Screen-Par allel Calculation of Surface | nter sections

David C. Banks
Department of Computer Science

Mississippi State University

ABSTRACT

When surfaces intersect, one may desire to highlight the intersection curve in order to make the shape of the
penetrating surfaces more visible. Highlighting the intersection is especially helpful when the surfaces become
transparent, because transparency makes the intersections less evident. This paper discusses a technique for
locating intersections in screen space using only the information locally available to a pixel. The technique is
designed to exploit parallelism at the pixel level and has been implemented on the Pixel-Planes 5 graphics
supercomputer.

1 Introduction

Consider the problem of locating intersections of surfaces in order to highlight them in a displayed image. If the
geometry of the surfaces in 3-space were static, the intersection curves might be analytically computed [Baraff,
Moore] once and for all. When the surfaces change shape dynamically, those intersections must be recomputed
during every frame. Finding intersectionsngiolygons in 3D world space is a significant computational burden,

of ordern log nor worse, which can cripple an application that once was interactive. One can instead test for
intersections when the surfaces are projected to the 2D screen. The additional cost of the test is small when added
to z-buffering, and it lends itself to a parallel implementation in screen-space.

| will describe the simplest version of the algorithm and show it is correct. | will then show two ways to improve
the appearance of the intersections. The first modification thickens the intersection curves as they appear on the
screen. The second modification makes the thickened curves more uniform in width.

2 The Simple Approach: ExactMatch

A simple way to detect intersections in screen space is to modify thezdsuftdr algorithm, where measures

depth perpendicular to the screen. The surface primitives might be spheres or curved patches, but for simplicity |
will refer to them as polygons. What characterizes the geometry of a visible intersection? First, there must be at
least two polygons that pass through the same point. If two polygons share thexsgmeo¢rdinates in
normalized eye space, they will share the same pixel on the screen. If they share theadaemehere must be

an intersection. Second, the intersection must not be hidden by other polygons. That means that the shared
value at a visible intersection must be the minimum over all polygons that cover the pixel.

This specification leads to a natural implementation. Zfalue of each incoming polygon at a pixel is
compared with the contents of théuffer. The pixel acquires the polygon’s state (color, normal, and depth) if

foreach pixel in screen
pi xel . z infinity;
pi xel . i Fl ag FALSE;

foreach k in [1..nunPol ygons]
foreach pixel in rasterize(pol ygon[k])

Predicates P1(k), P2(k), P3(k)

i f zval (pol ygon[k], pixel) < pixel.z then (1)
copy(pol ygon[k], pixel); &)
pi xel .i Fl ag = FALSE; 3)
el seif zval (pol ygon[k], pixel) == pixel.z then (4)
pi xel .i Flag = TRUE; (5)

Predicate P4

Figure 1. Code fragment for finding polygon intersections using exactMatch. If the frontmost polygon has the same Z-value
as the Z-buffer, the intersection flag is set.

the polygon’sz-value is smaller than the pixel's. But if the polygon’s depth matchestibffer, an intersection
flag is set. Whenever a new frontmost polygon arrives, the intersection flag becomes unset. The result is that all
visible intersections will be flagged at the pixel. Call thisekactMatchalgorithm.

The C-like code fragment (Figure 1) illustrates the naxactMatchalgorithm, showing the comparisons
performed for each pixel as polygons stream past it. The variablgsgon andpi xel are both assumed to be

data structures containing color and other relevant geometric state. The Boolean véifli@getells whether

there is a visible intersection at the pixel. The functieal () calculates the-value of a polygon at a particular

pixel. The functionr asteri ze() returns the set of pixels covered by a polygon. The funatimpy ()
interpolates the color, depth, and normal of a polygon at a particular pixel, applies lighting, then puts the results
into the pixel.

The sample code loops over all polygons in a set and loops over all pixels in a rasterized polygon. The fragment
is unrealistic in many regards. For example, the function-call to copy() is an inefficient way to interpolate and
illuminate. The code only exposes the essential elements of making comparisons, copying data, and managing
the intersection flag.

