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This is a brief introduction to general relativity, designed for both students and teachers of the
subject. While there are many excellent expositions of general relativity, few adequately explain the
geometrical meaning of the basic equation of the theory: Einstein’s equation. Here we give a simple
formulation of this equation in terms of the motion of freely falling test particles. We also sketch
some of the consequences of this formulation and explain how it is equivalent to the usual one in
terms of tensors. Finally, we include an annotated bibliography of books, articles, and websites
suitable for the student of relativity. @005 American Association of Physics Teachers.
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[. INTRODUCTION But there are some big differences between special and gen-
. ) . eral relativity, which can cause immense confusion if ne-
General relativity explains gravity as the curvature of 5jocted.
space—time. It's all about geometry. The basic equation of | ghecial relativity, we cannot talk aboabsoluteveloci-
general relativity is called Einstein’s equation. In units Whereties but onlyrelative velocities. For example, we cannot
c=8nG=1, it says sensibly ask if a particle is at rest, only whether it is at rest
Gap=Tup- (1)  relative to another particle. The reason is that in this theory,
It looks simple. but what d it 5 Unfortunatelv. th velocities are described as vectors in four-dimensional
O0KS Simple, but what does It mean: Lniortunately, the, pace—time. Switching to a different inertial coordinate sys-

beautiful geometrical meaning of this equation is a bit hardg ", change which way these vectors point relative to our
to find in most treatments of relativity. There are many nice

popularizations that explain the philosophy behind reIativitycoordmate axes, but not whether two of them point the same
and the idea of curved space—time, but most of them donf@ - .
get around to explaining Einstein’s equation and showin In 9?”9“3' relativity, we cannot even talk abcmtan\(e

how to work out its consequences. There are also more tech€10Cities, except for two particles at the same point of
nical introductions which explain Einstein’s equation in SPace—time—that is, at the same place at the same instant.

detail—but here the geometry is often hidden under piles of N€ reason is that in general relativity, we take very seriously
tensor calculus. the notion that a vector is a little arrow sitting at a particular
This is a pity, because there is an easy way to express tHiNt in space—time. To compare vectors at different points
whole content of Einstein’s equation in plain English. After aof space—time, we must carry one over to the other. The
suitable prelude, one can summarize it in a single sentenc@rocess of carrying a vector along a path without turning or
One needs a lot of mathematics to derive all the consestretching it is called “parallel transport.” When space—time
quences of this sentence, but we can work saeof its  is curved, the result of parallel transport from one point to
consequences quite easily. another depends on the path taken, which is a direct conse-
In what follows, we start by outlining some differences quence of a curved space—time. Thus it is ambiguous to ask
between special and general relativity. Next we give a verbalvhether two particles have the same velocity vector unless
formulation of Einstein’s equation. Then we derive a few ofthey are at the same point of space—time.
its consequences concerning tidal forces, gravitational It is hard to imagine the curvature of four-dimensional
waves, gravitational collapse, and the big bang cosmologypace—time, but it is easy to see it on a two-dimensional
In an appendix we explain why our verbal formulation is surface, like a sphere. The sphere fits nicely in three-
equivalent to the usual one in terms of tensors. This article igimensional flat Euclidean space, so we can visualize vectors
mainly aimed at those who teach relativity, but except for arn the sphere as “tangent vectors.” If we parallel transport a
appendix, we have tried to make it accessible to students. Wengent vector from the north pole to the equator by going
conclude with a bibliography of sources to help teach theaight down a meridian, we get a different result than if we
subject. go down another meridian and then along the equator as
shown in Fig. 1.
Il. PRELIMINARIES Becau_se of the anal_ogy to vectors on the surface of a
sphere, in general relativity vectors are usually called “tan-

Before stating Einstein’s equation, we need a little prepagent vectors.” However, it is important not to take this anal-
ration. We assume the reader is somewhat familiar with speagy too seriously. Our curved space—time need not be em-
cial relativity—otherwise general relativity will be too hard. bedded in some higher-dimensional flat space—time for us to

understand its curvature, or the concept of a tangent vector.
aE|ectronic mail: baez@math.ucr.edu The mathematics of tensor calculus is designed to let us
bElectronic mail: ebunn@richmond.edu handle these concepts “intrinsically”—i.e., working solely
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The distinction is crucial. If you toss a ball, it follows a
parabolic path. This is far from being a geodesicspace
Space is curved by the Earth’s gravitational field, but it is
certainly not so curved as all that! The point is that while the
ball moves a short distance in space, it moves an enormous
distance intime, because one second equals about 300 000
km in units wherec= 1. Thus, a slight amount of space—time
curvature can have a noticeable effect.

Ill. EINSTEIN'S EQUATION

To state Einstein’s equation in simple English, we need to
consider a round ball of test particles that are all initially at
rest relative to each other. As we have seen, this is a sensible
notion only in the limit where the ball is very small. If we
start with such a ball of particles, it will, to second order in
time, become an ellipsoid as time passes. This should not be
too surprising, because any linear transformation applied to a

Fig. 1. Two ways to parallel transport a tangent vector from the north polebaII _glves an eII|p_50|d, and a”Y transformation can be aP'

to a point on the equator of a sphere. proximated by a linear one to first order. Here we get a bit
more: the relative velocity of the particles starts out being
zero, so to first order in time the ball does not change shape

within the four-dimensional space—time in which we find at all: the change is a second-order effect.
ourselves. This is one reason tensor calculus is so importan LetV(t) be the volume of the ball after a proper tibas

in general relativity. e‘apsed, as measured by the particle at the center of the ball.

