
against this volume. The envelope defined by the time-varying
isosurface can be captured in a similar way: when a time-vary-
ing isosurface f=c reaches is maximum extent, the function’s
partial derivative with respect to time must be zero. This sec-
ond constraint and produces a surface containing the extrema
of the isosurfaces. Multi-resolution models and inter-penetrat-
ing blobby objects and can also be extracted from 4-dimen-
sional representations.

1  Introduction

Time-varying scalar fields arise in many engineer-
ing datasets. Pressure, temperature, electric field
strength, magnetic field strength, velocity magni-
tude, and vorticity magnitude are examples of sca-
lar quantities that may be analyzed on a 3D grid
produced by a numerical simulation. An isosurface
at timet=t0, defined by the points satisfyingf(x, y,
z, t0) = C, is a helpful visualization tool for analyz-
ing the 3D data. In a simulation of a time-varying
problem, the isosurface typically changes shape
from one time step to the next. If the solutions have
been calculated at widely-spaced valuest0, t1, ...,
tk, an animation of the isosurfaces at those time-
steps will be jerky rather than smooth.

One way to improve the animation is to re-compute
the solution grids at a finer time-resolution and
store these results. But re-computing solutions
might be very slow for a complicated field simula-
tion, and storing the resulting grids may present an
excessive burden on system memory (and even on
external storage). A second approach is to interpo-
late the solution values on the grid at closely-
spaced values oft between time steps and then to
extract an isosurface for each interpolated grid. A
changing grid poses problems for this approach,
since the correspondence between grid-points at
successive time steps may not be one-to-one, and
thus one value may be interpolated to many.

Instead of interpolating grid values point-wise
between two time steps, one can treat the static or
dynamic grid as a single 4-dimensional entity and
extract isosurfaces from it. How can this be accom-
plished?

Many techniques exist that triangulate the isosur-
facef=C that arises when a scalar-valued functionf
is evaluated at points on a grid [Allgower] [Bloo-
menthal] [Lorensen] [Wyvill]. These techniques do
not extend easily to multiple constraints in large
dimensions. A solution to the more general prob-
lem of triangulating the contour that satisfiesk con-
straints inn-dimensions was presented by Weigle
and Banks [Weigle]. The algorithm – recursive
contour meshing – triangulates contours in arbi-
trary dimensions.

Recursive contour meshing consists of routines to
contour ann-simplex into a set of (n-1)-simplexes.
When applied recursively, these routines contour
ann-simplex against constraint functionsfk to pro-
duce (n-k)-simplexes. Given a tiling ofn-space by
n-simplexes, the (n-k)-simplexes produced by
recursive contour meshing yield the contour which
satisfies the Boolean intersection of the functions
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fi=Ci. The key to the recursive algorithm is that it
applies a constraint to ann-simplex to produce a
connected star-shaped polytope that is easily trian-
gulated (with the addition of a midpoint) into
(n-1)-simplexes. The resulting simplexes can be
contoured by another constraint by applying the
same scheme recursively (figure 1).

We can treat time-varying scalar fields as 4-dimen-
sional (x, y, z, t)-space by considering time to
describe the fourth, temporal axis. To find an isos-
urface at a particular time step in the data, we letf1
be the scalar value at each point in space-time and
f2=t be the temporal value at each point. Sincen=4
and k=2, the resulting (n-k)-simplexes will just be
triangles. The first pass, contouring the space-time
grid againstf1, produces the volume swept out by
the isosurface over time. Contouring this volume
againstf2=t in the second pass gives the desired
time step. The volume resulting from the first pass
can be stored as a set of 3-simplexes in 4-dimen-
sional space. The second pass (using successive
values off2) will yield an isosurface at each desired
time step, thereby interpolating between isosur-
faces.

Note that the isovolume defined byf1=C is the
swept volume of the isosurface over time; recursive
contour meshing can be employed to find the
envelope of the time-varying surface as well as
individual isosurfaces contained within it. Section
4 describes how to do this.

2  Triangulating Isosurfaces in Isovolumes

2.1   Isosurfaces of 3D Scalar Data: (RR2, t)

Consider the contouring of an isosurface within a
3D grid. Many techniques have been developed
which begin by collecting contour-curves from 2D
slices of the 3D data (perhaps from axially aligned
slices where thet coordinate is constrained to a sin-
gle value per slice) [Fuchs] [Johnstone]. These
techniques join the curves by creating triangles
between vertices from curves in adjacent slices.
Such triangulations can be difficult to construct for
a variety of reasons; changes in mesh structure,
changes in topology (figure 2), and changes in
geometry can lead to ambiguities when connecting
vertices between slices [Fuchs].