Each pixel is initialized by setting its depth to some large number (in practice, to the extreme value- of the
buffer's range) and lowering the intersection flag. The if-clause in lines (1-3) implements the trazhbiafificd
test-and-copy, augmented by lowering the intersection flag. The if-clause in lines (4-5) raises the flag when an
incoming polygon’s depth matches thuffer and thereby matches the frontmost polygon that has visited the
pixel.

Since the flag can be repeatedly set and unset, one might wonder whether order makes any difference when
processing the polygons. Might the flag be inadvertently set or unset by some unusual mix of ine@hiesf?

P1(ky IfiO[1, k1] thenpi xel . z <zval (pol ygon[i], pixel)
P2(k): If k-1>0thend O [1, k-1] such thapi xel . z = zval (pol ygon[i], pixel)
P3(k): pixel.iFlag - {0,] O[1, k1] such thaf # j and

pi xel . z = zval (pol ygon[i], pixel)

=zval (pol ygon[j], pixel)}

P4: O pi xel Oscreen,

pi xel . i Fl ag = {0, j O[1, numPolygorissuch that # j and for k O [1, numPolygoris

min(zval (pol ygon[K], pixel))=zval (pol ygon[i], pixel)

=zval (pol ygon[j], pixel)}

Figure 2. Predicates associated with the exactMatch code in Figure 1.

The algorithm looks plausible, but is it actually correct in all cases? Much of computer graphics relies on various
approximations or contrivances designed to make an image look right. When an algorithm has a strong geometric
or mathematical component, it is often possible to prove its correctness — especially if the algorithm is short. This
worthy goal is made unpleasant by the difficulty of applying propositional calculus to convert preconditions into
postconditions. | shall take the middle ground between (A) a formal proof full of logical symbols and derivations,
and (B) no proof at all. What follows is a one-page prose-proof verifying the code illustrated in Figure 1.

2.1 Proof of Correctness for ExactMatch

To prove correctness, one must show that the algorithm terminates with the correct postdeaditioen code
clearly terminates, since the outer loop executes oualyPol ygons times and there are only finitely many
pixels in the inner loop. The body of the inner loop is annotated (Figures 1 and 2) with three pred{&ates
P2(k), andP3(k). Each predicate has an argument: the loop varialiteedicatd®1 asserts that a pixelsvalue

is at least as smalis that of any processed polygon. PrediP&tasserts that the pixebsvalue actuallymatches
that of some processed polygon. Together these two predicates establish that the@iked'ss the minimum

of the polygons processed thus far in the loop. PredRatasserts that the intersection flag is raised exactly
when two different polygons match tlzevalue stored in the pixel. The postcondition P4 claims that the
intersection flag is raised precisely when there are two exact matches of the minimum (frantralosty at a
pixel. This was the characterization of a visible intersection that the previous section described.

The loop invariants are true upon entry into the loop, which is demonstrated as follows. Prédihtesd

P2(1) are vacuously satisfied, sinkel=0 and hence the left-hand side of each implication is false. Predicate
P3() is also satisfiedpi xel . i Fl ag is initialized tof al se, and there can be nandj in the range [1, 0],
which makes the right-hand side of the equivald?@@) false as well.

Next, it is required that these predicates be truly invariant and that they RapWyhat happens to predicates
P1-P3 after an iteration of the loop? Consider each one in turn.

P1. WhenevelP1(k+1)is true at the top of the loop, control passes over lines (2-3) toRddke1) true at the
bottom of the loop. IP1(k+1)is false at line (1), line (2) re-establish@sxel . z as the minimum and
P1(k+1)then becomes true.

P2 The first time through the loopj xel . z is larger than any polygonsvalue, so line (2) is executed to
makepi xel . z match a polygon, and2(2) becomes true. On subsequent iteratppinsel . z stays fixed
or else is assigned tlzevalue ofpol ygon[k], soP2(k+1)is true at the end of the iteration.

P3: When an incoming polygon has the new miniméh(k+1)is false, in which case line (2) makes the right-
hand side oP3(k+1) false by assigning tpi xel . z the new minimum. Line (3) corrects the intersection
flag to re-establish the equivalence R3(k+1). When the incoming polygon does not contain a new
minimum, it may either match the existing minimum storefiinel . z or else exceed the minimum. If it
matches, line (5) sets the flag to estalifi8fk+1). If it exceeds it, then both sides of the equivalence remain
the same and $83(k+1) = P3(k).