In special relativity we can think of an inertial coordinate Then Einstein’s equation says:
system, or “inertial frame,” as being defined by a field of flow of t-momentum int direction+
clocks, all at rest relative to each other. In general relativityy 1| flow of x-momentum inx direction-
t_h|s makes no sense, since we can c_)nIy unambiguously d§/= =72\ flow of y-momentum iny direction+
fine the relative velocity of two clocks if they are at the same ™ 't=0 . o
location. Thus the concept of inertial frame, so important in flow of z-momentum inz direction
special relativity, ishannedfrom general relativity! 2)

If we are willing to put up with limited accuracy, we can where these flows are measured at the center of the ball at
still talk about the relative velocity of two particles in the time zero, using local inertial coordinates. These flows are
limit where they are very close, since curvature effects willcaused by all particles and fields. They form the diagonal
then be very small. In this approximate sense, we can talsomponents of a A4 matrix T called the “stress-energy
about a “local” inertial coordinate system. However, we tensor.” The components,,; of this matrix say how much
must remember that this notion makes perfect sense only ijomentum in thex direction is flowing in theg direction
the limit where the region of space—time covered by theprough a given point of space—time, whered=t,x,y,z.

coordinate system goes to zero in size. The flow oft-momentum in the-direction is just the energy

Einstein’s equation can be expressed as a statement abodJénSit often denote@. The flow of x-momentum in the
the relative acceleration of very close test particles in free Y, )

fall. Let us clarify these terms a bit. A “test particle” is an x-dlreptlpn is the “pressure in the dlre_ctlon" _denotedPX,

idealized point particle with energy and momentum so smalfnd similarly fory andz. It takes a while to figure out why

that its effects on space—time curvature are negligible. A paPressure is really the flow of momentum, but it is eminently

ticle is said to be in “free fall”’ when its motion is affected by Worth doing. Most texts explain this fact by considering the

no forces except gravity. In general relativity, a test particleexamme of an ideal gas. _ _ N _

in free fall will trace out a “geodesic.” This means that its [N any event, we may summarize Einstein's equation as

velocity vector is parallel transported along the curve jtfollows:

traces out in space—time. A geodesic is the closest thing there Vi

is to a straight line in curved space—time. —
This is easier to visualize in two-dimensional space rather \ t=0

than four-dimensional space—time. A person walking on ap,q o0 ation says that positive energy density and positive
sphere “following their nose” will trace out a geodesic—that ressure curve space—time in a way that makes a freely fall-

is, a great circle. Suppose two people stand side-by-side . : . .
the equator and start walking north, both following geode—IIHg ball of point particles tend to shrink. Sinée=mc” and

sics. Though they start out walking parallel to each other, thé/€ € workin in ufnits where=1, ordirr:ary mass density
distance between them will gradually start to shrink, untilCOUNts as a form of energy density. Thus a massive object

finally they bump into each other at the north pole. If theyWi” make a swarm of freely falling particles at rest around it

didn’t understand the curved geometry of the sphere, theyt@'t t0 shrink. In shorgravity attracts .

might think a “force” was pulling them together. We promised to state Einstein's equation in plain English,
In general relativity gravity is not really a “force,” but just PUt have not done so yet. Here it is:

a manifestation of the curvature of space—time. Note it is not Given a small ball of freely falling test particles initially at

the curvature of space, but space-time that is involved. rest with respect to each other, the rate at which it begins to

1
== S(p+ PPy +P,). &)
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shrink is proportional to its volume times: the energy den-grains as test particles, these two effects cancel each other
sity at the center of the ball, plus the pressure in the when we calculate the second derivative of the ball’s vol-

direction at that point, plus the pressure in théirection,  ume, leaving us WitMt:o:O- It is a fun exercise to check
plus the pressure in thedirection. this using Newton's theory of gravity!

~ One way to prove this is by using the Raychaudhuri equa: This stretcrlnng/fsquhasthlng O{ a bah” ,f)tf(;aln'][‘g coff“eigr?r:ns
tlonald?|scu55|ons of which can be %%und in the textbooks byr?ararl\r; Z’LZEE;SO a\avofrl\efegxpa(ran&z isltf?e ?erﬁSZn cysforethe
Wald™" and by Ciufolini and Wheelér cited in the bibliog- ' . LN .
fraphyf._ But an .ellementary pLoof g:anh alzo be dg'iven startin%fhe;”wf,% %3 f}:’ée;crgii;gozglep?:lrleg;“?r?eamngoanua?’hed in the
rom first principles, as we show in the Appendix. Vo ! '

