
Department of Computer Science
Mississippi State University
chris@cs.msstate.edu, banks@cs.msstate.edu

Figure 1. Examples of n-cells (n = 1, 2, 3, 4).

Figure 2. Examples of n-simplexes (n = 1, 2, 3, 4).

Complex-Valued Contour Meshing

Chris Weigle and David C. Banks

ABSTRACT

An isovalue contour of a function of two complex variables defines
a surface in four-space. We present a robust technique for creating
polygonal contours of complex-valued functions. The technique,
Contour Meshing, generalizes well to larger dimensions.

CR Descriptors: G.1.5 [Numerical Analysis] Roots of Nonlinear
Equations; G.1.6 [Numerical Analysis] Optimization; G.2.1
[Discrete Mathematics] Combinatorics; I.3.5 [Computer
Graphics] Computational Geometry and Object Modeling; I.3.6
[Computer Graphics]: Methodology and Techniques; J.2
[Physical Sciences and Engineering] Mathematics and Statistics.

1 Introduction

This paper describes a recursive technique to construct a
triangle mesh on an implicit surface (also called a variety or
contour) in 4-space. The technique readily extends to large
dimensions. We explore the resulting family of surfaces with
an interactive 4D viewer in order to inspect the behavior of
a complex curve as it sweeps through a singularity.

The k-dimensional analog of a surface is called a k-manifold.
It is known that a k-manifold cannot necessarily be
triangulated unless it is differentiable [Cairns]. An implicitly-
defined contour might not be differentiable, so one might
imagine that some exotic contour could arise that prevents
any algorithm from triangulating it. Fortunately, a contour is
guaranteed to be triangulable if the underlying function is
algebraic [Waerden] or analytic [Koopman]; our aim of
triangulating a contour in large dimensions is therefore not
undertaken in vain.

Various triangulation techniques have been developed for
computer graphics [Koide] [Lorensen] [Bloom88] and
numerical analysis [Allgower90] [Allgower91]. Many of
these techniques are designed specifically to construct
triangulations only of curves, surfaces, or varieties of co-
dimension one (several having been implemented as part of
the Pisces project at the Geometry Center [Pisces]). The
Contour Meshing algorithm, by contrast, is quite general. It

consults m functions in (k+m)-dimensional space to yield an
implicit k-dimensional contour.

Section 2 describes the Contour Meshing scheme used to
locate isosurfaces in 4-space. Section 3 describes the
methods used for viewing the implicit surfaces in 4-space
and varying a contour parameter t. Finally, section 4 presents
statistics resulting from triangulating the implicit surfaces.

2 The Contour Meshing Algorithm

This section presents simple recursive routines that can be
combined to triangulate k-dimensional contours. The
contours arise from the set of scalar-valued functions

f : R � R with f = c for constants c , where 1 � I � n-k. Thei i i i
n

first routine triangulates the domain; the second locates the
contour.

2.1 Splitting a Cell into Simplexes

Recall that a square is a 2-cell , a cube is a 3-cell , a
“hypercube” is a 4-cell , and so on (figure 1). Also recall that
a triangle is a 2-simplex, a tetrahedron is a 3-simplex, a
“hypertetrahedron” is a 4-simplex, and so on (figure 2).
Euclidean space R is conveniently tiled by n-cells, but wen

wish to split the cells into simplexes prior to contouring.
Triangulating the cells avoids ambiguities [Nielson] that
arise when a contour crosses a cell . There are various ways
to perform the split [Allgower91]. We chose a method that

Figure 3. Splitting the 2-cell (left). The midpoint connects
to each edge to produce four 2-simplexes.

Figure 4. Splitting the 3-cell (left). The cell’s midpoint
connects to each face to produce six pyramids (middle).

