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ABSTRACT

Anisovalue ontour of afunction d two complex variables defines
asurfacein four-space. We present a robust technique for creating
polygonal contours of complex-valued functions. The technique,
Contour Meshing, generalizes well to larger dimensions.

CR Dextriptors: G.1.5 [Numerical Analysis] Roots of Nonlinear
Equations; G.1.6 [Numerical Analysis] Optimization; G.2.1
[Discrete Mathematics] Combinatorics; 1.3.5 [Computer
Graphics] Computational Geometry and Objed Modeling; 1.3.6
[Computer Graphics]: Methoddogy and Tedhniques, J.2
[Physical Sciences and Engineering] Mathematics and Statistics.

1 Introduction

This paper describes a reaursive technique to construct a
triangle mesh onan implicit surface (also called a variety or
contour) in 4-space The technique realily extendsto large
dimensions. We explore the resulting family of surfaceswith
aninteradive 4D viewer in order to inspect the behavior of
a complex curve as it sweeps through a singularity.

The k-dimensional analog d a surfaceis cdl ed ak-manifold.
It is known that a k-manifold canna necessrily be
trianguated unlessit is diff erentiable [Cairng]. An implicitly-
defined contour might not be differentiable, so ore might
imagine that some exotic contour could arise that prevents
any algorithm from trianguating it. Fortunately, a contour is
guaranteedto be trianguable if the underlying function is
algebraic[Waeaden] or analytic [Koopman]; our aim of
triangulatinga mntour in large dimensions is therefore nat
undertaken in vain.

Varioustrianguation techniques have been developed for
computer graphics [Koide] [Lorensen] [Bloom88] and
numerical analysis [Allgower90] [Allgower91]. Many of
these techniques are designed spedficdly to construct
triangulationsonly of curves, surfaces, or varieties of co-

dimension ore (several having been implemented as part of

the Pisces projed at the Geometry Center [Pisces]). The
Contour Meshing algorithm, by contrast, is quite general. It
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consults mfunctionsin (k+m)-dimensional space to yield an
implicit k-dimensional contour.

Section 2 describes the Contour Meshing scheme used to
locate isosurfaces in 4-space Sedion 3 describes the
methods used for viewing the implicit surfaces in 4-space
andvaryinga contour parameter t. Finaly, sedion 4 pesents
statistics resulting from triangulating the implicit surfaces.

2 The Contour Meshing Algorithm

This sedion presents $mple reaursive routines that can be
combined to trianguate k-dimensional contours. The
contours arise from the set of scdar-valued functions
f.: R"~ R with f,= ¢ for constantsc;,, where 1< | < n-k The
first routine triangu ates the domain; the seandlocaes the
contour.

2.1 Splitting a Cell into Simplexes

Recdl that a square is a 2-cdl, a abe is a 3-cdl, a
“hypercube” isa4-cdl, and so on(figure 1). Also recall that
a triangle is a 2-simplex, a tetrahedron is a 3-smplex, a
“hypertetrahedron’is a 4-simplex, and so on (figure 2).
EuclideanspaceR" is conveniently tiled by n-cdls, but we
wish to split the cdls into smplexes prior to contouring.
Triangulatingthe cdls avoids ambiguities [Nielson] that
arisewhen a antour crosses a cdl. There are various ways
to perform the split [Allgower91]. We chose amethodthat

Figure 1. Examples of-cells =1, 2, 3, 4).
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Figure 2. Examples of-simplexesifi= 1, 2, 3, 4).
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Figure 3. Splitting the 2-cell (left). The midpoint connects
to each edge to produce four 2-simplexes.

s

Figure 4. Splitting the 3-cell (left). The cell’'s midpoint
connects to each face to produce six pyramids (middle).
The midpoint of a pyramid’s base produces four

3-simplexes (right).

canbe formulated to work in arbitrary dimension and tha
can aso be gplied to ather palytopes in addition to the n-
cell.