The rezgder \l/)vho already knows somep pgeneral relativity_Cravitational waves are another example of how space-—
may be _T,omg\{vhart] .skfepticall that e'lal\lfof EiITSté'm,s equation i plrr]:ji g?sntrt:gt (\iklllf]\é?ld an\;/errl]elr;l vt;le0 t\)/jzct::lfluvwég?eesn(eiials erﬁl(?stw(;tuyt
encapsulated in this formulation. After all, Einstein’s equa-P : _ ,
tion in its usual tensorial form is really a bunch of e.quati0ns:g]f’||ci’$"’hst O_I_ﬁigaigef; trlrfr;gmcu:t/)?/?gLesV!Pa{?t?n%r?r%?égﬁri‘gtrlﬁuslg?ed
beletans gt s o) et s s (Lt 0 L0 L S L T
tion. It does, though, as long as we include one bit of ﬁnethese ripples of curvature passes by, our small ball of initially

print: to get the full content of the Einstein equation from Eq. (€St Particles will be stretched in one transverse direction
(3), we must consider small balls withll possibleinitial while being squashed in the other transverse direction. From

velocities—i.e., balls that begin at rest in all possible IocalWhat we have alread¥ said, these effects must precisely can-
inertial reference frames. cel when we comput¥|;—.

Before we begin, it is worth noting an even simp|er for- Hulse and Taylor won the Nobel prize in 1993 for careful
mulation of Einstein’s equation that applies when the presobservations of a binary neutron star which is slowly spiral-
sure happens to be the same in every direction: ing down, just as general relativity predicts it should, as it

. . N loses energy by emitting gravitational radiatidrf® Gravita-

Given a small ball of freely falling test particles initially at tional waves have not beefirectly observed. but there are a
rest with respect to each other, the rate at which it begins t y :

shrink is proportional to its volume times: the energy den- umber of projects under way 10 detect thétre’? For ex-
Prop : 9y mple, the LIGO project will bounce a laser between hang-

frlgt?oti?s center of the ball plus three times the pressure %g mirrors in an L-shaped detector, to see how one leg of the
' detector is stretched while the other is squashed. Both legs

This version is only sufficient for “isotropic” situations: that are 4 km long, and the detector is designed to be sensitive to
is, those in which all directions look the same in some localy 10" *® m change in length of the arms.

inertial reference frame. But, since the simplest models of
cosmology treat the universe as isotropic—at least approxi-
mately, on large enough distance scales—this is all we shall
need to derive an equation describing the big bang! B. Gravitational collapse

IV. SOME CONSEQUENCES One remarkable feature of this equation is the pressure
term, which says that not only energy density but also pres-
The formulation of Einstein's equation we have given issure causes gravitational attraction. This may seem to violate
certainly not the best for most applications of general relaour intuition that pressure makes matter want to expand!
tivity. For example, in 1915 Einstein used general relativityHere, however, we are talking abagravitational effects of
to correctly compute the anomalous precession of the orbit gbressure, which are undetectably small in everyday circum-
Mercury and also the deflection of starlight by the Sun’sstances. To see this, let’s restore the factors afidG. Also,
gravitational field. Both these calculations would be verylet's remember that in ordinary circumstances most of the
hard starting from Eq(3); they really call for the full appa- energy is in the form of rest energy, so we can write the

ratus of_tensor _caICL_JIus. However, we can ea_lsily use OUgnergy densityp as p,,c2, wherep,, is the ordinary mass
formulation of Einstein’s equation to get a qualitative—anddensity:

sometimes even guantitative—understandingamheconse-

quences of general relativity. We have already seen that it V 47G 5

explains how gravity attracts. We sketch a few other conse- ;| =~ —ga (PnC +Px+Py+Py). (4)
qguences below. t=0

A. Tidal forces, gravitational waves On the human scale all of the terms on the right are small,

) ~ sinceG is very small anct is very big. (Gravity is a weak

Let V(t) be the volume of a small ball of test particles in forcel) Furthermore, the pressure terms are much smaller
free fall that are initially at rest relative to each other. In thetnan the mass density term, since the former has an ektra
vacuum there is no energy density or pressureV&a, There are a number of important situations in whijgh
=0, but the curvature of space—time can still distort the balldoes not dominate ove?. For example, in a neutron star,
For example, suppose you drop a small ball of instant coffeevhich is held up by the degeneracy pressure of the neutro-
when making coffee in the morning. The grains of coffeenium it consists of, pressure and energy density contribute
closer to the earth accelerate toward it a bit more, causing theomparably to the right-hand side of Einstein’s equation.
ball to start stretching in the vertical direction. However, asMoreover, above a mass of about two solar masses a nonro-
the grains all accelerate toward the center of the earth, theting neutron star will inevitably collapse to form a black
ball also starts being squashed in the two horizontal direchole, thanks in part to the gravitational attraction caused by
tions. Einstein’s equation says that if we treat the coffeepressure.
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C. The big bang 3R 1
=| =—5(p+3P). ©)