The first case, change in structure, can be solved by
“nearest-neighbor” techniques where the vertices
in one slice are connected to the nearest vertices in
the next. The next two cases, changes in topology
and geometry, are much harder to solve. There are
many possible triangulations, but there is no way to
determine correctness without additional data.

Figure 1. Recursive contour meshing applies a constraint to an
n-simplex to produce an (n-1)-polytope. Splitting the polytope
into simplexes permits the algorithm to apply another con-
straint.

n-polytope n-simplexes

constraintf1 = c1

(n-1)-polytope (n-1)-simplexes

constraintf2 = c2

t = 1

t = 0

Figure 2. The contour curves at t=0 and t=1 are easy to com-
pute, but difficult to connect together from disjoint planes.
Using a 3D grid makes the connections simpler to determine.
Two isosurfaces at different time values of 3D grids demon-
strate similar characteristics.



Typically solutions to such problems involve pick-
ing the minimal surface triangulation [Johnstone].
Contouring individual slices of a 2-dimensional
time-varying function may be an appropriate tech-
nique if the time steps are separated by long inter-
vals.

Although research still continues into contour-slic-
ing techniques for visualization [Johnstone], a shift
has been made towards algorithms which look at
the 3D data as a whole [Allgower] [Bloomenthal]
[Lorensen] [Wyvill]. Treating the data as a volume
allows these methods to find the connectivity along
the third axis (the axis along which the slices span
space) simply and efficiently. The triangulations
computed via these 3D techniques are usually
acceptable, if not always correct [Nielson] [Hill], if
the data resolution is high enough.

What makes interpolation so easy between grid
points, but so difficult between isocurves? As long
as the grid points are regularly spaced, a recon-
struction filter in thet-direction is simple to pro-
duce. For linear interpolation between grid points
(x, y, t) and (x, y, t+1), a tent-filter suffices. The
irregularly sampled points on the isocurves cannot
be filtered with such a simple scheme.

2.2   Isovolumes of 4D Scalar Data: (RR3, t)

Just as 2D contour-slicing-plus-reconstruction is
not ideal for (x, y, t) data, applying a 3D contour-
ing-plus-reconstruction to time-varying (x, y, z, t)
data is an imperfect solution. The application of
such a technique is possible when each time step is
treated as a separate entity (just as each contour-
slice was treated separately), but in doing so we
forfeit connectivity information between time
slices. The reconstruction of this lost information is
a daunting task, but would allow for the inspection
of contours at intermediate time steps or envelopes
of swept surfaces. Typically such information is
simply not available to the user without re-sam-
pling the data at the desired time steps.

One way to recover the data is by interpolation at
grid points between existing time steps. For exam-
ple, to find the isosurfacef(x, y, z, 0.5) = 0, one
might average the functionf(x, y, z, 0) and
f(x, y, z,1) on the underlying 3D grid and extract

the isosurface from it. Although this allows the
desired contour to be triangulated, it requires an
expensive interpolation step. The interpolation
might be restricted to only the cells that are flagged
as containing the isosurface at either time step, but

Figure 3. Above: surface satisfying 2 constraints in 4-dimen-
sional space. 3-simplexes (wire frames) result from first con-
straint. The surface within them satisfies the second constraint
also. Below: the volume swept by a time-varying isosurface
(middle) fills the space between the isosurfaces (top and bot-
tom) at successive time steps.



even this optimization retains a considerable
amount of “fat” (entire grid cells) around the
“meat” (the swept surface within the cells).

Promoting time-varying scalar data to 4D and
applying recursive contour meshing is an effective
way to solve the problem of locating isosurfaces of
a time-varying function. By promoting the 3D
time-varying data to 4-dimensional (x, y, z, t)-
space, we can first contour the isovolumef1(x, y, z,
t) = 0 using 3-simplexes. To produce a surface for a
particular time stepct, we apply a second pass
wheref2(x, y, z, t) = t - ct = 0. Figure 3 shows an
example of this contouring scheme, with a particu-
lar isosurfacef1 = f2 = 0 rendered together with the
cells of the isovolumef1 = 0 that contain it. The
lower portion of the figure shows the volumetric
layer swept by an isosurface (in this case, a surface
of constant electric field strength) over a short

interval of time, together with isosurfaces at the
two values that bound the time interval.

3  Triangulating Envelopes

Consider a time-varying scalar functionf(x, y, z, t).
If the isosurfacesf(x, y, z, t) = 0 of a time-varying
scalar function are all projected into (x, y, z)-space,
they occupy a volume called a swept volume. The
boundary of this volume is called its envelope. The
envelope defines the minimum extent of space nec-
essary to contain all of the time-varying isosur-
faces. The envelope may be used to visualize, for
example, the region of space where the tempera-
ture ever reaches a certain threshold, or where the
magnitude of an electric field ever reaches a speci-
fied amount.