Splitting a 2-cell

First consider the 2D case, splitting a 2-cdl into four
2-simplexes(squares into triangles). Each edge in the cdl
can combine with the cdl's midpaint to form a 2-simplex
(figure 3). The process is analogows to barycentric
subdivision of a simplex. The splitC2 routine gives
pseudocoddor this operationin a 2-cdl. The datatype for
simplex and edge contains an array. plitn] of vertices.

splitC2 (square, sinplex)
sinpl ex.p[2] « m dpoint (square)
foreach edge in square do
sinmplex.p[0..1] « edge.p[O0..1]

Splitting a 3-cell

Next consider the 3D case. We want to split a 3-cdl into
3-smplexes (cubesinto tetrahedra). Each facein the cell can
combine with the 3-cdl's midpant to form a pyramid. If
ead face is further split into four triangles the result is four
tetrahedrarather than one square pyramid, a step performed
by the previousroutine. The process is sketched in figure 4,
and pseudocode is givenguitC3.

splitC3 (cube, sinplex)
sinpl ex. p[3] < mdpoint (cube)
foreach square in cube do
splitC2 (square, sinplex)

Splitting a 4-cell

Now consider the 4D case. We want to divide a4-cdl into

4-simplexes(hypercubes into hypertetrahedra). Again, we

start by finding the midpant of the cdl. Then for each 3-cell
“fac€ in the 4-cdl (cube in the hypercube) we gply the

previous routine, choppng the aibe into its constituent

tetrahedra. The tetrahedron, together with a midpointyields
a 4-simplex. Pseudocode is giversplstC4.

splitC4 (hypercube, sinplex)

si npl ex. p[4] - m dpoi nt (hypercube)
foreach cube in hypercube do
splitC3 (cube, sinplex)

Splitting an n-cell

This process generalizes to solve the problem of splitti ng
n-cells into n-simplexes. The routines can be written
rearsively, passng eat sub-cell to the next recursive level
and terminating the subdvisions uponreading the 1-cdl
(edge). Pseudacode for splitti ng the n-cdl is given in split.
Seledingthe (n-1)-cdls from amn-cell is simply a matter of
combinatorics.

split (cell, sinplex, n)

if (n>1) then
sinpl ex.p[n] « mdpoint (cell)
foreach subcell in cell do

split (subcell, vertex

el se
sinmplex.p[0..1] « cell.p[0..1]
/* simplex.p[0..n] now contains a simplex */

n-1)

This midpaint-splitti ng scheme generates 2"'n! simplexes
from an n-cdl; there are other techniques [Allgower91] that
generate only n! simplexes. The midpant scheme is
therefore easy to encode but inefficient in simplex
production, a familiar trade-off. As sdion 4 shows,
however, the atual number of contour-triangles prodwced is

in pradice much lower than this worst-case analysis would
suggest.

2.2 Contouring the Simplexes

A contour of a 1-simplex (segment) is a single ppistich
thatf(p) = ¢ for some mnstant ¢. Asume, without loss of
generality, that c = 0. We will not trea the degenerate cae
wheref = Qidenticdly aaossthe entire ssmplex; the problem
of simplexes not transverse to f is addressed elsewhere
[Allgower91].

Contouring a 1-simplex

To determine whether the functionf croses zero onan edge,
we chedk for a sign change & the endpdnts. Thus,
f(vy) f(v,) < O implies (by the intermediate value theorem)
that there is a zero-crossing in the interval between vertices
v, andv,. Note that the reverse implicaion dasnat had; the
mesh must be sufficiently fineto resolve a zeo-crossng that
lieswithin asimplex. In the pseudocodeontour S1 below,



the test for a z@o-crossng is encoded by the if-statement. pseudacode contour $4 demonstrates the method for finding

The contour point on an edge ca be located with alinea contours in 4-simplexes.
approximation a with an iterative root-finding scheme. We .
leavethe detail s to a “black-box’ calculation performed by contourS4 (function, hypertet)
: . foreach tet in hypertet do
the routinecontour Point. pol ygon « contourS3 (function, tet)
append pol ygon to contour
contourSl (function, edge) /* contour will be a polyhedron */
if (function = 0) on edge then . .
return contourPoint (function, edge) Contouring an n-simplex
Asthis quence of examples $ows, the alges and triangles
Contouring a 2-simplex of contour S2 are promoted to triangles and tetrahedra in