The above arguments mean tRaik) O Pn(k+1)forn =1, 2, 3. In other words, these predicates are invariant
within the inner loop. Consequently, the termination of the loop delivers predriai@smPolygons+1)When

the loop completes, the predicaBHnumPolygons+1andP2(numPolygons+1yuarantee thati xel . z holds

the minimumz-value of the polygons in the array, and the prediBaumPolygons+1yjuarantees that this
minimum corresponds to a pair of polygons exactly when the intersection flag is raised. These predicates are
valid at each pixel. Thus the postconditi®d is true, proving correctness of the code in Figure 1. That should
mean that a visible intersection arises when two different polygons share the fraalost at a pixel, which

occurs exactly whenf | ag is true. It should, but it doesn'’t quite.

2.2 Spurious I nter sections Between Adjacent Polygons

The predicatéP4 captures the geometric meaning of intersection. But rasterizing actual polygons can lead to
problems along shared edges. Two polygons that share an edge will intersect each other along it in a formal,
mathematical sense. If one is not careful about determining the extents of spans, a pair of polygons whose edges
pass exactly through pixels will “intersect” at those pixels. One could be careful not to redraw pixels along the
common edge of adjacent polygons either by maintaining connectivity information or by using strict inequalities
when rasterizing, say, the bottom and left edges of a polygon. But the connectivity information is difficult to
maintain for datasets spread across multiple processors, especially if the geometry changes dynamically. The
strict inequalities will strip off the edges of a rectangle whose corners lie at pixel locations (leaving 1-pixel-wide
gaps), and such datasets occur in a wide variety of applications.

There is a simple remedy, at least for Phong-shaded polygons. During Phong-shading the pixel already holds
sufficient information to detect spurious intersections of adjacent polygons. That information is the surface
normal. The genuine intersections are those of polygons that dive through each other, that is, whose normals are
different where they interpenetrate. One can thus modifyzibemparison, requiring that the normals be
different. When a newz-value matches an old one, the new normal vector must differ from the old as well.
Otherwise the new polygon probably shares a common edge with the old polygon at this pixel. The condition in
line (4) can be enlarged as follows to produce a varigiactMatch

el seif zval (pol ygon[k], pixel) == pixel State.z and
nor mal (pol ygon[k], pixel) != pixel.nornmal then 4

The drawback now is that the algorithm fails to locate points where two surfaces osculate, or where a single
surface branches. At such points the tangent planes coincide, and thus the normals do as well. That drawback is

-‘ il

Figure 3. Two intersecting polygons are slightly transparent (left) and very transparent (middle and right). Transparency
makes the intersection hard to see, hence the need for highlighting the intersection.

minor for the vast majority of surfaces one actually encounters: first-order contact between curved surfaces is a
rare event.

2.3 Combining ExactMatch with Transparency

Transparency, in conjunction with highlighted intersections, is an especially helpful method for visualizing
surfaces that intersect. In the neighborhood of an intersection, portions of one surface hide portions of another
throughout every (or almost every) viewing direction. Transparency makes it possible to see the continuation of
the portions that are hidden and hence to perceive the shapes of both surface patches near the intersection. When
two opaque surfaces have different colors near their intersection, it is visually obvious that an intersection occurs:
there is a discontinuity in the color transverse to the intersection curve. Unfortunately, the colors of two
transparent surfacésandB blend together. As transparency increadestopB becomes indistinguishable from

B atop A (Figure 3). The resulting color does not change appreciably across the intersection and so the
intersection is no longer visually obvious.

Consider how to detect visible intersections of transparent surfaces. Every intersection is visible, whether it is
frontmost or not. The order matters when rendering transparent polygons. One might wish to employ a painter’'s
algorithm and traverse the set of polygons from back to front (or, alternatively, render from front to back). But
detecting intersections in world space, splitting polygons that intersect so that they can be well-ordered, and
sorting them is exactly the computational burden éxactMatchwas intended to avoid! i is the number of
polygons, there is a simple solution whose performance is very good for scenes with maximum depth complexity
smaller tharO(log n). That solution is to use multipass transparency [Mammen].