The midpoint of a pyramid’s base produces four
3-simplexes (right).

splitC2 (square, simplex)
 simplex.p[2]

��

 midpoint (square)
 foreach edge in square do
 simplex.p[0..1]

��

 edge.p[0..1]

splitC3 (cube, simplex)
 simplex.p[3]

��

 midpoint (cube)
 foreach square in cube do
 splitC2 (square, simplex)

splitC4 (hypercube, simplex)
 simplex.p[4] � midpoint (hypercube)
 foreach cube in hypercube do
 splitC3 (cube, simplex)

split (cell, simplex, n)
 if (n > 1) then
 simplex.p[n]

��

 midpoint (cell)
 foreach subcell in cell do
 split (subcell, vertex, n-1)
 else
 simplex.p[0..1]

��

 cell.p[0..1]
 /* simplex.p[0..n] now contains a simplex */

can be formulated to work in arbitrary dimension and that
can also be applied to other polytopes in addition to the n-
cell.

Splitting a 2-cell
First consider the 2D case, splitti ng a 2-cell i nto four
2-simplexes (squares into triangles). Each edge in the cell
can combine with the cell 's midpoint to form a 2-simplex
(figure 3). The process is analogous to barycentric
subdivision of a simplex. The splitC2 routine gives
pseudocode for this operation in a 2-cell . The datatype for
simplex and edge contains an array p[0..dim] of vertices.

Splitting a 3-cell
Next consider the 3D case. We want to split a 3-cell i nto
3-simplexes (cubes into tetrahedra). Each face in the cell can
combine with the 3-cell 's midpoint to form a pyramid. If
each face is further split into four triangles the result is four
tetrahedra rather than one square pyramid, a step performed
by the previous routine. The process is sketched in figure 4,
and pseudocode is given as splitC3.

Splitting a 4-cell
Now consider the 4D case. We want to divide a 4-cell i nto
4-simplexes (hypercubes into hypertetrahedra). Again, we
start by finding the midpoint of the cell . Then for each 3-cell
“ face” in the 4-cell (cube in the hypercube) we apply the
previous routine, chopping the cube into its constituent
tetrahedra. The tetrahedron, together with a midpoint, yields
a 4-simplex. Pseudocode is given as splitC4.

Splitting an n-cell
This process generalizes to solve the problem of splitti ng
n-cells into n-simplexes. The routines can be written
recursively, passing each sub-cell to the next recursive level
and terminating the subdivisions upon reaching the 1-cell
(edge). Pseudocode for splitti ng the n-cell i s given in split .
Selecting the (n-1)-cells from an n-cell is simply a matter of
combinatorics.

This midpoint-splitti ng scheme generates 2 n! simplexesn-1

from an n-cell; there are other techniques [Allgower91] that
generate only n! simplexes. The midpoint scheme is
therefore easy to encode but ineff icient in simplex
production, a famili ar trade-off . As section 4 shows,
however, the actual number of contour-triangles produced is,
in practice, much lower than this worst-case analysis would
suggest.

2.2 Contouring the Simplexes

A contour of a 1-simplex (segment) is a single point p such
that f(p) = c for some constant c. Assume, without loss of
generality, that c = 0. We will not treat the degenerate case
where f = 0 identically across the entire simplex; the problem
of simplexes not transverse to f is addressed elsewhere
[Allgower91].

Contouring a 1-simplex
To determine whether the function f crosses zero on an edge,
we check for a sign change at the endpoints. Thus,
f(v) f(v) � 0 implies (by the intermediate value theorem)1 2

that there is a zero-crossing in the interval between vertices
v and v . Note that the reverse implication does not hold; the1 2

mesh must be suff iciently fine to resolve a zero-crossing that
lies within a simplex. In the pseudocode contourS1 below,

1

2

3

5

4

4

3

2

5

4 2

1

5

3

2

1

5
4

3

1

5
4

3

2

1

contourS1 (function, edge)
 if (function = 0) on edge then
 return contourPoint (function, edge)

contourS2 (function, triangle)
 foreach edge in triangle do
 point

��

 contourS1 (function, edge)
 append point to contour
 /* contour will be a line segment */

Figure 5. Decomposing the 4-simplex (top) into 5
tetrahedra (bottom). Vertices are numbered consistently to

show the 5-choose-4 combinations of sub-simplexes.

