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This is a brief introduction to general relativity, designed for both students and teachers of the
subject. While there are many excellent expositions of general relativity, few adequately explain the
geometrical meaning of the basic equation of the theory: Einstein’s equation. Here we give a simple
formulation of this equation in terms of the motion of freely falling test particles. We also sketch
some of the consequences of this formulation and explain how it is equivalent to the usual one in
terms of tensors. Finally, we include an annotated bibliography of books, articles, and websites
suitable for the student of relativity. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION

General relativity explains gravity as the curvature
space–time. It’s all about geometry. The basic equation
general relativity is called Einstein’s equation. In units whe
c58pG51, it says

Gab5Tab . ~1!

It looks simple, but what does it mean? Unfortunately,
beautiful geometrical meaning of this equation is a bit h
to find in most treatments of relativity. There are many n
popularizations that explain the philosophy behind relativ
and the idea of curved space–time, but most of them d
get around to explaining Einstein’s equation and show
how to work out its consequences. There are also more t
nical introductions which explain Einstein’s equation
detail—but here the geometry is often hidden under piles
tensor calculus.

This is a pity, because there is an easy way to express
whole content of Einstein’s equation in plain English. Afte
suitable prelude, one can summarize it in a single sente
One needs a lot of mathematics to derive all the con
quences of this sentence, but we can work outsomeof its
consequences quite easily.

In what follows, we start by outlining some difference
between special and general relativity. Next we give a ver
formulation of Einstein’s equation. Then we derive a few
its consequences concerning tidal forces, gravitatio
waves, gravitational collapse, and the big bang cosmolo
In an appendix we explain why our verbal formulation
equivalent to the usual one in terms of tensors. This articl
mainly aimed at those who teach relativity, but except for
appendix, we have tried to make it accessible to students
conclude with a bibliography of sources to help teach
subject.

II. PRELIMINARIES

Before stating Einstein’s equation, we need a little pre
ration. We assume the reader is somewhat familiar with s
cial relativity—otherwise general relativity will be too hard

a!Electronic mail: baez@math.ucr.edu
b!Electronic mail: ebunn@richmond.edu
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But there are some big differences between special and
eral relativity, which can cause immense confusion if n
glected.

In special relativity, we cannot talk aboutabsoluteveloci-
ties, but only relative velocities. For example, we canno
sensibly ask if a particle is at rest, only whether it is at r
relative to another particle. The reason is that in this theo
velocities are described as vectors in four-dimensio
space–time. Switching to a different inertial coordinate s
tem can change which way these vectors point relative to
coordinate axes, but not whether two of them point the sa
way.

In general relativity, we cannot even talk aboutrelative
velocities, except for two particles at the same point
space–time—that is, at the same place at the same ins
The reason is that in general relativity, we take very seriou
the notion that a vector is a little arrow sitting at a particu
point in space–time. To compare vectors at different poi
of space–time, we must carry one over to the other. T
process of carrying a vector along a path without turning
stretching it is called ‘‘parallel transport.’’ When space–tim
is curved, the result of parallel transport from one point
another depends on the path taken, which is a direct co
quence of a curved space–time. Thus it is ambiguous to
whether two particles have the same velocity vector unl
they are at the same point of space–time.

It is hard to imagine the curvature of four-dimension
space–time, but it is easy to see it on a two-dimensio
surface, like a sphere. The sphere fits nicely in thr
dimensional flat Euclidean space, so we can visualize vec
on the sphere as ‘‘tangent vectors.’’ If we parallel transpor
tangent vector from the north pole to the equator by go
straight down a meridian, we get a different result than if
go down another meridian and then along the equator
shown in Fig. 1.

Because of the analogy to vectors on the surface o
sphere, in general relativity vectors are usually called ‘‘ta
gent vectors.’’ However, it is important not to take this an
ogy too seriously. Our curved space–time need not be
bedded in some higher-dimensional flat space–time for u
understand its curvature, or the concept of a tangent ve
The mathematics of tensor calculus is designed to let
handle these concepts ‘‘intrinsically’’—i.e., working sole
644© 2005 American Association of Physics Teachers
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within the four-dimensional space–time in which we fin
ourselves. This is one reason tensor calculus is so impo
in general relativity.

In special relativity we can think of an inertial coordina
system, or ‘‘inertial frame,’’ as being defined by a field
clocks, all at rest relative to each other. In general relativ
this makes no sense, since we can only unambiguously
fine the relative velocity of two clocks if they are at the sam
location. Thus the concept of inertial frame, so important
special relativity, isbannedfrom general relativity!

If we are willing to put up with limited accuracy, we ca
still talk about the relative velocity of two particles in th
limit where they are very close, since curvature effects w
then be very small. In this approximate sense, we can
about a ‘‘local’’ inertial coordinate system. However, w
must remember that this notion makes perfect sense on
the limit where the region of space–time covered by
coordinate system goes to zero in size.