The multipass algorithm requires additional pixel-state in the form of variabkes, al pha, andcol or. The
pixel-variablezFar is first initialized to 0. Then, during each pass, a pixel collects the state of the nearest
polygon which is farther thanFar . At the end of the passFar is updated to match that nearest polygon and
the polygon’s color is blended with the pixel's accumulateti or , by an amount determined by the opacity

al pha.

ExactMatchcan be incorporated gracefully into the multipass transparency algorithm. In eaexazbsatch

detects the frontmost intersection, and the multiple passes work their way from front to back among the polygons
that cover a pixel. How many passes are required? That depends entirely on the depth complexity of (a region of)
the screen. One attractive feature of the multipass algorithm is that the depth complexity does not generally

Figure 4. Surface of revolution generated by a trefoil knot (indicated by the opaque ribbon on the left) spun in four-
dimensional space. The surface is projected to three-dimensional space, forming a self-intersecting torus.

change when the surfaces are re-meshed at a higher resblitiather words, once one has chosen a set of
surfaces to examine, the depth complexity is essen@lly when the surfaces are refined to a higher level of
detail.

Figure 4 illustrates a self-intersecting torus. This surface was generated by constructing a trefoil knot in 3-
dimensionalkyzspace, then sweeping out a surface of revolution througkvttpdane in 4-dimensionadyzw

space. Mathematicians who study knotted surfaces must contend with the fact that any 3-dimensional projection
of such a surface must possess self-intersections. Transparency helps reveal the complicated shape of the surface,
and highlighted intersections help the eye track the many intersection curves along the surface.

3 Varying-width Intersection Curve: Threshold

By requiring an exact match between polygansalues one can highlight, at best, a 1-pixel-wide intersection
curve (except, of course, for the degenerate case of coincident polygons). At worst one misses most of the curve
due to imperfect sampling: identical/alues of different polygons are unlikely to fall on exact pixel locations.

One remedy to this problem is to apply a threshold. If the incoming polygon is wittfirthe z-buffer, its
intersection flag is raised. The condition in line (4) is relaxed as follows to produce the algloritsimold

el sei f [kval (pol ygon[k], pixel) - pixel.zO< € then (C)]

1. There is a caveat: such surfaces must have bounded curvature almost everywhere. Otherwise the finely-sampled
geometry may disclose complicated features that increase the depth complexity. Such features are ubiquitous in
fractals, for example.

Figure 5. At their common intersection, two polygons share z-values. The z-values are within some threshold of each other
along a thickened intersection curve. The two circles indicate pixels that lies very close to the intersection but fails to lie in
the thick curve. The circle on the left is supported by only one polygon. The circle on the right is supported by no polygons.

Thresholdproduces a thickened intersection curve (Figures 3 and 4). The curve typically varies in width as it
winds across the screen. If two polygons intersect each other at a shallow angtesehanation remains small

over a large area of the screen and the curve that satisfies'linis @any pixels wide. If they intersect each
other at a steep angle, a short excursion to neighboring pixels finds them separated far apadiiactien

(Figure 7) and therefore the curve is thin. Notice alsottirashold like exactMatch merges gracefully into the
multipass algorithm for transparency.

There is an implementation detail to consider. In order to correbilffer, one generally interpolates reciprocal-

z (not zitself) across the polygon because perspective projection does not preserve linear functions. For locating
intersections across large ranges it is necessary to compare distancestsesifydpout over small values efthe
distinction is not so important and thus one need not bother recompirimg its reciprocal.

3.1 Artifactsof Threshold

One artifact othresholdis that the thickened intersection curve gets trimmed by surface boundaries, since the
depth-comparison is performed only in thealirection (rather than, say, in the normal directions of the
participating polygons). In other words, a pixel can only be construed to lie near an intersection if two polygons
lie atop the pixel. In the case etactMatche = 0 which implies that there truly are at least two polygons at the
pixel. But withthreshold the implication no longer holds. A pixel may lie very close to the intersection without
being included in the thick curve, because it fails to be supported by two or more polygons.