Starting from our formulation of Einstein’s equation, we R,

can derive some basic facts about the big bang cosmology. . _ . :
Let us assume the universe is not only expanding but alsp e derived this equation for a very small ball, but in fact
homogeneous and isotropic. The expansion of the universe |5 aPPlies to a ball of any size. This is because, in a homo-
vouched for by the redshifts of distant galaxies. The othef/€nN€OUS expanding universe, the balls of all radii must be
assumptions also seem to be approximately correct, at leagkpanding at the same fractional rate. In other woRIR is
when we average over small-scale inhomogeneities such asdependent of the radiuR, although it can depend on time.
stars and galaxies. For simplicity, we will imagine the uni- Also, there is nothing special in this equation about the mo-
verse is homogeneous and isotropic even on small scales.mentt=0, so the equation must apply at all times. In sum-

An observer at any point in such a universe would see alinary, therefore, the basic equation describing the big bang
objects receding from her. Suppose that, at some tim@, ~ cosmology®*'is
she identifies a small baB of test particles centered on her. ..
Suppose this ball expands with the universe, remaining E: _ 1( +3p

; > : o . p ), (10

spherical as time passes because the universe is isotropic. Let R 2
R(t) stand for the radius of this ball as a function of time.
The Einstein equation will give us an equation of motion for
R(t). In other words, it will say how the expansion rate of
the universe changes with time.

where the density and pressur® can depend on time but

not on position. Here we can imagifeto be the separation

between any two “galaxies.”

X . To go further, we must make more assumptions about the
Iit IS temptr']f.‘g to apply Eq(:ﬁ) to the ballllB]; but yvle m‘rj]St nature of the matter filling the universe. One simple model is

take care. This equation applies to a ball of particles that arg njverse filled with pressureless matter. Until recently, this

initially at rest relative to one another—that is, one whosg 55 thought to be an accurate model of our universe. Setting
radius is not changing at=0. However, the balB is ex-  p_g \we obtain

panding at=0. Thus, to apply our formulation of Einstein’s .
equation, we must introduce a second small ball of test par- 3R p
ticles that are at rest relative to each othet=a0. R 2 (12)

Let us call this second baB’, and call its radius as a
function of timer (t). Since the particles in this ball begin at

rest relative to one another, we have
r(0)=0. (5)

If the energy density of the universe is mainly due to the
mass in galaxies, “conservation of galaxies” implies that
pR3=k for some constark. This gives

3R k

To keep things simple, let us also assume that=ad both R- R (12
balls have the exact same size:

r(0)=R(0). 6

Equation(3) applies to the balB’, since the particles in R=— LZ (13)

this ball are initially at rest relative to each other. Since the 6R
volume of this ball is proportional to®, and using Eq(5),  Amusingly, this is the same as the equation of motion for a
the left-hand side of E¢(3) becomes simply particle in an attractive R? force field. In other words, the

Vi equation governing this simplified cosmology is the same as

3

7) the Newtonian equation for what happens when you throw a
r
t=0

t=0 ball vertically upwards from the earth! This is a nice example
v9f the unity of physics. Since “whatever goes up must come
down—unless it exceeds escape velocity,” the solutions of
this equation look roughly like those shown in Fig. 2.

In other words, the universe started out with a big bang! It

\Y

Since we are assuming the universe is isotropic, we kno
that the various components of pressure are edqigk P,
=P,=P. Einstein’s equation, Eq3), thus says that

3 1 will expand forever if its current rate of expansion is suffi-
s =— E(p+3P). 8 ciently high compared to its current density, but it will recol-
t=0 lapse in a “big crunch” otherwise.

We would much prefer to rewrite this expression in terms of
R rather tharr. Fortunately, we can do this. A& 0, the two
spheres have the same radiv®)=R(0). Furthermore, the
second derivatives are the sani¢0)=R(0). This follows The simplified big bang model ju_st described is inaccurate
from the equivalence principle, which says that, at any giver{O" the very early history of the universe, when the pressure
location, particles in free fall do not accelerate with respecf! radiation was important. Moreover, recent observations

to each other. At the moment=0, each test particle on the seem to indicate that it is seriously inaccurate even in the
surface of the balB is right next to a corresponding test present epoch. First of all, it seems that much of the energy

C . . . density is not accounted for by known forms of matter. Still
particle inB’. Since they are not accelerating with respect to y y

o . ~“more shocking, it seems that the expansion of the universe
each other, the observer at the origin must see both parucle;ﬁay be accelerating rather than slowing down! One possibil-

accelerating in the same way, 8(0)=R(0). It follows that ity is that the energy density and pressure are nonzero even
we can replace with R in the above equation, obtaining  for the vacuum. For the vacuum to not pick out a preferred

D. The cosmological constant

647 Am. J. Phys., Vol. 73, No. 7, July 2005 J. C. Baez and E. F. Bunn 647



open can remain at rest with respect to each other—only if the
right-hand side of Eq(15) is zero. In such a universe, the
cosmological constant and the density must be carefully
“tuned” so that p=2A. It is tempting to conclude that
space—time in this model is just the good old flat Minkowski
space—time of special relativity. In other words, one might
guess that there are no gravitational effects at all. After all,
the right-hand side of Einstein’s equation was tuned to be
zero. This would be a mistake, however. It is instructive to
see why.
P Remember that Eq3) contains all the information in Ein-

stein’s equation only if we consider all possible small balls.
Fig. 2. '!'he size of the universe asafun_ction of time inthreg _scenarios: opeth all of the cosmological applications so far, we have ap-
_(where it expands forev_}arclosed(where it recollapsesand critical(where plied the equation only to balls whose centers were at rest
it expands forever, but just barely .