Einstein’s equation can be expressed as a statement a
the relative acceleration of very close test particles in f
fall. Let us clarify these terms a bit. A ‘‘test particle’’ is a
idealized point particle with energy and momentum so sm
that its effects on space–time curvature are negligible. A p
ticle is said to be in ‘‘free fall’’ when its motion is affected b
no forces except gravity. In general relativity, a test parti
in free fall will trace out a ‘‘geodesic.’’ This means that i
velocity vector is parallel transported along the curve
traces out in space–time. A geodesic is the closest thing t
is to a straight line in curved space–time.

This is easier to visualize in two-dimensional space rat
than four-dimensional space–time. A person walking on
sphere ‘‘following their nose’’ will trace out a geodesic—th
is, a great circle. Suppose two people stand side-by-side
the equator and start walking north, both following geod
sics. Though they start out walking parallel to each other,
distance between them will gradually start to shrink, un
finally they bump into each other at the north pole. If th
didn’t understand the curved geometry of the sphere, t
might think a ‘‘force’’ was pulling them together.

In general relativity gravity is not really a ‘‘force,’’ but jus
a manifestation of the curvature of space–time. Note it is
the curvature of space, but ofspace–time that is involved.

Fig. 1. Two ways to parallel transport a tangent vector from the north p
to a point on the equator of a sphere.
645 Am. J. Phys., Vol. 73, No. 7, July 2005
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The distinction is crucial. If you toss a ball, it follows
parabolic path. This is far from being a geodesic inspace.
Space is curved by the Earth’s gravitational field, but it
certainly not so curved as all that! The point is that while t
ball moves a short distance in space, it moves an enorm
distance intime, because one second equals about 300
km in units wherec51. Thus, a slight amount of space–tim
curvature can have a noticeable effect.

III. EINSTEIN’S EQUATION

To state Einstein’s equation in simple English, we need
consider a round ball of test particles that are all initially
rest relative to each other. As we have seen, this is a sen
notion only in the limit where the ball is very small. If w
start with such a ball of particles, it will, to second order
time, become an ellipsoid as time passes. This should no
too surprising, because any linear transformation applied
ball gives an ellipsoid, and any transformation can be
proximated by a linear one to first order. Here we get a
more: the relative velocity of the particles starts out be
zero, so to first order in time the ball does not change sh
at all: the change is a second-order effect.

Let V(t) be the volume of the ball after a proper timet has
elapsed, as measured by the particle at the center of the
Then Einstein’s equation says:

V̈

V
U

t50

52
1

2 S flow of t-momentum in t direction1
flow of x-momentum inx direction1
flow of y-momentum in y direction1
flow of z-momentum inz direction

D
~2!

where these flows are measured at the center of the ba
time zero, using local inertial coordinates. These flows
caused by all particles and fields. They form the diago
components of a 434 matrix T called the ‘‘stress-energy
tensor.’’ The componentsTab of this matrix say how much
momentum in thea direction is flowing in theb direction
through a given point of space–time, wherea,b5t,x,y,z.
The flow of t-momentum in thet-direction is just the energy
density, often denotedr. The flow of x-momentum in the
x-direction is the ‘‘pressure in thex direction’’ denotedPx ,
and similarly fory andz. It takes a while to figure out why
pressure is really the flow of momentum, but it is eminen
worth doing. Most texts explain this fact by considering t
example of an ideal gas.

In any event, we may summarize Einstein’s equation
follows:

V̈

V
U

t50

52
1

2
~r1Px1Py1Pz!. ~3!

This equation says that positive energy density and posi
pressure curve space–time in a way that makes a freely
ing ball of point particles tend to shrink. SinceE5mc2 and
we are working in units wherec51, ordinary mass density
counts as a form of energy density. Thus a massive ob
will make a swarm of freely falling particles at rest around
start to shrink. In short:gravity attracts.

We promised to state Einstein’s equation in plain Engli
but have not done so yet. Here it is:

Given a small ball of freely falling test particles initially a
rest with respect to each other, the rate at which it begin

le
645J. C. Baez and E. F. Bunn
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shrink is proportional to its volume times: the energy de
sity at the center of the ball, plus the pressure in thex
direction at that point, plus the pressure in they direction,
plus the pressure in thez direction.

One way to prove this is by using the Raychaudhuri eq
tion, discussions of which can be found in the textbooks
Wald17 and by Ciufolini and Wheeler25 cited in the bibliog-
raphy. But an elementary proof can also be given star
from first principles, as we show in the Appendix.

The reader who already knows some general relati
may be somewhat skeptical that all of Einstein’s equation
encapsulated in this formulation. After all, Einstein’s equ
tion in its usual tensorial form is really a bunch of equatio
the left and right sides of Eq.~1! are 434 matrices. It is hard
to believe that the single Eq.~3! captures all that informa
tion. It does, though, as long as we include one bit of fi
print: to get the full content of the Einstein equation from E
~3!, we must consider small balls withall possible initial
velocities—i.e., balls that begin at rest in all possible lo
inertial reference frames.

Before we begin, it is worth noting an even simpler fo
mulation of Einstein’s equation that applies when the pr
sure happens to be the same in every direction:

Given a small ball of freely falling test particles initially a
rest with respect to each other, the rate at which it begin
shrink is proportional to its volume times: the energy de
sity at the center of the ball plus three times the pressur
that point.