contourS3 (function, tet)
 foreach triangle in tet do
 segment

��

 contourS2 (function, triangle)
 append segment to contour
 /* contour will be a polygon */

contourS4 (function, hypertet)
 foreach tet in hypertet do
 polygon

��

 contourS3 (function, tet)
 append polygon to contour
 /* contour will be a polyhedron */

contour (function, simplex, n)
 if (n > 1) then
 foreach subsimplex in simplex do
 polytope

��

 contour (function, subsimplex, n-1)
 append polytope to contour
 else /* simplex is a line segment */
 if (function = 0) on simplex then
 return contourPoint (function, simplex)

triangulate (polytope, simplex, n)
 if (n > 1) then
 simplex[n]

��

 midpoint (polytope)
 foreach subpoly in polytope do
 triangulate (subpoly, simplex, n-1)
 else
 simplex[0..1]

��

 polytope[0..1]

the test for a zero-crossing is encoded by the if-statement. pseudocode contourS4 demonstrates the method for finding
The contour point on an edge can be located with a linear contours in 4-simplexes.
approximation or with an iterative root-finding scheme. We
leave the details to a “black-box” calculation performed by
the routine contourPoint.

Contouring a 2-simplex
A contour within a 2-simplex (triangle) is approximated by contourS3, then to tetrahedra and hypertetrahedra in
a segment. Each endpoint of the segment is a point that liescontourS4. These individual routines can be subsumed by a
on an edge of the triangle. We loop over the edges (each single a recursive solution to find the contour in an
edge being a sub-simplex of the triangle), locate zero- n-simplex. The pseudocode is shown below as contour.
crossings, and then connect them to form a contour-segment
in the triangle. The endpoints defining the contour-segment
are found via a call to contourS1. Pseudocode for the 2D
case is given below as contourS2.

Contouring a 3-simplex
Bloomenthal describes how to find contours in 3-simplexes it can itself be approximated by simplexes. The routine split
(tetrahedra) by enumerating combinations of zero-crossings can be adapted to split a polytope into simplexes, and is
into a table [Bloom94]. The table provides an explicit given below as triangulate. Its only essential difference
construction of a contour. By contrast, we seek a procedural from split is that it loops over sub-polytopes (rather than
approach that mimics the sequence of steps applied to a sub-cells) along the boundary of the polytope.
triangle. To construct the contour-polygon in a tetrahedron,
we loop over its four triangular faces, then connect contour-
segments found within them in order to form a contour-
polygon in the tetrahedron. Note that the polygon may have
either three or four edges. (The four-edge case may actually
be non-planar, so calli ng it a polygon is technically an abuse
of terminology.) The pseudocode is given below as
contourS3.

Contouring a 4-simplex
To find a contour in a 4-simplex, we loop through its 3-
simplex “ faces” and collect the contour-polygons they
contain. Figure 5 illustrates the 3-simplexes that comprise a
4-simplex; the decomposition is a matter of combinatorics,
and generalizes readily to n-simplexes. The contour-
polygons form the boundary elements of the contour-
polyhedron within the 4-simplex. Note that the “polyhedron”
may actually be non-flat, even if it has flat polygonal faces.
A contour-polyhedron in a 4-simplex that can assume a
variety of shapes. These are shown in the appendix. The

Contouring an n-simplex
As this sequence of examples shows, the edges and triangles
of contourS2 are promoted to triangles and tetrahedra in

Triangulating a contour-polytope
Once a contour-polytope has been extracted from a simplex,

Figure 6. Contours for the real-valued reciprocal
function xy = t (t = 2, 1, 0).

Figure 7. Contours for the complex-valued reciprocal
function xy = t (see also plate 1).

Figure 8. Stereographically projected contours for
complex-valued xy = t (see also plate 2).