with respect to the local matter. It turns out that only for such
balls is the right-hand side of E¢3) zero in the Einstein

: ; static universe.
notion of “rest,” its stress-energy tensor must be propor- . . . -
tional to the metric. In local inertial coordinates this means, Igsﬁzlgg\sléi%n;’fg gtﬁg;altlhg?l:SOfmtg\S/itnpa&t/'ifrl]erséSm'é'g"%’o
that the stress-energy tensor of the vacuum must be : . ’ 9 P
the matter in the universe. In the local rest frame of such a

critical

closed

A O 0 0 ball, the right-hand side of Eq3) is nonzero. For one thing,

0 —-A 0 0 the pressure d.ue to the matter no longer vanishes. Remember
T= ’ (14)  that pressure is the flux of momentum. In the frame of our

0 0 —-A O moving sphere, matter is flowing by. Also, the energy density

0 0 0 —A goes up, both because the matter has kinetic energy in this

) . _ frame and because of Lorentz contraction. The end result, as
where A is called the “cosmological constant.” This the reader can verify, is that the right-hand side of @jis
amounts to giving empty space an energy density equal to negative for such a moving sphere. In short, although a sta-
and pressure equal to A, so thatp+ 3P for the vacuum is  tionary ball of test particles remains unchanged in the Ein-
—2A. Here pressure effects dominate because there aggein static universe, our moving ball shrinks!
more dimensions of space than of time! If we add this cos- This has a nice geometric interpretation: the geometry in

mological constant term to Eq10), we get this model has spatial curvature. As we noted in Sec. Il, on a
3R 1 positively curved surface such as a sphere, initially parallel
S Z(p+3P—2A) (15) lines converge toward one another. The same thing happens

R 2 ' in the three-dimensional space of the Einstein static universe.

n fact, the geometry of space in this model is that of a
hree-sphere. Figure 3 illustrates what happens.

One dimension is suppressed in this figure, so the two-
3R Kk dimensional spherical surface shown represents the three-
R- 2R +A. (16) dimensional universe. The small shaded circle on the surface

represents our tiny ball of test particles, which starts at the
Thus, once the universe expands sulfficiently, the cosmologiequator and moves north. The sides of the sphere approach
cal constant becomes more important than the energy densigach other along the dashed geodesics, so the sphere shrinks
of matter in determining the fate of the universeAI&>0, a  in the transverse direction, although its diameter in the direc-
roughly exponential expansion will then ensue. This seem§on of motion does not change.
to be happening in our universe ndw. As an exercise, readers who want to test their understand-
ing can fill in the mathematical details in this picture and
determine the radius of the Einstein static universe in terms
of the density. Here are step-by-step instructions:

We have emphasized that gravity is due not just to the
curvature of space, but apace-time In our verbal formu-
lation of Einstein’s equation, this shows up in the fact that
we consider particles moving forwards in time and study
h(.)W the’lr paths_ deviate n the_ space _dlrectlons. However, ing fairly slowly, and thus keep only the lowest-order non-
Einstein’s equation also gives information about the curva-

. o2 X ; vanishing term in a power series in
ture of space. To illustrate this, it is easiest to consider not an Apply Eq. (3) to a sphere in this frame, including the con-
expanding universe but a static one. ppYy =4. b ! g

When Einstein first tried to use general relativity to con- tribution due to the cosmological constamthich is the

struct a model of the entire universe, he assumed that the 53M¢ N all reference frampesyou ?hOUId f'ng that the
universe must be static—although he is said to have later volume of the sphere decreases Wt —pv® to lead-
described this as “his greatest blunder.” As we did in the ing order inv.

previous section, Einstein considered a universe containing Suppose that space in this universe has the geometry of a
ordinary matter with density, no pressure, and a cosmologi- large three-sphere of radil, . Show that the radii in the

cal constantA. Such a universe can be static—the galaxies directions transverse to the motion start to shrink at a rate

wherep and P are the energy density and pressure due t4
matter. If we treat matter as we did before, this gives

E. Spatial curvature

Imagine an observer moving at spaethrough a cloud of
stationary particles of density. Use special relativity to
determine the energy density and pressure in the observer’s
rest frame. Assume for simplicity that the observer is mov-
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" "2

P' eu
Fig. 4. Parallel transporting a vectar from one corner of a parallelogram
to the opposite corner in two ways: up and then across, giwingor across
and then up, givingv, .