This version is only sufficient for ‘‘isotropic’’ situations: tha
is, those in which all directions look the same in some lo
inertial reference frame. But, since the simplest models
cosmology treat the universe as isotropic—at least appr
mately, on large enough distance scales—this is all we s
need to derive an equation describing the big bang!

IV. SOME CONSEQUENCES

The formulation of Einstein’s equation we have given
certainly not the best for most applications of general re
tivity. For example, in 1915 Einstein used general relativ
to correctly compute the anomalous precession of the orb
Mercury and also the deflection of starlight by the Su
gravitational field. Both these calculations would be ve
hard starting from Eq.~3!; they really call for the full appa-
ratus of tensor calculus. However, we can easily use
formulation of Einstein’s equation to get a qualitative—a
sometimes even quantitative—understanding ofsomeconse-
quences of general relativity. We have already seen th
explains how gravity attracts. We sketch a few other con
quences below.

A. Tidal forces, gravitational waves

Let V(t) be the volume of a small ball of test particles
free fall that are initially at rest relative to each other. In t
vacuum there is no energy density or pressure, soV̈u t50

50, but the curvature of space–time can still distort the b
For example, suppose you drop a small ball of instant co
when making coffee in the morning. The grains of coff
closer to the earth accelerate toward it a bit more, causing
ball to start stretching in the vertical direction. However,
the grains all accelerate toward the center of the earth,
ball also starts being squashed in the two horizontal dir
tions. Einstein’s equation says that if we treat the cof
646 Am. J. Phys., Vol. 73, No. 7, July 2005
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grains as test particles, these two effects cancel each o
when we calculate the second derivative of the ball’s v
ume, leaving us withV̈u t5050. It is a fun exercise to check
this using Newton’s theory of gravity!

This stretching/squashing of a ball of falling coffee grai
is an example of what people call ‘‘tidal forces.’’ As th
name suggests, another example is the tendency for
ocean to be stretched in one direction and squashed in
other two by the gravitational pull of the moon.

Gravitational waves are another example of how spa
time can be curved even in the vacuum. General relativ
predicts that when any heavy object wiggles, it sends
ripples of space–time curvature which propagate at the sp
of light. This is far from obvious starting from our formula
tion of Einstein’s equation! It also predicts that as one
these ripples of curvature passes by, our small ball of initia
test particles will be stretched in one transverse direct
while being squashed in the other transverse direction. F
what we have already said, these effects must precisely
cel when we computeV̈u t50 .

Hulse and Taylor won the Nobel prize in 1993 for care
observations of a binary neutron star which is slowly spir
ing down, just as general relativity predicts it should, as
loses energy by emitting gravitational radiation.27,28 Gravita-
tional waves have not beendirectly observed, but there are
number of projects under way to detect them.29–32 For ex-
ample, the LIGO project will bounce a laser between ha
ing mirrors in an L-shaped detector, to see how one leg of
detector is stretched while the other is squashed. Both
are 4 km long, and the detector is designed to be sensitiv
a 10218 m change in length of the arms.

B. Gravitational collapse

One remarkable feature of this equation is the press
term, which says that not only energy density but also pr
sure causes gravitational attraction. This may seem to vio
our intuition that pressure makes matter want to expa
Here, however, we are talking aboutgravitational effects of
pressure, which are undetectably small in everyday circu
stances. To see this, let’s restore the factors ofc andG. Also,
let’s remember that in ordinary circumstances most of
energy is in the form of rest energy, so we can write t
energy densityr as rmc2, whererm is the ordinary mass
density:

V̈

V
U

t50

52
4pG

c4 ~rmc21Px1Py1Pz!. ~4!

On the human scale all of the terms on the right are sm
sinceG is very small andc is very big. ~Gravity is a weak
force!! Furthermore, the pressure terms are much sma
than the mass density term, since the former has an extrac2.

There are a number of important situations in whichr
does not dominate overP. For example, in a neutron sta
which is held up by the degeneracy pressure of the neu
nium it consists of, pressure and energy density contrib
comparably to the right-hand side of Einstein’s equatio
Moreover, above a mass of about two solar masses a no
tating neutron star will inevitably collapse to form a blac
hole, thanks in part to the gravitational attraction caused
pressure.
646J. C. Baez and E. F. Bunn
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C. The big bang

Starting from our formulation of Einstein’s equation, w
can derive some basic facts about the big bang cosmol
Let us assume the universe is not only expanding but
homogeneous and isotropic. The expansion of the univer
vouched for by the redshifts of distant galaxies. The ot
assumptions also seem to be approximately correct, at
when we average over small-scale inhomogeneities suc
stars and galaxies. For simplicity, we will imagine the u
verse is homogeneous and isotropic even on small scale

An observer at any point in such a universe would see
objects receding from her. Suppose that, at some timet50,
she identifies a small ballB of test particles centered on he
Suppose this ball expands with the universe, remain
spherical as time passes because the universe is isotropic
R(t) stand for the radius of this ball as a function of tim
The Einstein equation will give us an equation of motion
R(t). In other words, it will say how the expansion rate
the universe changes with time.