Why would one want to triangulate the polytope? One reason Consider the reciprocal function xy = t (so named because of
is to provide simple graphics primitives for rendering an its explicit form y = t/x), for real-valued x, y, and parameter
image on the screen. But the more important reason is that t. Figure 6 shows contours for this function at three values of
each simplex in a contour-polytope can be passed as an t. When t reaches zero the contour develops a singularity (the
argument to the contour routine again. A function f self-intersection at the origin), since xy = 0 has solutions1

produces a contour-polytope which is split i nto simplexes. x = 0 and y = 0 corresponding to the x- and y-axes.
Each of the simplexes can be contoured against a function f2

to find a lower-dimensional contour-polytope. Now consider complex-valued variables x, y, and parameter

3 Contour Meshing Applied to CxC

This section presents the results of applying the Contour with two sheets intersecting transversely. It is especially
Meshing algorithm to the particular problem of triangulating difficult to visualize the manner in which two surfaces
a surface in 4-dimensional space. Such a surface arises in the intersect in a single point; such an intersection can never be
context of studying complex curves. embedded in R . Figures 7 and 8 show the results.

A major area of interest to algebraic geometers is the
structure of famili es of complex algebraic varieties; that is,
the contours C defined by isovalues for a collection oft

polynomials parameterized by t. One contour can deform
into another, but the deformation must preserve the algebraic
structure of the variety. There are many diff icult unsolved
problems regarding families of varieties; an interesting case
arises when a smooth variety deforms into a singular one
(containing a cusp or a self-intersection).

Work of the last decade in the interaction between algebraic
geometry and theoretical physics has increased interest in
problems involving famili es of complex algebraic curves
with additional structure such as vector bundles. The
behavior of these bundles, as singularities develop in the
underlying curves, has physical as well as mathematical
significance. Even relatively simple questions are difficult to
answer (for example, whether or not one of these curve-line
bundle pairs can be deformed into any other such pair � i.e.,
whether the space parameterizing all these pairs is
connected). Visualization methods that increase
understanding of these families would be very interesting to
mathematicians.

A complex curve, defined by f : C � C, can be represented2

by a surface in real 4-space. Each complex variable is
specified as a real/imaginary pair, hence the domain is 4-

dimensional and the function can be written as f : R � R .4 2

The real-valued constraints real(f) = 0 and imaginary(f) = 0
serve as the two functions f and f for the Contour Meshing1 2

algorithm. We first enumerate 4-cells that tile the space R ,4

then split each cell i nto 4-simplexes and solve f = 0 to1

extract a contour-polyhedron. Its constituent tetrahedra are
then contoured against f = 0 to extract the contour-polygons2

that form the implicit surface.

t. The function xy = t defines an implicit surface in the
4-dimensional space spanned by two complex planes. When
t = 0 the surface contains an isolated singularity at the origin,

3

3.1 Stereographic Projection

After the Contour Meshing algorithm has generated an
isosurface, we would like to investigate its shape in R .4

Moreover, we would like to see the entire surface, despite its
infinite extent.

To view the entire surface f(x,y) = 0, we must map an infinite
space onto a finite one through a process called
compactification. One way to accomplish this
compactification is to use stereographic projection.

Figure 9. A stereographic projection.

Triangles (out of 386,080) from %

Case 2 (tetrahedral contour) 30.13

Case 3 (pyramid-shaped contour) 0.37

Case 4 (prism-shaped contour) 66.81

Case 5 (degenerate 4-simplex) 0.00

North-pole’s cone over the boundary 2.69

Types of contour-polygons in 3-simplexes

3-sided polygons 81.69

4-sided polygons 18.31

Table 1. Distribution of contour-polyhedra and contour-
polygons resulting from the complex reciprocal function.

Stereographic projection maps R onto the n-dimensional values of t that the user can animate. Ideally, only then

sphere S , which can be imbedded in R . Consider isovolume through which t varies would be precomputed.n n+1

projecting the plane R onto a 2-sphere S in R (figure 9). That is, we could compute the one isovolume for f(x,y,t) = 0.2 2 3

The south pole rests on the plane. A line through the north Subcontours could then be extracted on-the-fly depending on
pole and a point p on the plane must meet a point q on the the exact value of t that the user specifies. Then the
sphere; q is the stereographic projection of p. Points on the interactive viewer could perform the final Contour Meshing
plane just below the sphere are mapped to the southern to extract the isosurface. On a multiprocessor platform (or
hemisphere, while points near infinity are mapped to a distributed over a cluster of machines) this might be a
neighborhood of the north pole. feasible approach, but a single-processor workstation is too