Fig. 3. The motion of a ball of test particles in a spherical universe. Wo—W
. 2 1
lim———=R(u,v)w (A1)
e—0 €

is well-defined, and it measures the curvature of space—time

iven by R/R)|,—o=—0v?R%. (If, like most people, you
d Y R/R)i-o v/Ry - ( beop'e. ¥ & the pointp. In local coordinates we can write it as

are better at visualizing two-spheres than three-spheres,

this step by considering a small circle moving on a two- R(u,v)W=R,’gy§u3u "wo, (A2)
sphere, as shown above, rather than a small sphere movmgn o )
on a three-sphere. The result is the same. where as usual we sum over repeated indices. The quantity

« Since our little sphere is shrinking in two dimensions, itsRj,s is called the “Riemann curvature tensor.” _
volume changes at a raté/V=2R/R. Use Einstein’s We can use this tensor to compute the relative acceleration
of nearby particles in free fall if they are initially at rest
relative to one another. Consider two freely falling particles
at nearby pointp andg. Letv be the velocity of the particle
The final answer iR, = 2/p, as you can find in standard &t P, and leteu be the vector fronp to g. Since the two
textbooks. particles start out at rest relative to one other, the velocity of
Spatial curvature like this shows up in the expanding costhe particle ag is obtained by parallel transportingalong
mological models described earlier in this section as well. In€U-
principle, the curvature radius can be found from our formu- Now let us wait a short while. Both particles trace out
lation of Einstein’s equation by similar reasoning in thesegeodesics as time passes, and at tinteey will be at new
expanding models. However, such a calculation is extremelypoints, sayp’ andq’. The pointp’ is displaced fronp by
messy. Here the apparatus of tensor calculus comes to oan amountuv, so we get a little parallelogram, exactly as in
rescuet®t’ the definition of the Riemann curvature as shown in Fig. 5.
Next let us compute the new relative velocity of the two
particles. To compare vectors we must carry one to another
ACKNOWLEDGMENT using parallel transport. Let; be the vector we get by taking

. . _ . the velocity vector of the particle at and parallel transport-
E.F.B. is supported by National Science Foundation Granltng it to q” along the top edge of our parallelogram. let

No. 0233969. be the velocity of the particle &' . The difference,— v is

the new relative velocity. Figure 6 shows a picture of the
APPENDIX A: THE MATHEMATICAL DETAILS whole situation. The vectar is depicted as shorter thaw

for purely artistic reasons.

To see why Eq(3) is equivalent to the usual formulation It follows that over this passage of time, the average rela-
of Einstein’s equation, we need a bit of tensor calculus. Irtive acceleration of the two particles &= (v,—v;)/e. By
particular, we need to understand the Riemann curvature tetzq. (Al),
sor and the geodesic deviation equation. For a detailed ex- _
planation of these, the reader must turn to some of the texts |im V2 201 =R(u,v)v (A3)
in the bibliography®1"-?1=2*Here we briefly sketch the main 0 € S
ideas.

When space—time is curved, the result of parallel transport
depends on the path taken. To quantify this notion, pick two

» —
vectorsu andv at a pointp in space—time. In the limit
where e—0, we can approximately speak of a “parallelo- o
gram” with sideseu andev. Take another vectar atp and
P =4 q

equation to relate the radiug, of the universe to the
densityp.

parallel transport it first alongv and then along:u to the
opposite corner of this parallelogram. The result is some vec-
tor wy . Alternatively, parallel transpow first alongeu and

then al(.)nge.v. The resglt_is a slightly different vecton, as  Fig. 5. Freely falling particles g1 andq trace out geodesics taking them to
shown in Fig. 4. The limit p’ andq’.

649 Am. J. Phys., Vol. 73, No. 7, July 2005 J.C.Baezand E. F. Bunn 649



g V " RB5: Rzaﬁ' (AY)

"' v That is,
£V . V
v V—0 t=0
=4 g in local inertial coordinates where the ball starts out at rest.
tu In short, the Ricci tensor says how our ball of freely fall-
Fig. 6. Parallel transporting the velocity vector of the particlgato the ing test particles starts chan_glng n \_/O|u_me' The_ Ricci tensor
pointq’ gives the vecton, . The velocity vector of the particle at isv,. only captures some of the information in the Riemann cur-

vature tensor. The rest is captured by something called the
“Weyl tensor,” which says how any such ball starts changing

so in shape. The Weyl tensor describes tidal forces, gravitational
waves and the like.

a . . . I
lim—=R(u,0)v. (Ad) Now, Einstein’s equation in its usual form says

e~>06 GHB:TCYB' (Ag)

This is called the “geodesic deviation equation.” From the Here the right side is the stress-energy tensor, while the left

definition of the Riemann curvature it is easy to see thakjde, the “Einstein tensor,” is just an abbreviation for a quan-
R(u,v)w=—R(v,u)w, so we can also write this equation as tity constructed from the Ricci tensor:

“« — 1
lim—=—R%_wPu”v’. (A5) Gup=Rap— 2945R] - (A10)

e—0

Thus Einstein’s equation really says

Using this equation we can work out the second time de- N )
rivative of the volumeV(t) of a small ball of test particles Rap™ 2948Ry=Tagp- (A11)
that start out at rest relative to each other. As we mentioneghjs implies
earlier, to second order in time the ball changes to an ellip-
soid. Furthermore, since the ball starts out at rest, the prin-  R;— 3g3R)=Ty, (A12)
cipal axes of this ellipsoid don't rotate initially. We can
therefore adopt local inertial coordinates in which, to second®Ut 3,=4, S0
order int, the center of the ball is at rest and the three = _ gpa_ o (A13)
principal axes of the ellipsoid are aligned with the three spa- « oo
tial coordinates. Let!(t) represent the radius of th¢h axis  Plugging this into Eq(A1l), we get
of the ellipsoid as a function of time. If the ball's initial
radius iSE,pthen Rap=Tap— %gaﬁTz- (Al14)
This is an equivalent version of Einstein’s equation, but with

i(t)= et L1qit2 3
FH)=et a7+ 0(), the roles ofR and T switched! The good thing about this

or in other words, version is that it gives a formula for the Ricci tensor, which
i al has a simple geometrical meaning.
lim— = lim—. Equation(A14) will be true if any one component holds in
t—ol" t-0€ all local inertial coordinate systems. This is a bit like the

o ) ) observation that all of Maxwell's equations are contained in
Here the acceleratioa is given by Eq(AS), withubeinga  4,55's Jaw and - B=0. Of course, this is only true if we

vector of lengthe in the jth coordinate direction anal being  know how the fields transform under change of coordinates.
the velocity of the ball, which is a unit vector in the time Here we assume that the transformation laws are known.

direction. In other words, Given this, Einstein’s equation is equivalent to the fact that
(1) . _
"mﬁ((T): —R'ngvﬂv‘s= — Rl Ri=Tu— 29uT) (A15)
t—0

in every local inertial coordinate system about every point.
No sum overj is implied in the above expression. In such coordinates we have
Because the volume of our ball is proportional to the prod-

- o -1 0 0 O
uct of the radii,V/V—Z2;tl/rl ast—0, o 1 0 0
\Y 9= (A16)
ims|  =—-Ri:, (AB) 0 0 1 0
v—0"Y l{=0 0O 0 0 1
where now a sum oved is implied. The sum over can 0gy=—1 and
range over all four coordinates, not just the three spatia? t

ones, since the symmetries of the Riemann tensor demand T7=—T+ T+ Ty +T,,. (Al17)

thatR!,,=0. .
The right-hand side is minus the time-time component Oquuatlon(A15) thus says that
the “Ricci tensor” Rit= 7 (Tee+ Tyt Tyy+ T30 (A18)
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By Eq. (A8), this is equivalent to

\%
lim—= (A19)

1
= — = (Tt Tt Tyy+ T2o).
VHOV o 2 XX yy z

As promised, this is the simple, tensor-calculus-free formu- ,

lation of Einstein’s equation.

APPENDIX B: REFERENCES

We provide an annotated bibliography of material on rela-

tivity that we have found particularly helpful for students.

1. WEBSITES

11. Introducing Einstein’s Relativity, R. A. D’Inverno (Oxford U. P., Ox-
ford, 1992.

12. Gravity: An Introduction to Einstein’s General Relativity , J. B.
Hartle (Addison-Wesley, New York, 2002

13. Introduction to General Relativity, L. Hughston and K. P. To@Cam-

bridge U. P., Cambridge, 1991

A First Course in General Relativity, B. F. SchutzZCambridge U. P.,

Cambridge, 1986

15. General Relativity: An Introduction to the Theory of the Gravita-
tional Field, H. StephaniCambridge U. P., Cambridge, 1990

5. MORE COMPREHENSIVE TEXTS

To become an expert on general relativity, one really must
tackle these classic texts:

There is a lot of material on general r6|at|V|ty available 16. Gravitation, C. W. Misner, K. S. Thorne, and J. A. Wheel&reeman,

online. Most of it can be found starting from here:

1. Relativity on the World Wide Web, C. Hillman, http://math.ucr.edu/
home/baez/relativity.html

The beginner will especially enjoy the many gorgeous
websites aimed at helping one visualize relativity. There;g

are also books available for free online, such as this:
2. Lecture Notes on General Relativity S. M. Carroll, http://

pancake.uchicago.edutarroll/notes/

The free online journaliving Reviews in Relativitis an

New York, 1973.
17. General Relativity, R. M. Wald (University of Chicago Press, Chicago,
1984).
Along with these textbooks, you'll want to do lots of
problems! This book is a useful supplement:
Problem Book in Relativity and Gravitation, A. Lightman and R. H.
Price (Princeton U. P., Princeton, 1975

6. EXPERIMENTAL TESTS

excellent way to learn more about many aspects of rela-

tivity. One can access it at:
3. Living Reviews in Relativity, http://www.livingreviews.org

Part of learning relativity is working one’s way through
certain classic confusions. The most common are dea

with in the “Relativity and Cosmology” section of this
site:

4. Frequently Asked Questions in Physicsedited by D. Koks, http://
math.ucr.edu/home/baez/physics/

2. NONTECHNICAL BOOKS

Before diving into the details of general relativity, it is
good to get oriented by reading some less technical book

The experimental support for general relativity up to the
early 1990s is summarized in:

gg, Theory and Experiment in Gravitational Physics Revised ed., C. M.
Will (Cambridge U. P., Cambridge, 1993
A more up-to-date treatment of the subject can be found
n:

20. “The Confrontation between General Relativity and Experiment,” C.
M. Will, Living Reviews in Relativity 4 (2001. Available online at
http://www.livingreviews.org/Irr-2001-4

J. DIFFERENTIAL GEOMETRY

Here are four excellent ones written by leading experts on e serious student of general relativity will experience a

the subject:

5. General Relativity from A to B, R. Geroch(University of Chicago
Press, Chicago, 1981

6. Black Holes and Time Warps: Einstein’s Outrageous LegacyK. S.
Thorne(Norton, New York, 1995

7. Gravity from the Ground Up: An Introductory Guide to Gravity
and General Relativity, B. F. Schutz(Cambridge U. P., Cambridge,
2003.