It is tempting to apply Eq.~3! to the ballB, but we must
take care. This equation applies to a ball of particles that
initially at rest relative to one another—that is, one who
radius is not changing att50. However, the ballB is ex-
panding att50. Thus, to apply our formulation of Einstein
equation, we must introduce a second small ball of test
ticles that are at rest relative to each other att50.

Let us call this second ballB8, and call its radius as a
function of timer (t). Since the particles in this ball begin a
rest relative to one another, we have

ṙ ~0!50. ~5!

To keep things simple, let us also assume that att50 both
balls have the exact same size:

r ~0!5R~0!. ~6!

Equation~3! applies to the ballB8, since the particles in
this ball are initially at rest relative to each other. Since t
volume of this ball is proportional tor 3, and using Eq.~5!,
the left-hand side of Eq.~3! becomes simply

V̈

V
U

t50

5
3r̈

r U
t50

. ~7!

Since we are assuming the universe is isotropic, we kn
that the various components of pressure are equal:Px5Py

5Pz5P. Einstein’s equation, Eq.~3!, thus says that

3r̈

r U
t50

52
1

2
~r13P!. ~8!

We would much prefer to rewrite this expression in terms
R rather thanr . Fortunately, we can do this. Att50, the two
spheres have the same radius:r (0)5R(0). Furthermore, the

second derivatives are the same:r̈ (0)5R̈(0). This follows
from the equivalence principle, which says that, at any giv
location, particles in free fall do not accelerate with resp
to each other. At the momentt50, each test particle on th
surface of the ballB is right next to a corresponding te
particle inB8. Since they are not accelerating with respect
each other, the observer at the origin must see both part
accelerating in the same way, sor̈ (0)5R̈(0). It follows that
we can replacer with R in the above equation, obtaining
647 Am. J. Phys., Vol. 73, No. 7, July 2005
y.
o
is
r

ast
as

.
ll

g
Let
.
r

re
e

r-

w

f

n
t

o
les

3R̈

R
U

t50

52
1

2
~r13P!. ~9!

We derived this equation for a very small ball, but in fa
it applies to a ball of any size. This is because, in a hom
geneous expanding universe, the balls of all radii must
expanding at the same fractional rate. In other words,R̈/R is
independent of the radiusR, although it can depend on time
Also, there is nothing special in this equation about the m
ment t50, so the equation must apply at all times. In su
mary, therefore, the basic equation describing the big b
cosmology36–41 is

3R̈

R
52

1

2
~r13P!, ~10!

where the densityr and pressureP can depend on time bu
not on position. Here we can imagineR to be the separation
between any two ‘‘galaxies.’’

To go further, we must make more assumptions about
nature of the matter filling the universe. One simple mode
a universe filled with pressureless matter. Until recently, t
was thought to be an accurate model of our universe. Set
P50, we obtain

3R̈

R
52

r

2
. ~11!

If the energy density of the universe is mainly due to t
mass in galaxies, ‘‘conservation of galaxies’’ implies th
rR35k for some constantk. This gives

3R̈

R
52

k

2R3 ~12!

or

R̈52
k

6R2 . ~13!

Amusingly, this is the same as the equation of motion fo
particle in an attractive 1/R2 force field. In other words, the
equation governing this simplified cosmology is the same
the Newtonian equation for what happens when you thro
ball vertically upwards from the earth! This is a nice examp
of the unity of physics. Since ‘‘whatever goes up must co
down—unless it exceeds escape velocity,’’ the solutions
this equation look roughly like those shown in Fig. 2.

In other words, the universe started out with a big bang
will expand forever if its current rate of expansion is suf
ciently high compared to its current density, but it will reco
lapse in a ‘‘big crunch’’ otherwise.

D. The cosmological constant

The simplified big bang model just described is inaccur
for the very early history of the universe, when the press
of radiation was important. Moreover, recent observatio
seem to indicate that it is seriously inaccurate even in
present epoch. First of all, it seems that much of the ene
density is not accounted for by known forms of matter. S
more shocking, it seems that the expansion of the unive
may be accelerating rather than slowing down! One poss
ity is that the energy density and pressure are nonzero e
for the vacuum. For the vacuum to not pick out a preferr
647J. C. Baez and E. F. Bunn
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notion of ‘‘rest,’’ its stress-energy tensor must be prop
tional to the metric. In local inertial coordinates this mea
that the stress-energy tensor of the vacuum must be

T5S L 0 0 0

0 2L 0 0

0 0 2L 0

0 0 0 2L

D , ~14!

where L is called the ‘‘cosmological constant.’’ Thi
amounts to giving empty space an energy density equalL
and pressure equal to2L, so thatr13P for the vacuum is
22L. Here pressure effects dominate because there
more dimensions of space than of time! If we add this c
mological constant term to Eq.~10!, we get

3R̈

R
52

1

2
~r13P22L!, ~15!

wherer and P are the energy density and pressure due
matter. If we treat matter as we did before, this gives

3R̈

R
52

k

2R3 1L. ~16!