Figure 5 illustrates the situation for two interpenetrating triangles. The thick intersection curve (dark gray bands)
can only be calculated at pixels covered by both triangles. As a result the thick curve is trimmed at the ends to
produce bevels. Such bevels can result from surface edges or from silhouettes that lie near the intersection.
Bevelling may be desirable or not; in any case it is hard to overcome without using pixel-to-pixel communication
(which would let a pixel know it is near an intersection, even though is has received no geometric state that would
inform it of its proximity to the intersection).

A second artifact that arises is thlatesholdmay detect nonexistent intersections. As long as one polygon lies
within € of another (in the-direction), a portion of it will be deemed to lie within a thick intersection curve. A
near-miss is highlighted as though it were the neighbor of a direct hit between two polygons.

A special case of the false intersections occurs along silhouettes. A silhouette edge separates two polygons, one
frontfacing and the other backfacing, that cover some of the same area on the screelistdahee between the

8$ZO_ /I R

X0
«<— 3—>< O —>

Figure 6. To produce a fixed-width intersection in 2 dimensions, the goal is to determine whether a point on a segment lies
within 6 of the intersection. Depending on the slopes of the two segments, the point must lie within some € (in the z-
direction) of the other surface.

two polygons falls to zero at the silhouette, so the algorithm detects intersections in the vicinity of the silhouette.
A simple remedy for this behavior, when each individual surface is closed, non-self-intersecting, and opaque, is
to cull backfacing polygons. A more elaborate solution would be to interpolate higher-order curvature
information across each polygon in order to determine whether two polygons that share a pixel are likely to be
adjacent. This is analogous to the modified lil€) ¢ghich uses the interpolated normal to detect a shared edge.
An effective, but ad-hoc, remedy is to ignore the intersection flag if the frontmost surface has a normal nearly
perpendicular to the eye-vector. In practice the false intersection highlight is unobtrusive at the silhouette, since
the polygons on either side approach the silhouette at steep angles. Over a short distance on the sefeen, their
values separate by a large amount and the false intersection curve is quite thin.

These artifacts rule othiresholdas an exact rendering technique, especially for datasets where it is important to
distinguish between true intersections and near-misses. But when interactive speed is the driving concern,
thresholdpermits an implementation at the pixel-parallel level to yield high performance.

4 Fixed-width I nter section Curves: epsilon

In order to draw a fixed-width intersection curve one is required to determine, at any point on the surface, the
distance from the point to the nearest intersection curve (where distance is measured on the screen). Given two
intersecting polygons and a pomt (x,, Yj,) on the screen, how far sfrom the intersection?

The situation is easy to see in two dimensions (Figure 6). Instead of polyg&ng,in-§pace, suppose two line
segments inx, 2-space intersect one anothergt &) on a one-dimensional screen. At a horizontal distance

from the intersection, corresponding points on the two segments will be separated by a vertical distance
Whenever the vertical distanfg(p) is less tha, the screenwise distanfg(p) is less thad, sop is included

in the fixed-width intersection curve. The figure shows the geometry for a one-dimensional screen viewed edge-
on, withznow pointing upwards.

Let the planes of the two polygons(iq y, 3-space be represented by the following equations:
z(x,y)=ax+by+c

Zx,y)=ax+bhy+c

Figure 7. This surface has cross-sections that form figure-eights. The figure-eights self-intersect steeply at the front and at
the rear of the surface, but self-intersect at a shallow angle in the middle of the surface (left). Simple thresholding of Z-
distance locates a thick intersection curve of varying width (center). By compensating for the slopes one can make the
curves fixed-width.

Thez-separatiod(p) between the two planes is simply the difference between their plane equations:
AAp) = -7 = @-aPXyt (bo-byyp+(c2-¢y)

The intersection occurs whefg(p) = 0. The gradient vector = (a, - a5, b, - by) specifies the direction of
maximum slope of\,(p). In that direction the equation for a line is

Aftv) =(ap-ap)t(@-a) + (bo-by)t(by-by) + (cr-cy)
= [(az - a)® + (b - b t + (c2- &)
and so the slope satisfies
m? = (ap - a7)% + (b - by)?