Stereographic projection leaves a hole at the north pole. system already requires all available computing power from
Filli ng the hole compactifies the space. We explicitly cover a single-processor SGI Onyx Reality Engine or an SGI
the hole with polygons which connect the implicit surface's Indigo High Impact, even though the isosurfaces at different
boundary (after projection) to the north-pole. Technically, values of t have been precomputed.
these hole-filli ng triangles form a cone over the surface's
boundary. Figures 7 and 8 show the complex function In his first session he expressed surprise that the family of
f(x,y) = xy - t = 0, before and after stereographic projection isosurfaces deformed with a twist as it approached the
(with the hole filled). singularity. He was also interested to see the actual geometry

3.2 Manipulating the surface

After stereographic projection, our complex-valued surface
lies on a 4-sphere in R . R allows 5 degrees of freedom for5 5

translations and 10 for rotation; four-dimensional space R4

allows 4 and 6 degrees of freedom, respectively. It is diff icult
to manipulate a graphical object in R using an input device4

in our 3-dimensional world; it is even harder if the object lies
in R . We therefore fix a particular projection of the surface5

from R to R , where we can view it interactively using an5 4

interface developed in the Fourfront system [Banks]. The
mechanics of interacting with surfaces in 4-space are
described elsewhere [Banks] [Hanson] [NDview].

3.3 Time Varying Surfaces

The impetus for this work was to examine a set of
isosurfaces parameterized by t, where at t = 0 the isosurface
contains a singularity. We create a separate meshed surface
for several values of t. All meshes are loaded into machine
memory. On a graphics workstation the 4D viewer then
animates them as a flipbook of surfaces. This approach
requires a long mesh-generation step, and it limits the set of

slow to extract the isosurface in real time. The viewing

2

of the surface patches in the neighborhood of their 1-point
intersection. Although he is well acquainted with the
algebraic properties of the complex curves, this was his first
experience visualizing them.

4 Application Performance and Statistics

Our visualization system contains two parts, one to extract
the contours and one to interact with them. Both were
developed on an SGI Indigo with a 250MHz MIPS R44002

processor, 192 Mbytes of RAM, and a High Impact graphics
engine. The mesh generator was written in C++ and the
viewer in C and OpenGL. The following statistics describe
the complex reciprocal function f(x,y) = xy - t = 0.

The statistics in tables 1 and 2 describe the mesh elements
and system performance. The complex reciprocal function
was evaluated within a 4-cell of size 4x4x4x4 centered about

xy - t = 0 for complex x, y, and t

Number of values assumed by t 51

Number of 4-cells per value of t (4x4x4x4) 256

Number of 4-cells traversed (51 x 4)4 13,056

Total number of triangles in 51 meshes 375,695

Average number of triangles per 4-cell 28.78

Table 2. Mesh generation statistics for the complex
reciprocal function.

the origin in R for 51 values of t ranging from -1 to 1. Table4

1 shows what percentage of the triangles in the implicit
surface arise from the various cases of contour-polyhedra in One area of future work is to improve the implicit surface by
a 4-simplex (see the appendix), and what percentage of the recursive subdivision and to adjust the position of midpoints
polygons arise from the cases of contour-polygons in a 3- to satisfy f = 0. Because of the large number of polygons
simplex. Tetrahedra and prism-shaped isovolumes are shown Contour Meshing produces, a parallel implementation of the
to dominate. Table 2 summarizes mesh-generation statistics algorithm could speed up this phase significantly. Another
for the same complex reciprocal function. The possibility for mitigating the burden of the number of
triangle-counts in table 2 do not include the polygons polygons produced is to decimate the triangular mesh. Since
required to fill the hole in the stereographic projection. The the isosurfaces lie in R , we are examining ways to modify
table shows that fewer than 30 triangles were found, on existing 3D methods for mesh simplification.
average, in each 4-cell . This is significantly fewer than the
worst-case analysis of 2 4! contour-polyhedra per 4-cell, 183

tetrahedra per polyhedron (case 4 with midpoint-
triangulation), 4 contour-polygons per tetrahedron, which Contour Meshing is an algorithm for triangulating a contour
yields a total of 13,824 potential triangles per 4-cell. from a collection of functions in arbitrary dimension. The