Thus, once the universe expands sufficiently, the cosmol
cal constant becomes more important than the energy de
of matter in determining the fate of the universe. IfL.0, a
roughly exponential expansion will then ensue. This see
to be happening in our universe now.35

E. Spatial curvature

We have emphasized that gravity is due not just to
curvature of space, but ofspace–time. In our verbal formu-
lation of Einstein’s equation, this shows up in the fact th
we consider particles moving forwards in time and stu
how their paths deviate in the space directions. Howe
Einstein’s equation also gives information about the cur
ture of space. To illustrate this, it is easiest to consider no
expanding universe but a static one.

When Einstein first tried to use general relativity to co
struct a model of the entire universe, he assumed that
universe must be static—although he is said to have l
described this as ‘‘his greatest blunder.’’ As we did in t
previous section, Einstein considered a universe contain
ordinary matter with densityr, no pressure, and a cosmolog
cal constantL. Such a universe can be static—the galax

Fig. 2. The size of the universe as a function of time in three scenarios:
~where it expands forever!, closed~where it recollapses!, and critical~where
it expands forever, but just barely!.
648 Am. J. Phys., Vol. 73, No. 7, July 2005
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can remain at rest with respect to each other—only if
right-hand side of Eq.~15! is zero. In such a universe, th
cosmological constant and the density must be caref
‘‘tuned’’ so that r52L. It is tempting to conclude tha
space–time in this model is just the good old flat Minkows
space–time of special relativity. In other words, one mig
guess that there are no gravitational effects at all. After
the right-hand side of Einstein’s equation was tuned to
zero. This would be a mistake, however. It is instructive
see why.

Remember that Eq.~3! contains all the information in Ein-
stein’s equation only if we consider all possible small ba
In all of the cosmological applications so far, we have a
plied the equation only to balls whose centers were at
with respect to the local matter. It turns out that only for su
balls is the right-hand side of Eq.~3! zero in the Einstein
static universe.

To see this, consider a small ball of test particles, initia
at rest relative to each other, that is moving with respec
the matter in the universe. In the local rest frame of suc
ball, the right-hand side of Eq.~3! is nonzero. For one thing
the pressure due to the matter no longer vanishes. Reme
that pressure is the flux of momentum. In the frame of o
moving sphere, matter is flowing by. Also, the energy dens
goes up, both because the matter has kinetic energy in
frame and because of Lorentz contraction. The end resul
the reader can verify, is that the right-hand side of Eq.~3! is
negative for such a moving sphere. In short, although a
tionary ball of test particles remains unchanged in the E
stein static universe, our moving ball shrinks!

This has a nice geometric interpretation: the geometry
this model has spatial curvature. As we noted in Sec. II, o
positively curved surface such as a sphere, initially para
lines converge toward one another. The same thing happ
in the three-dimensional space of the Einstein static unive
In fact, the geometry of space in this model is that of
three-sphere. Figure 3 illustrates what happens.

One dimension is suppressed in this figure, so the tw
dimensional spherical surface shown represents the th
dimensional universe. The small shaded circle on the sur
represents our tiny ball of test particles, which starts at
equator and moves north. The sides of the sphere appr
each other along the dashed geodesics, so the sphere sh
in the transverse direction, although its diameter in the dir
tion of motion does not change.

As an exercise, readers who want to test their understa
ing can fill in the mathematical details in this picture a
determine the radius of the Einstein static universe in te
of the density. Here are step-by-step instructions:

d Imagine an observer moving at speedv through a cloud of
stationary particles of densityr. Use special relativity to
determine the energy density and pressure in the observ
rest frame. Assume for simplicity that the observer is mo
ing fairly slowly, and thus keep only the lowest-order no
vanishing term in a power series inv.

d Apply Eq. ~3! to a sphere in this frame, including the co
tribution due to the cosmological constant~which is the
same in all reference frames!. You should find that the
volume of the sphere decreases withV̈/V}2rv2 to lead-
ing order inv.

d Suppose that space in this universe has the geometry
large three-sphere of radiusRU . Show that the radii in the
directions transverse to the motion start to shrink at a r

en
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given by (R̈/R)u t5052v2/RU
2 . ~If, like most people, you

are better at visualizing two-spheres than three-spheres
this step by considering a small circle moving on a tw
sphere, as shown above, rather than a small sphere mo
on a three-sphere. The result is the same.!

d Since our little sphere is shrinking in two dimensions,
volume changes at a rateV̈/V52R̈/R. Use Einstein’s
equation to relate the radiusRU of the universe to the
densityr.

The final answer isRU5A2/r, as you can find in standar
textbooks.

Spatial curvature like this shows up in the expanding c
mological models described earlier in this section as well
principle, the curvature radius can be found from our form
lation of Einstein’s equation by similar reasoning in the
expanding models. However, such a calculation is extrem
messy. Here the apparatus of tensor calculus comes to
rescue.16,17
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APPENDIX A: THE MATHEMATICAL DETAILS

To see why Eq.~3! is equivalent to the usual formulatio
of Einstein’s equation, we need a bit of tensor calculus.
particular, we need to understand the Riemann curvature
sor and the geodesic deviation equation. For a detailed
planation of these, the reader must turn to some of the t
in the bibliography.16,17,21–23Here we briefly sketch the mai
ideas.