To produce an envelope of the swept isosurface
f=0, one could extract an isosurface at each of the
computed (perhaps integer-valued) time steps, then
display them all simultaneously. This is an ineffi-
cient and inelegant solution to the problem. It is
inefficient because most points on the isosurfaces
will lie within (but noton) the envelope. It is inele-
gant because the in-between time steps are not
smoothly interpolated; that is, the swept surface is
“reconstructed” from the samples by convolving
them with a Dirac delta function (rather than with a
better filter) before projecting them to 3D space.
See figure 4 (top).

Schroeder takes a different approach [Schroeder].
Rather than reconstructing the swept surface in
space-time and projecting it to 3D (x, y, z)-space,

Figure 4. Top left: individual sphere-shaped isosurfaces in a
time varying scalar field. Sampled at discrete time steps,
these spheres approximate a figure-eight shape. Top right:
contour-meshing the envelope in (x, y, z, t)-space yields a
more complete surface and captures discontinuities, cusps,
and self intersections that arise from the projection to (x, y, z)-
space. Bottom: one frame of an animation of electric field
strength of a dipole-antenna simulation (data courtesy of J.
Beggs). The isosurface lies within a bounding envelope.

Figure 5. A time-varying 2D contour sweeps out surface in
(x, y, t)-space. The silhouette of the surface (projected down
thet-axis) forms the envelope of the swept curve.

t



he projects a distance functiond(x, y, z, t) onto 3D
space and reconstructs the envelope neard=0. The
distance function results from iteratively moving
an implicit model through a spatial grid. The dis-
tance function is non-negative, so extracting the
envelope atd=0 presents problems for simple root-
finding schemes.

Wang describes how critical curves on moving
geometry sweep out the envelope between the end-
points tinitial and tfinal of the time interval [Wang].
Their technique exploits an explicit coordinate
transformation function that describes the motion
of an object.They observe that a point on the enve-
lope satisfies

This observation invites a straight-forward applica-
tion of recursive contour meshing to locate an
envelope. To see why the equation captures enve-
lopes, consider a time-varying 2D functionf(x, y, t)
= 0. At a given slicet = t0, the level set off(x, y, t0)
= 0 forms a curve. The curves sweep out a surface
in (x, y, t)-space. When viewed down thet-axis, the
surface’s silhouette corresponds to the envelope of
the time-varying level sets. The view direction
(down thet-axis) grazes a point on the silhouette,
meaning the surface normal is perpendicular to the
t-axis. But the surface normal is∇f, so we see that

∇f . (0, 0, 1) =∂f/∂t = 0

in agreement with the previous equation. Figure 5
illustrates the situation in (x, y, t)-space.

f∂
t∂

------ 0=

Figure 6. Blobby objects blend together when they are close. This behavior can be avoided by making them move apart in a
higher dimensional space, but then projecting them in the direction of their separating motion. Above: three successive images of
blobby curves in 2-space arise from slicing their parent blobby surfaces in 3-space. The slices become disjoint when the blobs
move apart in the vertical direction, and the isocurves begin to overlap transversely. Below: analagous situation one dimension
higher. Three successive blobby surfaces in 3-space arise from separating their parent blobby volumes in 4-space, slicing the iso-
surfaces, then projecting to 3D.



The envelope of a 3D time-varying isosurfacef1=0
can be found in the same way. We use a second

constraint,f2(x, y, z, t) =  = 0 to locate the

points on the isosurfaces that also lie on the enve-
lope. The key advantages of this method are that
(1) the envelope and all the isosurfaces at different
time steps are latent in a single 4-dimensional data
structure (the 3-simplexes that define the isovol-
umef1=0), and (2) that the time steps are filtered in
space-time before projecting to 3D instead of pro-
jected then filtered. Figure 4 shows the result of
applying this technique to time-varying data from a
computational field simulation of electromagnetic
waves.

4  Intersecting Blobs; Mesh Reduction

An isosurface can be promoted to a higher dimen-
sion to produce an interesting effect. Consider a
pair of point-density functions in three dimensions.
An isosurface of constant density produces two
disconnected components until the seed points
become sufficiently close, causing the surfaces to
blend together.