A contour within a 2-simplex (triangle) is approximated by contourS3, then to tetrahedra and hypertetrahedra in
asegment. Each endpoint of the segment is a point that liescontour $4. These individual routines can be subsumed by a
on an edge of the triangle. We loop ower the alges (eah single a reaursive solution to find the @ntour in an
edge being a sub-simplex of the triangle), locae zeo- n-simplex. The pseudocode is shown belowasour.
crossngs, and then conred them to form a contour-segment

inthetriangle. The endpoints defining the contour-segment  ¢ont ot (f ‘{;‘0: Lon, sinplex, n)

arefound va a cd to contour S1. Pseudocode for the 2D foreach subsinplex in sinplex do
e A pol yt ope -
case Is given below @sntour S2. contour (function, subsinplex, n-1)
append pol yt ope to contour
contourS2 (function, triangle) el se /*simplexis a line segment */
foreach edge in triangle do if (function = 0) on sinplex then
point < contourSl (function, edge) return contourPoint (function, sinplex)

append point to contour

/* contour will be a line segment */ . .
Triangulating a contour-polytope

Contouring a 3-simplex Once a ontour-paytope has been extracted from a simplex,
Bloomenthal describes how to find contours in 3-simplexes it can itself be gpproximated by simplexes. The routingplit
(tetrahedra) by enumerating combinations of zero-crossings can be adapted to split a polytope into simplexes, and is
into a table [Bloom94]. The table provides an explicit given below as triangulate. Its only esentia difference
congruction d a cntour. By contrast, we seek a procedural from split is that it loops over sub-polytopes (rather than
approach that mimics the sequence of steps applied to a sub-cells) along the boundary of the polytope.

triangle. To construct the contour-polygon in a tetrahedron,

weloop owr itsfour triangular faces, then connect contour- ' ?“?ﬁ' at ﬁ)(fﬁ'ext ope, sinplex, n)

segments found within them in order to form a contour- si mpl ex[ n] b~ Im dpoi ntI (pol yt ope)

; foreach subpoly I n polytope do
p_dygonlnthetetrahedron. Note that the polygon may have triangul ate {subpoly sinplex, n-1)
either threeor four edges. (The four-edge case may actually el se
be non-planar, so cdlling it apaygonistechnically an abuse si mpl ex[0..1] ~ pol ytope[0. . 1]
of terminology.) The pseudocode is given below as 1

contour S3. &
contourS3 (function, tet) 4 2

foreach triangle in tet do V
segment « contourS2 (function, triangle)

append segnent to contour 3
/* contour will be a polygon */

Contouring a 4-simplex
To find a contour in a 4-simplex, we loop throughiits 3-

1
1 1 1
simplex “faces’ and colled the cntour-polygors they
contain. Figure 5 illustrates the 3-simplexes that comprise a 4 5 4 2 A
4-simplex; the decomposition is a matter of combinatorics, 4 5 5 42
s Y W ¢

and generalizes redaily to n-simplexes. The ntour-
polygons form the boundry elements of the cntour-

poyhedronwithin the 4-simplex. Note that the “pdyhedron” 3

may acually be non-flat, even if it has flat polygonal faces.

A contour-polyhedron in a 4-simplex that cen assime a Figure 5. Decomposing the 4-simplex (top) into 5
variety of shapes. These ae shown in the gpendix. The tetrahedra (bottom). Vertices are numbered consistently to

show the 5-choose-4 combinations of sub-simplexes.



Why would orewant to trianguate the polytope?One reason
is to provide simple graphics primitives for rendering an
image on the screen. But the more important reason is that
ead simplex in a contour-polytope can be passd as an
argumentto the contour routine ajain. A function f;
producesa ontour-polytope which is glit into smplexes.
Each o the smplexes can be mntoured against a functidp
to find a lower-dimensional contour-polytope.

3 Contour Meshing Applied to CxC

This sedion presents the results of applying the Contour
Meshing algorithm to the particular problem of triangulating
asurfacein 4-dimensiona space Such asurface aisesin the
context of studying complex curves.

A major area of interest to algebraic geometers is the
structureof famili es of complex algebraic varieties; that is,
the contours C, defined by isovelues for a wlledion d
polynomialsparameterized by t. One contour can deform
into anather, but the deformation must preserve the dgebraic
structureof the variety. There ae many dfficult unsolved

problemsregarding families of varieties; an interesting case

ariseswhen a smocth variety deforms into a snguar one
(containing a cusp or a self-intersection).