Dividing A,(p) by the magnitude of the gradient yields a normalized plane equation with the same zero-set, but
with a slope of 1 in the gradient direction. In such a normalized plane, the Agfitn is precisely the same as

the screenwise distantg,(p) between the point and the zero-set along the intersection. Therefore, given some
0>0 (the half-width of the curve), choose

e=0m
which ensures that
Afp)<e O Dyp)<d

That is, the poinp on the screen lies withiof the intersection if the difference in polygon depths is no larger
thane in magnitude. Note that when the two planes are parallel or coincidergxactly zero and the left-hand
inequality is nowhere satisfied. The computation is limited in practice by the precisioredfufier and of the

plane coefficients, so planes separated by small angles are effectively parallel due to numerical representation.

foreach pixel in screen
pixel . first.z = pixel.second.z = infinity;
pi xel . i Fl ag = FALSE;

foreach k in [1..nunPol ygons]
foreach pixel in rasterize(pol ygon[k])

i f zval (polygon[k], pixel) < pixel.second.z (1)

i f zval (polygon[k], pixel) < pixel.first.z (2)
The incoming polygon lies in front of the 2 frontmost values at the pixel.

pi xel . second = pixel .first; (3)

copy(pol ygon[k], pixel.first); (4)

el se (5)

The incoming polygon lies between the frontmost two values at the pixel.

copy(pol ygon[k], pixel.second); (6)

foreach pixel in screen

if (pixel.second.z !'=infinity)
There are 2 polygons. See if they intersect nearby, based on their plane coefficients.
sl opeSquared = (pixel.second.a - pixel.first.a) 2 4 (7)
(pi xel .second. b - pixel.first.b)z; (8)
epsilon = delta*sqrt (sl opeSquared); (9)
if [pixel.first.z - pixel.second.zO< epsilon (10)
pi xel .i Flag = TRUE; (1))

Figure 8. Code fragment for finding polygon intersections using epsilon. The frontmost pair of polygons are retained at
each pixel. After all the polygons have been rasterized, each pixel uses the plane coefficients of the frontmost samples in
order to calculate epsi | on. If the difference in z-depths is smaller than epsi | on, the pixel lies within a fixed-width
intersection curve.

One has the choice of either storing the plane coefficients in the pixel or recovering them from the Phong-
interpolated normal in the pixel. The first way is faster, but the second way uses less memory. To compute plane
coefficientsa andb from a normah = (X, ¥, z,) with z, # 0O, let

a=- ﬁ , b=- &]

Zn

It is easy to see thatis perpendicular to the plang, {, ax + by. Notice that only the andb coefficients are
needed in order to compute

The calculation o€ uses only the linear information from the participating surfaces. But that is sufficient to
dramatically improve the uniformity of intersection highlights even for curved surfaces (Figure 7).

How should the calculation efenter into the algorithm for finding intersections? Is it enough to just modify line
(4) yet again? The answer this time is no. Consider a polggparallel to the plane of the screen, with several
other polygons situated behind it. If the backmost polyg@nearly perpendicular to the screen, the siogef

the difference between the plane equations) is very large. As a result, every pixebhodeoveB might satisfy

10

the conditionA,(p) < €. Even thougtP andB are completely separated by intervening polygons, the inequality
suggests that an intersection between them is likely to occur nearby. As a result, pixels would highlight false
intersections. The simplest solution is to retain the state of the frontmost two polygons at each pixel. Only these
two set of plane coefficients are used in order to compute the screenwise distance to an intersection. This
computation is performed in a second pass over the pixels.

Figure 8 shows the improved fixed-width calculation. The pixels (now storing data for the first- and second-
frontmost samples) are all initialized as before. When a polygon is rasterized into pixels, the contents of each
pixel are updated to maintain the geometry of the frontmost polygonal samples. This occurs in lines (1-6). In the
last pass over the pixels, the slopes amdlues of the frontmost two samples determine whether an intersection

is nearby, based on some threstaddi t a. This occurs in lines (7-11).