Increasing the resolution of the spatial tili ng dramatically
increases the number of cells to be traversed; with h cells in
each of n dimensions, h cells result. However, the finaln

contour mesh only triangulates the cells that contain the k-
dimensional contour, so O(h) is a more reasonable estimatek

of the asymptotic complexity of the mesh. Triangulating the
complex reciprocal function (in a neighborhood of the
origin) at h = 2, 4, and 8 cells per dimension yields 896
triangles in 2 4-cells, 4768 in 4 4-cells, and 16,992 in 84 4 4

4-cells (see plate 3). This production is consistent with
quadratic growth of about (16h) triangles.2

Because it performs 4D-transformations, the interactive
viewer is unable to match the rendering speed of ordinary 3D
applications. Although SGI graphics engines can perform 4D
rotations in hardware, they are not designed to perform 4D
translations or 4D-to-3D projections. The interactive viewer
renders approximately 60,000 4D triangles per second,
which is about 40% of the performance for 3D triangles. For
the complex reciprocal example, this limits us to an average
of about 8 frames per second � barely enough to be
interactive. We find that this performance, at least on our
SGI workstations, is essentially independent of window size.

5 Future Work

i

4

6 Conclusions

algorithm locates a contour-polytope in a simplex. Splitting
a cell i nto simplexes and splitting a polytope into simplexes
are steps that allow the algorithm to be applied recursively
over multiple functions in large dimensions. We examined
the sample case of triangulating an algebraic complex curve
(producing a surface in real 4-dimensional space) and
viewing the result interactively on a graphics workstation.
The viewing system maintains acceptable interactivity for a
modest number of 4-cells tili ng the domain. The
mesh-generator and interactive viewer are in use by an
algebraic geometer interested in the exploration of complex
curves.

Acknowledgments

We gratefully acknowledge the guidance of Tyler Jarvis
(Brigham Young University, Department of Mathematics),
who supplied the original problem of visualizing vector
bundles over singular complex curves. We thank Jules
Bloomenthal for insights into implicit-mesh algorithms. We
thank the reviewers for pointers to a wealth of background
material that significantly improved the quality of this paper.

References

[Allgower90] E. L. Allgower and K. Georg, Numerical
Continuation Methods: An Introduction, Springer,
Berlin, 1990.

[Allgower91] E. L. Allgower and S. Gnutzmann, Simplical
pivoting for mesh generation of implicitly defined
surfaces, Computer Aided Geometric Design,
8(4):305-325, 1991.

[Banks] David C. Banks, Interactive manipulation and
display of two-dimensional surfaces in
four-dimensional space. 1992 Symposium on
Interactive 3D Graphics, ACM Press, pp. 197-207,
1992.

+ ++

+

_ _ _

+

=

+

_

_
+

=

+

_

+

=

+

_

_

+

_

+

_

+

_

+

_

+
_

_

+

Figure 10. Case 2. In this 4-simplex (left) there are four
vertices where f is positive and one where it is negative.
Zero-crossings are shown as dots (middle). The resulting

contour-polyhedron (right) has four triangular faces.

Figure 11. Case 3. In this 4-simplex (top left) there are two
vertices where f is positive, two where it is negative, and one

where it is exactly zero. Zero-crossings are shown by dots
(top middle). The contour-polyhedron (top right) has four
triangular faces and one rectangular face. This pyramid

(bottom left) can be midpoint-split once at its base.

Figure 12. Case 4. This 4-simplex (top left) contains zero-
crossings (top middle) that produce a contour-polyhedron with
two triangular and three rectangular faces (top left). This prism

(bottom left) can be midpoint-split into three pyramids and
two tetrahedra (bottom middle). Only the pyramid-shaped

components need to be split (bottom right).