When space–time is curved, the result of parallel transp
depends on the path taken. To quantify this notion, pick t
vectorsu and v at a point p in space–time. In the limit
where e→0, we can approximately speak of a ‘‘parallel
gram’’ with sideseu andev. Take another vectorw at p and
parallel transport it first alongev and then alongeu to the
opposite corner of this parallelogram. The result is some v
tor w1 . Alternatively, parallel transportw first alongeu and
then alongev. The result is a slightly different vector,w2 as
shown in Fig. 4. The limit

Fig. 3. The motion of a ball of test particles in a spherical universe.
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lim
e→0

w22w1

e2 5R~u,v !w ~A1!

is well-defined, and it measures the curvature of space–t
at the pointp. In local coordinates we can write it as

R~u,v !w5Rbgd
a ubvgwd, ~A2!

where as usual we sum over repeated indices. The qua
Rbgd

a is called the ‘‘Riemann curvature tensor.’’
We can use this tensor to compute the relative accelera

of nearby particles in free fall if they are initially at res
relative to one another. Consider two freely falling particl
at nearby pointsp andq. Let v be the velocity of the particle
at p, and leteu be the vector fromp to q. Since the two
particles start out at rest relative to one other, the velocity
the particle atq is obtained by parallel transportingv along
eu.

Now let us wait a short while. Both particles trace o
geodesics as time passes, and at timee they will be at new
points, sayp8 andq8. The pointp8 is displaced fromp by
an amountev, so we get a little parallelogram, exactly as
the definition of the Riemann curvature as shown in Fig.

Next let us compute the new relative velocity of the tw
particles. To compare vectors we must carry one to ano
using parallel transport. Letv1 be the vector we get by taking
the velocity vector of the particle atp8 and parallel transport-
ing it to q8 along the top edge of our parallelogram. Letv2

be the velocity of the particle atq8. The differencev22v1 is
the new relative velocity. Figure 6 shows a picture of t
whole situation. The vectorv is depicted as shorter thanev
for purely artistic reasons.

It follows that over this passage of time, the average re
tive acceleration of the two particles isa5(v22v1)/e. By
Eq. ~A1!,

lim
e→0

v22v1

e2 5R~u,v !v, ~A3!

Fig. 4. Parallel transporting a vectorw from one corner of a parallelogram
to the opposite corner in two ways: up and then across, givingw1 , or across
and then up, givingw2 .

Fig. 5. Freely falling particles atp andq trace out geodesics taking them t
p8 andq8.
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lim
e→0

a

e
5R~u,v !v. ~A4!

This is called the ‘‘geodesic deviation equation.’’ From t
definition of the Riemann curvature it is easy to see t
R(u,v)w52R(v,u)w, so we can also write this equation a

lim
e→0

aa

e
52Rbgd

a vbugvd. ~A5!

Using this equation we can work out the second time
rivative of the volumeV(t) of a small ball of test particles
that start out at rest relative to each other. As we mentio
earlier, to second order in time the ball changes to an e
soid. Furthermore, since the ball starts out at rest, the p
cipal axes of this ellipsoid don’t rotate initially. We ca
therefore adopt local inertial coordinates in which, to seco
order in t, the center of the ball is at rest and the thr
principal axes of the ellipsoid are aligned with the three s
tial coordinates. Letr j (t) represent the radius of thej th axis
of the ellipsoid as a function of time. If the ball’s initia
radius ise, then

r j~ t !5e1 1
2 aj t21O~ t3!,

or in other words,

lim
t→0

r̈ j

r j 5 lim
t→0

aj

e
.

Here the accelerationaj is given by Eq.~A5!, with u being a
vector of lengthe in the j th coordinate direction andv being
the velocity of the ball, which is a unit vector in the tim
direction. In other words,

lim
t→0

r̈ j~ t !

r j~ t !
52Rb j d

j vbvd52Rt jt
j .

No sum overj is implied in the above expression.
Because the volume of our ball is proportional to the pro

uct of the radii,V̈/V→( j r̈
j /r j as t→0,

lim
V→0

V̈

V
U

t50

52Rtat
a , ~A6!

where now a sum overa is implied. The sum overa can
range over all four coordinates, not just the three spa
ones, since the symmetries of the Riemann tensor dem
that Rttt

t 50.
The right-hand side is minus the time-time component

the ‘‘Ricci tensor’’

Fig. 6. Parallel transporting the velocity vector of the particle atp8 to the
point q8 gives the vectorv1 . The velocity vector of the particle atq8 is v2 .
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Rbd5Rbad
a . ~A7!