5 Implementation

| implemented the varying-width and fixed-width intersection algorithms on Pixel-Planes 5 graphics
supercomputer [Fuchs]. Its architecture assigns a SIMD arrays of processors (each with 208 bits of local
memory) to pixels in rectangular regions of the screen. Application development on Pixel-Planes 5 is supported
by a PHIGS-like graphics library. This library allocates the pixel memory into fixed areas, storing color, nhormal,
depth, and texture information. The allocation scheme permitted me to implement the varying-width algorithm in
a straight-forward fashion [Banks]. But maintaining an additional normal-vector (48 bits), a gaaiud (24

bits), and scratch space for calculating epsilon (64 bits) simply consumes too many bits to implement the fixed-
width algorithm in Figure 8. As a compromise, | eliminated the last pass by folding the comparison of lines (7-
11) into the rendering pass of lines (1-6). As noted in the previous section, this strategy can be sensitive to the
order in which polygons are processed. Even so, for a broad collection of intersecting surfaces the thickened
curves are satisfactory. The results are illustrated in Figures 4 and 7.

Pixel-Planes 5 can transform and Phong-shade at a sustained rate of well over 1 million polygons/second using
hand-coded assembly instructions for the i860 graphics processors, or about 100,000 polygons/second using
compiled C code. The difference in speed is due primarily to two factors: the compiler does not make use of the
processor’s dual instruction mode, and the hand-coded assembly fits into the instruction cache. It was the C code
that | modified in order to locate intersection curves. The best sustained performance for variable-width curves
was 90,000 polygons/second, and for fixed-width curves was 66,000 polygons/second. Finding variable-width
intersections in the context of multipass transparency (for a surface with up to 8 layers) yielded 17,000 polygons/
second. These rates were measured using the torus in Figure 4, composed of 8192 triangles, at a screen resolution
of 128(x1024 pixels.

6 Conclusions

This paper describes a technique for locating, in screen space, intersections between surfaces. This makes it
possible to enhance the appearance of an intersection either by changing its color, its opacity, or its width.
Transparency helps reveal the interior shape of intersecting surfaces but blends away the intersection curve;
changing the curve’s color or opacity compensates for the effect of transparency.

The algorithm relies solely on the local information available to a pixel. In the simplest form the algorithm looks
for exact matches between coordinates of polygons and can be proven correct. Unfortunately, the exact-matching
scheme misses most points on an intersection curve due to discrete per-pixel sarzplaigesf. One can relax

the requirement for an exact match by comparhdifferences against a more generous threshold. This admits

11

many more pixels into the intersection curve but is no longer correct: the thickened curve has varying width, the
curve is trimmed whenever it is not supported by at least two polygons, and false intersections are detected due to
near-misses, silhouettes, or distant polygons that are steeply sloped. The first drawback can be remedied by
normalizing the threshold according to the slopes of the polygons and testing only the frontmost pair of
polygons. This produces fixed-width intersection curves. The other drawbacks require higher-order
approximations, pixel-to-pixel communication, or ad-hoc measures in order to be overcome. The advantage of
the technique is that it can be parallelized at the pixel level.

This method is helpful for interactive visualization of dynamically changing surfaces that self-intersect. The
depth-complexity of a surface’s refinement is typically constant, so the time complexity of the algorithm is linear
in the number of polygons when the user changes to higher-resolution views. This compares well to world-space
algorithms that calculate intersections analytically but generally exhibit super-linear complexity in the number of
polygons.

References

[Banks] Banks, David.Interacting With Surfaces in Four Dimensions Using Computer Graphir93-
011, Department of Computer Science, University of North Carolina at Chapel Hill. 1993. 97-107.

[Baraff] Baraff, David. “Curved Surfaces and Coherence for Non-penetrating Rigid Body Simulation,”
SIGGRAPH 90 Proceeding$9-28.

[Fuchs] Fuchs, Henryet al “Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using
Processor-Enhanced MemorieSIGGRAPH 89 Proceedingg9-88.

[Mammen] Mammen, Abraham. “Transparency and Antialiasing Algorithms Implemented with the Virtual
Pixel Maps TechniqueCG&A, July 1989, 43-55.

[Moore] Moore, Matthew, and Jane Wilhelms. “Collision Detection and Response for Computer
Animation,” SIGGRAPH 88 Proceeding289-298.

12