But if the seed points are separated in a fourth
coordinate direction, the isovolume can be sliced
and projected to three dimensions, producing inter-
secting (rather than merged) blobs. This process is
illustrated in figure 6, first for a 2D projection of

intersecting curves plane that result from slices of
an isosurface as the seed points move apart in the
vertical (z) direction, and secondly for a 3D projec-
tion of intersecting surfaces that result from slices
of an isovolume as the seed points move apart in
the w-direction. We are investigating ways to use
such a technique to model implicitly defined
objects with controlled blending.

Multidimensional isosurface extraction permits a
simple way to specify shapes with different resolu-
tions. Suppose the scalar fieldf(x, y, z, 1) is shrunk
to produce another scalar field

f(x, y, z, 2) = f(2x, 2y, 2z, 1).

The isovolumef(x, y, z, w) = 0 can be sliced at w=1
or at w=2 to produce isosurfaces at two different
levels of detail on the same grid. The smaller one
(at w=2) has fewer polygons than the larger. If all
of the vertices in the smaller one are multiplied by
the same factor of 2, the isosurfaces nearly coin-
cide but possess different levels of geometric
detail. Figure 7 illustrates the result of this process,
where the underlying function satisfies

f(x, y, z, n) = f(2n x, 2n y, 2n z, 1),

and the vertices of an isosurface defined byf=0,

w=w0 are scaled by a factor of 2n.

f 1∂
t∂

--------

Figure 7. A family of isosurfaces at different resolutions constitutes a single volumetric representation of a torus. Different slices
of the isovolumef(x, y, z, w)=0 in 4-space are projected to 3-dimensional (x, y, z) coordinates and scaled to produce polygonal
meshes with varying complexities. The slices are taken from low values ofw (on left) to high values (on right).



5  Performance

We implemented the recursive contour-meshing
technique on time-varying data from an electro-
magnetic field simulation [Beggs]. We computed
isosurfaces from a grid with 40×40×40×36 =
2,304,000 samples (36 time steps). The isosurfaces
were computed using a fixed constraintf1=C in
4-dimensional space-time, and then repeatedly
applying a second constraintf2 = t. We super-sam-
pled the time axis by a factor of ten to produce a
smooth animation. Each 4-cell in the grid yielded
between 3 and 4 triangles on average. The isosur-
faces at interpolated values oft yield more trian-
gles that the isosurfaces generated att-values on
the 4D grid. The reason is that we decompose the
interior of each 4-cell into 192 4-simplexes, several
of which may contain the isosurface.

On a Silicon Graphics Onyx with RealityEngine
graphics with a MIPS R10000 195Mhz processor,
we were able to generated a single triangular mesh
in approximately 5 minutes for the 40×40×40×36
electric field. However, once the isovolume was
constructed, finding an isosurface within that vol-
ume at a subsequent time step required less time,
on the order of two minutes. There is still room for
performance improvement: simplicial decomposi-
tion can be improved by a factor of 8 (using other
subdivision schemes) and the exhaustive traversal
of all the 4-cells can be improved by using a hierar-
chical data structure [Bloomenthal], perhaps by a
factor of 4.

6  Conclusions

Time-varying isosurfaces provide a useful tool for
visualizing the behavior of an unsteady 3D scalar
field. We have shown how recursive contour mesh-
ing can interpolate and triangulate such time-vary-
ing surfaces by extracting them from the isovolume
f(x, y, z, t) = C, rather than by (1) interpolating grid
values pointwise between successive time steps
and then (2) re-triangulating new isosurfaces at
interpolated time steps. This allows us to efficiently
construct smooth animations.

The envelope of the time-varying isosurface is the
boundary of the projection of the isovolume in the
t-direction. Using a partial derivative as a con-

straint on this isovolume allows recursive contour
meshing to triangulate the envelope of the moving
isosurface. This envelope reveals the global behav-
ior of the isosurface over time.

Implicitly-defined models can be promoted to a
higher dimension, sliced, and project to control the
extent to which they merge together, and implicit
functions can be promoted to a higher dimension
and scaled in order to construct isosurfaces of vary-
ing geometric complexity.

These techniques are not always very practical in
terms of their computational performance (because
multidimensional grids are often quite large), but
the general approach of extracting isovolumes and
the isosurfaces they contain permits us to address a
wide variety of different problems in graphics and
visualization, and to do so in a simple and consis-
tent way.
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CCW from upper-left. Figure 3 . portion of an isovolume (wire frame)
with an isosurface inside; volume swept by time-varying isosurface.
Figure 4 . Sphere-shaped isosurfaces sweeping a volume; the vol-
ume’s envelope; dipole-antenna’s envelope of iso field-strength. Fig-
ure 6 . Blobby objects in higher dimensions projecting as inter-
penetrating objects. Figure 7 . A family of isosurfaces at different res-
olutions within a single volumetric representation of a torus.