Work of thelast decalein the interaction between algebraic

geometry and theoreticd physics has increased interest in
problemsinvolving families of complex algebraic curves
with additional structure such as vedor bundes. The
behaviorof these bundes, as snguarities develop in the
underlying curves, has physicd as well as mathematicd
significance Even relatively simple questions are difficult to

answer (for example, whether or not one of these curve-line

bunde pairs can be deformed into any other such pairi.e.,
whether the space parameterizing all these pairs is
connected). Visuadlizaion methods that increae
uncerstanding o these families would be very interesting to
mathematicians.

A complex curve, defined byf: C?— C, can be represented
by a surfacein red 4-space Each complex variable is
specifiedas a red/imaginary pair, hence the domain is 4-
dimensionalnd the function can be written asf : R* ~ R?,
The red-vadued condraintsreal(f) = 0 andimaginary(f) = 0
serve athe two functionsf, andf, for the Contour Meshing
algorithm We first enumerate 4-cells that tile the sp&’e
then split ead cdl into 4-simplexes and solve f, = 0 to
extracta contour-polyhedron. Its constituent tetrahedra ae
then contoured againgt f,= 0 to extrad the contour-polygons
that form the implicit surface.

Consider the redprocd functionxy = t (so named becaise of
its explicit formy = t/x), for real-valued, y, and parameter
t. Figure 6 shows contours for this function at threevalues of
t. When t reades zero the ontour developsa singuarity (the
self-intersectionat the origin), since xy = 0 has lutions
x =0 andy = 0 corresponding to the andy-axes.

Now consider complex-vaued variables, y, and parameter

t. The function xy = t defines an implicit surfacein the
4-dimensiond spacespanned bytwo complex planes. When

t = Othe surface ontainsan isolated singuarity at the origin,

with two sheds interseding transversely. It is espeaally
difficult to visuaize the manner in which two surfaces
intersed in a single point; such an intersection can never be
embedded iR®. Figures 7 and 8 show the results.

Figure 6. Contours for the real-valued reciprocal
functionxy =t (t= 2, 1, 0).

Figure 7. Contours for the complex-valued reciprocal
functionxy = t (see also plate 1).
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Figure 8. Stereographically projected contours for
complex-valuedy =t (see also plate 2).

3.1 Stereographic Projection

After the Contour Meshing algorithm has generated an
isosurfacewe would like to investigate its sape in R*.
Moreover, we would like to seethe antire surface despite its
infinite extent.

To view the entire surfacef(x,y) = 0, we must map an infinite
space onto a finite one through a process cdled
compactification. One way to acomplish this
compactification is to use stereographic projedion



Stereographigrojedion maps R" onto the n-dimensional
sphere S, which can be imbedded in R™. Consider
projeding the plane R? onto a 2-sphere §? in R? (figure 9).
The south pde rests on the plane. A line throughthe north
poleand a paint p on the plane must meed a point g on the
sphere; q is the stereographic projedion d p. Points onthe
plane just below the sphere ae mapped to the southern
hemisphere, while points nea infinity are mapped to a
neighborhood of the north pole.

Stereographicprojedion leaves a hale a the north pde.

Filli ng the hole compactifies the space. We explicitly cover
the hole with polygons which connect the implicit surface's
boundary(after projedion) to the north-pae. Technicdly,
thesehale-filli ng triangles form a cne over the surfacés
boundry. Figures 7 and 8 show the mmplex function
f(x,y) = xy - t =0, before and after stereographic projection
(with the hole filled).

Figure9. A stereographic projection.

3.2 Manipulating the surface

values of t that the user can animate. Idedly, only the
isovolumethroughwhich t varies would be precomputed.
That is, we @uld compute the one isovaume for f(x,y,t) = 0.
Subcontours could then be extraded onthe-fly depending an
the exad value of t that the user spedfies. Then the
interadive viewer could perform the final Contour Meshing
to extrad the isosurface On a multiprocessor platform (or
distributed over a duster of machines) this might be a
feasible approach, but a single-processor workstation is too
slow to extrad the isosurfacein red time. The viewing
system dready requires al available computing power from
a single-procesor SGI Onyx Redity Engine or an SGI
Indigd® High Impad, even thoughthe isosurfaces at diff erent
values oft have been precomputed.

In hisfirst sesson he expressed surprise that the family of
isosurfacesdeformed with a twist as it approached the
singuarity. He was also interested to seethe ad¢ua geometry

of the surfacepatches in the neighbahood d their 1-point
intersection. Although e is well acquainted with the
algebraic properties of thecomplex curves, this was his first
experience visualizing them.