That is,

lim
V→0

V̈

V
U

t50

52Rtt ~A8!

in local inertial coordinates where the ball starts out at re
In short, the Ricci tensor says how our ball of freely fa

ing test particles starts changing in volume. The Ricci ten
only captures some of the information in the Riemann c
vature tensor. The rest is captured by something called
‘‘Weyl tensor,’’ which says how any such ball starts changi
in shape. The Weyl tensor describes tidal forces, gravitatio
waves and the like.

Now, Einstein’s equation in its usual form says

Gab5Tab . ~A9!

Here the right side is the stress-energy tensor, while the
side, the ‘‘Einstein tensor,’’ is just an abbreviation for a qua
tity constructed from the Ricci tensor:

Gab5Rab2 1
2 gabRg

g . ~A10!

Thus Einstein’s equation really says

Rab2 1
2 gabRg

g5Tab . ~A11!

This implies

Ra
a2 1

2 ga
aRg

g5Ta
a , ~A12!

but ga
a54, so

2Ra
a5Ta

a . ~A13!

Plugging this into Eq.~A11!, we get

Rab5Tab2 1
2 gabTg

g . ~A14!

This is an equivalent version of Einstein’s equation, but w
the roles ofR and T switched! The good thing about thi
version is that it gives a formula for the Ricci tensor, whi
has a simple geometrical meaning.

Equation~A14! will be true if any one component holds i
all local inertial coordinate systems. This is a bit like th
observation that all of Maxwell’s equations are contained
Gauss’s law and¹•B50. Of course, this is only true if we
know how the fields transform under change of coordina
Here we assume that the transformation laws are kno
Given this, Einstein’s equation is equivalent to the fact th

Rtt5Ttt2
1
2 gttTg

g ~A15!

in every local inertial coordinate system about every po
In such coordinates we have

g5S 21 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D ~A16!

so gtt521 and

Tg
g52Ttt1Txx1Tyy1Tzz. ~A17!

Equation~A15! thus says that

Rtt5
1
2 ~Ttt1Txx1Tyy1Tzz!. ~A18!
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By Eq. ~A8!, this is equivalent to

lim
V→0

V̈

V
U

t50

52
1

2
~Ttt1Txx1Tyy1Tzz!. ~A19!

As promised, this is the simple, tensor-calculus-free form
lation of Einstein’s equation.

APPENDIX B: REFERENCES

We provide an annotated bibliography of material on re
tivity that we have found particularly helpful for students.

1. WEBSITES

There is a lot of material on general relativity availab
online. Most of it can be found starting from here:

1. Relativity on the World Wide Web, C. Hillman, http://math.ucr.edu
home/baez/relativity.html
The beginner will especially enjoy the many gorgeo
websites aimed at helping one visualize relativity. The
are also books available for free online, such as this:

2. Lecture Notes on General Relativity, S. M. Carroll, http://
pancake.uchicago.edu/;carroll/notes/
The free online journalLiving Reviews in Relativityis an
excellent way to learn more about many aspects of r
tivity. One can access it at:

3. Living Reviews in Relativity, http://www.livingreviews.org
Part of learning relativity is working one’s way throug
certain classic confusions. The most common are d
with in the ‘‘Relativity and Cosmology’’ section of this
site:

4. Frequently Asked Questions in Physics, edited by D. Koks, http://
math.ucr.edu/home/baez/physics/

2. NONTECHNICAL BOOKS

Before diving into the details of general relativity, it
good to get oriented by reading some less technical bo
Here are four excellent ones written by leading experts
the subject:

5. General Relativity from A to B, R. Geroch~University of Chicago
Press, Chicago, 1981!.

6. Black Holes and Time Warps: Einstein’s Outrageous Legacy, K. S.
Thorne~Norton, New York, 1995!.

7. Gravity from the Ground Up: An Introductory Guide to Gravity
and General Relativity, B. F. Schutz~Cambridge U. P., Cambridge
2003!.

8. Space, Time, and Gravity: the Theory of the Big Bang and Black
Holes, R. M. Wald ~University of Chicago Press, Chicago, 1992!.

3. SPECIAL RELATIVITY

Before delving into general relativity in a more technic
way, one must get up to speed on special relativity. Here
two excellent texts for this:

9. Introduction to Special Relativity, W. Rindler ~Oxford U. P., Oxford,
1991!.

10. Space–time Physics: Introduction to Special Relativity, E. F. Taylor
and J. A. Wheeler~Freeman, New York, 1992!.

4. INTRODUCTORY TEXTS

When one is ready to tackle the details of general rela
ity, it is probably good to start with one of these textbook
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11. Introducing Einstein’s Relativity, R. A. D’Inverno~Oxford U. P., Ox-
ford, 1992!.

12. Gravity: An Introduction to Einstein’s General Relativity , J. B.
Hartle ~Addison-Wesley, New York, 2002!.

13. Introduction to General Relativity, L. Hughston and K. P. Tod~Cam-
bridge U. P., Cambridge, 1991!.

14. A First Course in General Relativity, B. F. Schutz~Cambridge U. P.,
Cambridge, 1985!.

15. General Relativity: An Introduction to the Theory of the Gravita-
tional Field, H. Stephani~Cambridge U. P., Cambridge, 1990!.