8. Space, Time, and Gravity: the Theory of the Big Bang and Black
Holes R. M. Wald (University of Chicago Press, Chicago, 1992

3. SPECIAL RELATIVITY

Before delving into general relativity in a more technical

constant need to learn more tensor calculus—or in modern
terminology, “differential geometry.” Some of this can be
found in the texts listed above, but it is also good to read
mathematics texts. Here are a few:

21. Gauge Fields, Knots and Gravity J. C. Baez and J. P. Munia{iVorld
Scientific, Singapore, 1994

22. An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry, W. M. Boothby(Academic, New York, 1986

23. Semi-Riemannian Geometry with Applications to Relativity B.
O’Neill (Academic, New York, 1983

8. SPECIFIC TOPICS

way, one must get up to speed on special relativity. Here are The references above are about general relativity as a

two excellent texts for this:

9. Introduction to Special Relativity, W. Rindler (Oxford U. P., Oxford,
1991).
10. Spacetime Physics: Introduction to Special Relativity, E. F. Taylor
and J. A. WheelefFreeman, New York, 1992

4. INTRODUCTORY TEXTS

When one is ready to tackle the details of general relativ-
ity, it is probably good to start with one of these textbooks:
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whole. Here are some suggested starting points for some of
the particular topics touched on in this article.

a. The meaning of Einstein’s equation
Feynman gives a quite different approach to this in:

24. The Feynman Lectures on Gravitation R. P. Feynmaret al. (West-

view, Boulder, CO, 2002

His approach focuses on the curvature of space rather
than the curvature of space—time.
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. . 33. “Evidence for Black Holes,” M. C. Begelman, Scien®00, 1898—
b. The Raychaudhuri equation 1903(2003.

This equation, which is closely related to our formulation ~ A less technical discussion of the particular case of the
of Einstein’s equation, is treated in some standard textbooks, Supermassive black hole at the center of our Milky Way

including the one by Wald mentioned above. A detailed dis- G@laxy can be found here: o
cussion can be found in 34. The Black Hole at the Center of Our Galaxy F. Melia (Princeton U.

P., Princeton, 2003

25. Gravitation and Inertia, I. Ciufolini and J. A. Wheele(Princeton U.
P., Princeton, 1995

e. Cosmology

c. Gravitational waves There are lots of good popular books on cosmology. Since

Here are two nontechnical descriptions of the binary pulthe subject is changing rapidly, pick one that is up to date. At
sar work for which Hulse and Taylor won the Nobel prize: the time of this writing, we recommend:

27. “The Binary Pulsar: Gravity Waves Exist,” C. M. Will, Mercury,

Nov-Dec 1987, pp. 162174 35. Zhe :Extr?vaggnt Unlvel;se;DE?Io?]mg Sljtgrs, ItDarkLIlEnel;rgyl,Da}nd tthe
28. “Gravitational Waves from an Orbiting Pulsar,” J. M. Weisberg, J. ch)ggeralng osmos R. P. Kirshner(Princeton U. P., Princeton,

H. Taylor, and L. A. Fowler, Sci. Am., Oct 1981, pp. 74-82.
Here is a review article on the ongoing efforts to directly detect
gravitational waves:

A good online source of cosmological information is:
36. Ned Wright's Cosmology Tutorial, http://www.astro.ucla.edu/

29. “Detection of Gravitational Waves,” J. Lu, D. G. Blair, and C. Zhao, ~wright/cosmolog.htm o
Rep. Prog. Phys63, 131714272000, The following cosmology textbooks are arranged in in-
Some present and future experiments to detect gravita- Creasing order of technical difficulty: .
tional radiation are described here: 37. Cosmology: The Science of the Univers@nd ed., E. HarrisoCam-

bridge U. P., Cambridge, 2000
38. Cosmology: a First CourseM. Lachieze-Rey(Cambridge U. P., Cam-
bridge, 1995.
39. Principles of Physical CosmologyP. J. E. Peeble&Princeton U. P,,
Princeton, 1998
d. Black holes 40. The Early Universe E. W. Kolb and M. S. TurnefAddison—Wesley,
. . o New York, 1990.
Astrophysical evidence that black holes exist is summazi. The Large-Scale Structure of Spacetime, S. W. Hawking and G. F.
rized in: R. Ellis (Cambridge U. P., Cambridge, 1975

30. LIGO Laboratory Home Page, http://www.ligo.caltech.edu/
31. The Virgo Project, http://www.virgo.infn.it/
32. Laser Interferometer Space Antennahttp://lisa.jpl.nasa.gov/
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