4 Application Performance and Statistics

Our visualization system contains two parts, one to extrad
the contours and one to interad with them. Both were
developed on an SGI Indigo? with a 250MHz MIPS R4400
processor, 192 Mbytes of RAM, and aHigh Impad graphics
engine. The mesh generator was written in C++ and the
viewer in C and OpenGL. The foll owing statistics describe
the complex redprocad function f(x,y) = xy-t=0.

After stereographic projection, our complex-valued surface Table 1. Distribution of contour-polyhedra and contour-

liesona4-sphere inR®. R® allows 5 degrees of freedom for
translationsand 10for rotation; four-dimensional spaceR*
allows4 and 6 degrees of freedom, respedively. It isdifficult

to manipulate agraphical object irR* using an input device
inour 3-dimensiona world; it iseven harder if the objed lies

in R°. Wetherefore fix a particular projection of the surface
from R® to R*, where we can view it interadively using an
interfacedeveloped in the Fourfront system [Banks]. The
mechanicsof interading with surfaces in 4-space ae
described elsewhere [Banks] [Hanson] [NDview].

3.3 Time Varying Surfaces

The impetus for this work was to examine a set of
isosurfaces parameterized by t, where at = 0 the isosurface

polygons resulting from the complex reciprocal function.

Triangles (out of 386,080) from %

Case 2 (tetrahedral contour) 30.13
Case 3 (pyramid-shaped contour) 0.37
Case 4 (prism-shaped contour) 66.81
Case 5 (degenerate 4-simplex) 0.00
North-pole’s cone over the boundary 2.69
Types of contour-polygonsin 3-simplexes

3-sided polygons 81.69
4-sided polygons 18.31

contains a singularity. We create a separate meshed surface

for several values of t. All meshes are loaded into machine
memory. On a graphics workstation the 4D viewer then
animatesthem as a flipbook d surfaces. This approach
requires alongmesh-generation step, and it limits the set of

The statistics in tables 1 and 2 describe the mesh elements
and system performance. The complex redprocd function
was evaluated within a4-cdl of size 4x4x4x4 centered about



the originin R* for 51 values of t ranging from -1 to 1. Table

1 shows what percentage of the triangles in the implicit
surface aise from the various cases of contour-polyhedra in
a4-smplex (seethe gpendix), and what percentage of the
polygonsarise from the caes of contour-palygonsin a 3-
simplex. Tetrahedraand grism-shaped isovaumes are shown

to daminate. Table 2 summarizes mesh-generation statistics
for the same @mplex redprocd function. The
triangle-countsin table 2 do nd include the polygors
required to fill the hole in the stereographic projection. The
table shows that fewer than 30 triangles were found on
average, in eat 4-cdl. Thisis sgnificantly fewer than the
worst-case anaysis of 2°4! contour-polyhedra per 4-cell, 18
tetrahedra per polyhedron (case 4 with midpant-
triangulation),4 contour-polygors per tetrahedron, which
yields a total of 13,824 potential triangles per 4-cell.

Table 2. Mesh generation statistics for the complex
reciprocal function.

Xy - t=0for complex x,y, and t

Number of values assumed by 51
Number of 4-cells per value 6{4x4x4x4) 256
Number of 4-cells traversed (5(144) 13,056
Total number of triangles in 51 meshes 375,695
Average number of triangles per 4-cell 28.78

Increasingthe resolution d the spatia tiling damaticaly
increases the number of cells to be traversed; whcells in
eachof n dimensions, h" cdls result. However, the final
contour mesh ony trianguates the cdls that contain the k-
dimensional contour, so O(h¥) is a more reasonable estimate
of the asymptotic complexity of the mesh. Triangulating the
complex redprocd function (in a neighbahood d the
origin) at h = 2, 4, and 8cdls per dimension yields 896
trianglesin 2 4-cdls, 4768in 4* 4-cdls, and 16992in 8
4-cdls (see plate 3). This production is consistent with
quadratic growth of about (hF triangles.

Becauseit performs 4D-transformations, the interadive
viewer isunable to match the rendering speed of ordinary 3D
applications. AlthoughSGI graphics engines can perform 4D
rotationsin hardware, they are not designed to perform 4D
trandations or 4D-to-3D projections. The interactive viewer
rendersapproximately 60,000 4 triangles per seaond
whichisabou 40% of the performancefor 3D triangles. For
the complex redprocd example, this limits us to an average
of abou 8 frames per sewmnd — barely enough to be
interacive. We find that this performance, at least on ou
SGI workstations, is essential y independent of window size.