5. MORE COMPREHENSIVE TEXTS

To become an expert on general relativity, one really m
tackle these classic texts:

16. Gravitation, C. W. Misner, K. S. Thorne, and J. A. Wheeler~Freeman,
New York, 1973!.

17. General Relativity, R. M. Wald~University of Chicago Press, Chicago
1984!.
Along with these textbooks, you’ll want to do lots o
problems! This book is a useful supplement:

18. Problem Book in Relativity and Gravitation, A. Lightman and R. H.
Price ~Princeton U. P., Princeton, 1975!.

6. EXPERIMENTAL TESTS

The experimental support for general relativity up to t
early 1990s is summarized in:

19. Theory and Experiment in Gravitational Physics, Revised ed., C. M.
Will ~Cambridge U. P., Cambridge, 1993!.
A more up-to-date treatment of the subject can be fou
in:

20. ‘‘The Confrontation between General Relativity and Experiment,’’
M. Will, Living Reviews in Relativity 4 ~2001!. Available online at
http://www.livingreviews.org/lrr-2001-4

7. DIFFERENTIAL GEOMETRY

The serious student of general relativity will experience
constant need to learn more tensor calculus—or in mod
terminology, ‘‘differential geometry.’’ Some of this can b
found in the texts listed above, but it is also good to re
mathematics texts. Here are a few:

21. Gauge Fields, Knots and Gravity, J. C. Baez and J. P. Muniain~World
Scientific, Singapore, 1994!.

22. An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry, W. M. Boothby~Academic, New York, 1986!.

23. Semi-Riemannian Geometry with Applications to Relativity, B.
O’Neill ~Academic, New York, 1983!.

8. SPECIFIC TOPICS

The references above are about general relativity a
whole. Here are some suggested starting points for som
the particular topics touched on in this article.

a. The meaning of Einstein’s equation

Feynman gives a quite different approach to this in:

24. The Feynman Lectures on Gravitation, R. P. Feynmanet al. ~West-
view, Boulder, CO, 2002!.
His approach focuses on the curvature of space ra
than the curvature of space–time.
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b. The Raychaudhuri equation

This equation, which is closely related to our formulati
of Einstein’s equation, is treated in some standard textbo
including the one by Wald mentioned above. A detailed d
cussion can be found in

25. Gravitation and Inertia , I. Ciufolini and J. A. Wheeler~Princeton U.
P., Princeton, 1995!.

c. Gravitational waves

Here are two nontechnical descriptions of the binary p
sar work for which Hulse and Taylor won the Nobel prize

27. ‘‘The Binary Pulsar: Gravity Waves Exist,’’ C. M. Will, Mercury,
Nov-Dec 1987, pp. 162–174.

28. ‘‘Gravitational Waves from an Orbiting Pulsar,’’ J. M. Weisberg, J.
H. Taylor, and L. A. Fowler, Sci. Am., Oct 1981, pp. 74–82.
Here is a review article on the ongoing efforts to directly detect
gravitational waves:

29. ‘‘Detection of Gravitational Waves,’’ J. Lu, D. G. Blair, and C. Zha
Rep. Prog. Phys.,63, 1317–1427~2000!.
Some present and future experiments to detect grav
tional radiation are described here:

30. LIGO Laboratory Home Page, http://www.ligo.caltech.edu/
31. The Virgo Project, http://www.virgo.infn.it/
32. Laser Interferometer Space Antenna, http://lisa.jpl.nasa.gov/

d. Black holes

Astrophysical evidence that black holes exist is summ
rized in:
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33. ‘‘Evidence for Black Holes,’’ M. C. Begelman, Science300, 1898–
1903 ~2003!.
A less technical discussion of the particular case of
supermassive black hole at the center of our Milky W
Galaxy can be found here:

34. The Black Hole at the Center of Our Galaxy, F. Melia ~Princeton U.
P., Princeton, 2003!.

e. Cosmology

There are lots of good popular books on cosmology. Si
the subject is changing rapidly, pick one that is up to date
the time of this writing, we recommend:

35. The Extravagant Universe: Exploding Stars, Dark Energy, and the
Accelerating Cosmos, R. P. Kirshner ~Princeton U. P., Princeton
2002!.
A good online source of cosmological information is:

36. Ned Wright’s Cosmology Tutorial, http://www.astro.ucla.edu/
;wright/cosmolog.htm
The following cosmology textbooks are arranged in
creasing order of technical difficulty:

37. Cosmology: The Science of the Universe, 2nd ed., E. Harrison~Cam-
bridge U. P., Cambridge, 2000!.

38. Cosmology: a First Course, M. Lachièze-Rey~Cambridge U. P., Cam-
bridge, 1995!.

39. Principles of Physical Cosmology, P. J. E. Peebles~Princeton U. P.,
Princeton, 1993!.

40. The Early Universe, E. W. Kolb and M. S. Turner~Addison–Wesley,
New York, 1990!.

41. The Large-Scale Structure of Space–time, S. W. Hawking and G. F.
R. Ellis ~Cambridge U. P., Cambridge, 1975!.
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