[Bloom88] Jules Bloomenthal, Polygonization of implicit A tetrahedron does not need to be midpoint-split i nto more
surfaces. Computer Aided Geometric Design, tetrahedra. Only a non-simplex polytope needs to be split . Figures
5(4):53-60, 1988. 10-12 show how this small optimization avoids splitting tetrahedra

[Bloom94] Jules Bloomenthal, An implicit surface polygonizer.
Graphics gems IV. Boston: Academic Press, 1994.

[Cairns] S. S. Cairns, Triangulation of the manifold of class
one. Bulletin of the American Mathematical Society,
41:549-552, 1935.

[Hanson] Andrew Hanson and Robert A. Cross, Interactive
visualization methods for four dimensions.
Proceedings of Visualization '93. pp. 196-203,
1993.

[Hoffman] Christoff Hoffman and Jianhua Zhou, Visualizing
surfaces in four-dimensional space. Computer Aided
Design 23:83, 1991.

[Holt] Olaf Holt, Introducing ... NDView 1.0,
http://www.geom.umn.edu/software/geomview
/docs/NDview/, The Geometry Center, University
of Minnesota.

[Koide] Akio Koide, Akio Doi and Koichi Kajioka,
Polyhedral approximation approach to molecular
orbital graphics, Journal of Molecular Graphics,
4(3):-, 1986.

[Koopman] B. O. Koopman and A. B. Brown. On the covering
of analytic loci by complexes. Transactions of the
American Mathematical Society, 34:231-251, 1932.

[Lorensen] Willi am Lorensen and H. E. Cline, Marching cubes:
a high resolution 3-D surface construction
algorithm. Proceedings of SIGGRAPH '87, in
Computer Graphics 4, 1987.

[Nielson] G. M. Nielson and Bernd Hamann,The asymptotic
decider � resolving the ambiguity in marching
cubes. Proceedings of Visualization '91, IEEE
Computer Society Press (October), 1991.

[Waerden] B. L. van der Waerden, Topologische Begründung
des kalküls der abzählenden geometrie.
Mathematische Annalen, 102:337-362, 1929.

[Wicklin] Frederick Wicklin and Eric Streed, Pisces Project at
the Geometry Center, http://www.geom.umn.edu
/software/pisces/, The Geometry Center, University
of Minnesota.

Appendix: Cases of 4-Simplex Contours

The number of 3-simplexes produced by triangulate can be reduced
if the possible isovolumes of a 4-simplex are considered. It is also
useful to consider the cases when constructing a table-driven
contouring method, like enumerating the cases in Marching Cubes.
There are five cases:

1. No contour;
2. A tetrahedron (figure 10 shows one, but not the only, case);
3. A pyramidal solid (figure 11 shows the only case);
4. A prism-shaped solid (figure 12 shows the only case);
5. The entire 4-simplex (f = 0 at all vertices).

that can result from contouring and splitting.

Plate 1. The complex reciprocal function xy - t = 0 realized as a surface in R . Two patches of the surface nearly4

intersect (left and middle) as t approaches 0. They intersect as two planes at the origin (right) when t = 0. The 3D image
makes the intersection appear to occur along a line; interactively rotating the surface in R demonstrates, however, that4

the only fixed point of the intersection is the origin.

Plate 2. The surfaces shown in plate 1 are here stereographically projected to the 4-sphere in R and the neighborhood5

of the north pole is then covered. The intersecting planes in R become intersecting spheres after the stereographic4

projection (right).

Plate 3. The upper-left surface in plate 1 is shown here from a different viewpoint, revealing the hyperbolic shape (along
the silhouette) of the real-valued reciprocal function contained within it. The surface mesh is generated over the same
domain at three different resolutions of the spatial subdivision. From left to right: 2 4-cells yield 896 triangles; 4 4-cells4 4

yield 4768 triangles; 8 4-cells yield 16,992 triangles. The triangles are color-coded (see color plates) according to the4

individual cases of contour-polyhedra from which they arise: green = case 2 (tetrahedron); blue = case 3 (pyramid);
orange = case 4 (prism).