5 Future Work

One aeaof future work isto improve the implicit surface by
reaursive subdvisionandto adjust the position of midpoints
to satisfy f, = 0. Because of the large number of polygors
Contour Meshing produwces, aparalld implementation of the
algorithm could speed upthis phase significantly. Ancther
posshility for mitigating the burden of the number of
polygors produced isto dedmate the triangular mesh. Since
the isosurfacesliein R*, we ae examining ways to modify
existing 3D methods for mesh simplification.

6 Conclusions

Contour Meshingis an agorithm for triangulating a contour
from a mlledion d functions in arbitrary dimension. The
algorithm locates a contour-polytope in a simplex. Splitting
a cdl into smplexes and splitting a polytope into simplexes
are steps that allow the dgorithm to be gplied reaursively
over multiple functions in large dimensions. We examined

the sample cae of triangulating an algebraic complex curve
(producing a surface in red 4-dimensional space and
viewing the result interadively on a graphics workstation.

The viewing system maintains acceptable interactivity for a
modest number of 4-cdls tiling the domain. The
mesh-generator and interadive viewer are in use by an
algebraic geometer interested in the exploration of complex
curves.
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Appendix: Cases of 4-Simplex Contours

The number of 3-simplexes produced bytriangulate cen bereduced
if the possble isovoumes of a4-simplex are mnsidered. It isaso
useful to consider the caes when constructing a table-driven

contouring method, like enumerating the cases in Marching Cubes.

There are five cases:

1. No contour;

2. A tetrahedron (figure 10 shows one, but not the only, case);
3. A pyramidal solid (figure 11 shows the only case);

4. A prism-shaped solid (figure 12 shows the only case);

5. The entire 4-simplex € 0 at all vertices).

A tetrahedron dees not need to be midpant-split into more
tetrahedraOnly anonsimplex pdytope needs to be split. Figures
10-12 show how this small optimization avoids splitting tetrahedra
that can result from contouring and splitting.

Figure 10. Case 2. In this 4-simplex (left) there are four

vertices wherd is positive and one where it is negative.

Zero-crossings are shown as dots (middle). The resulting
contour-polyhedron (right) has four triangular faces.

&

Figure 11. Case 3. In this 4-simplex (top left) there are two
vertices wherd is positive, two where it is negative, and one
where it is exactly zero. Zero-crossings are shown by dots
(top middle). The contour-polyhedron (top right) has four
triangular faces and one rectangular face. This pyramid
(bottom left) can be midpoint-split once at its base.

B 45D
@

Figure 12. Case 4This 4-simplex (top left) contains zero-
crossings (top middle) that produce a contour-polyhedron with
two triangular and three rectangular faces (top left). This prism

(bottom left) can be midpoint-split into three pyramids and

two tetrahedra (bottom middle). Only the pyramid-shaped

components need to be split (bottom right).
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Plate 1. The cmmplex redproca function xy - t = 0 redized as a surfacein R*. Two patches of the surfacenealy
intersed (Ieft and middle) ast approadhes 0. They intersed astwo planesat the origin (right) whent = 0. The 3D image
makes the intersedion appea to accur alongaline; interadively rotating the surfacein R* demonstrates, however, that
the only fixed point of the intersection is the origin.

Plate 2. The surfaces shown in plate 1 are here stereographically projected to the 4-sphereRT and the neighborhood
of the north pde is then covered. The interseding danes in R* become interseding spheres after the stereographic
projection (right).
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Plate 3. The upper-left surfacein pate 1is siown here from a diff erent viewpoint, reveding the hyperbadli ¢ shape (dlorg

the silhouette) of the red-valued reciprocal function contained within it. The surface mesh is generated over the same
domain at threediff erent resolutions of the spatial subdvision. From left to right: 2* 4-cdlsyield 896triangles; 4* 4-cdls

yield 4768trianges; 8* 4-cdlsyield 16,992 triangles. The triangles are color-coded (see color plates) according to the
individual cases of contour-polyhedra from which they arise: green = case 2 (tetrahedron); blue = case 3 (pyramid);

orange = case 4 (prism).




