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Abstract

We revisit the “counterfactual quantum communication” of Salih et al. [1], who claim that an

observer “Bob” can send one bit of information to a second observer “Alice” without any physical

particle traveling between them. We show that a locally conserved, massless current—specifically,

a current of modular angular momentum, Lz mod 2h̄—carries the one bit of information. We

integrate the flux of Lz mod 2h̄ from Bob to Alice and show that it equals one of the two eigenvalues

of Lz mod 2h̄, either 0 or h̄, thus precisely accounting for the one bit of information he sends her.

We previously [2] obtained this result using weak values of Lz mod h̄; here we do not use weak

values.

PACS numbers: 03.65.Ca, 03.65.Ta, 03.65.Ud, 03.65.Vf
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H. Salih, Z.-H. Li, M. Al-Amri and M.S. Zubairy [1] describe a remarkable effect, which

they call “counterfactual quantum communication” (CQC): transmission (across a “trans-

mission channel”) of information from a sender to a receiver “without any physical particles

traveling between them.” Y. Cao et al. [3] and I. Alonso Calafell et al. [4] have demon-

strated this effect experimentally. For all our familiarity with quantum nonlocality, the

effect is startling. It involves neither nonlocal quantum correlations (which anyway do not

transmit information) nor the relative phase of the Aharonov-Bohm effect. If any effect

evokes Einstein’s famous phrase “spooky action at a distance”, it is this one. Yet we show

below that counterfactual quantum communication does, after all, depend on a conserved

local current crossing the “transmission channel” between Alice and Bob; it is a current of

modular [5] angular momentum Lz mod 2h̄. Consistent with the analysis of Salih et al. [1],

the conserved current is massless. Our demonstration of the conserved local current indi-

cates that the effect is, after all, not spooky; it also highlights the importance of modular

variables in understanding quantum nonlocality.

We will describe a thought experiment equivalent to the one of Salih et al. [1]. But for

clarity we begin, like [1], with a toy version of the experiment. Figure 1 shows a particle

wave packet in a cavity of length L, with Alice at the left end of the cavity (which is closed

and reflects the particle), and Bob at the right end (which is closed and reflects the particle,

but which Bob can open). Halfway between the two ends is a thin barrier; it transmits the

particle with (a small) amplitude i sin ε and reflects it with amplitude cos ε. Let the particle,

with ∆x � L (as in Fig. 1) and a large expectation value p of the momentum (such that

∆p� |p|), start from Alice’s end and hit the barrier; it then either returns with amplitude

cos ε, or continues towards Bob with amplitude i sin ε. We can represent the evolution of

these wave packets via a unitary matrix U :

U(ε) =

(
cos ε i sin ε

i sin ε cos ε

)
. (1)

Note that U(jε)U(ε) = U([j + 1]ε) and, by induction, [U(ε)]j = U(jε). (Factors of −1 due

to wave-packet bounces at the ends cancel.) Thus if the initial state of the particle is

(
1

0

)
(the particle is on Alice’s side), then after j laps back and forth to the barrier the particle

is in the state

(
cos jε

i sin jε

)
; and if jε = π/2, the particle is certain to be on Bob’s side of the

barrier. Let T denote the time required for the particle to get to Bob’s side with certainty,
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FIG. 1. Alice and Bob at opposite ends of a single cavity, with a barrier placed symmetrically

between them. A particle wave packet is initially at Alice’s end.

and let v denote the speed of the particle in either direction. Then j times back and forth

correspond to a distance jL and a time jL/v; taking j = π/2ε, we obtain T = πL/2εv as

the time when the particle is on Bob’s side with certainty. At time T the particle is on Bob’s

side, at time 2T it is back on Alice’s side with an overall phase factor −1 = cos π, etc.

We now consider a protocol that allows Bob to send a single bit of information to Alice.

Bob has the option of keeping his end of the cavity closed with a mirror. Every wave

packet that arrives at his end is reflected. Wave packets from Alice and Bob hit the barrier

simultaneously, interfering constructively on Bob’s side, and at time T , after j laps such

that jε = π/2, the particle is certainly at Bob’s end. Bob’s other option is to remove the

mirror and leave his end of the cavity open. Now with probability sin2 ε, a wave packet

that hits the barrier will continue on to Bob and escape the cavity altogether. Ultimately,

so would the particle. But “ultimately” corresponds to unlimited wave packet hits on the

barrier, i.e. to an arbitrarily long experiment. As long as the time is finite (as it must be

in any realistic experiment), the number of hits is finite (even if proportional to 1/ε) and

sin2 ε times that number is arbitrarily small, i.e. nothing enters the transmission channel.

In effect Bob, by removing his mirror, turns the barrier into a mirror, such that the particle

cannot leave Alice’s side of the cavity. Then Alice, by checking her end of the cavity at time

T , learns Bob’s choice: if she finds the particle there, Bob removed the mirror; if not, he left

the mirror covering his end. Bob sends Alice one bit of information and, if he removed the

mirror, no physical particle traveled between Alice and Bob, to order ε. Still, if Bob left the

mirror covering his end, the particle did travel from Alice to Bob (and back). Thus Alice
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and Bob have not achieved complete counterfactual quantum communication.

Note, we have avoided writing ε→ 0 because it suggests the unphysical limit T →∞. A

physical experiment cannot last forever, hence T must be finite (though T can be arbitrarily

large). Below we define εA, εB and εB/εA and their limits εA → 0, εB → 0 and εB/εA → 0

such that εA, εB and εB/εA are arbitrarily small but εA 6= 0 6= εB.

For complete CQC, consider Fig. 2. Near Bob’s end, there are two thin barriers. Barrier

A transmits with amplitude i sin εA and reflects with amplitude cos εA; barrier B transmits

with amplitude i sin εB and reflects with amplitude cos εB. The distance between Alice’s end

and barrier A is still L/2, and we set it equal to nB times the distance between barriers A

and B. Thus, in the time L/v it takes a wave packet to bounce from barrier A to Alice’s

end and then back to barrier A, a wave packet between barriers A and B could bounce back

and forth nB times. Now let nBεB = π/2. Then a wave packet bouncing between barriers A

and B can escape through B in the time L/v it takes a wave packet to reflect to Alice from

barrier A and then bounce back to barrier A.

And now we add a restriction: barrier A is completely closed off (in effect, εA = 0) except

at times t = L/2v, 3L/2v, 5L/2v, . . .. Thus if Alice releases a wave packet from her end

at time t = 0, it reaches barrier A at time t = L/2v, and passes through barrier A with

amplitude i sin εA or reflects from it with amplitude cos εA. If the particle wave packet arrives

at barrier A at any time t that is not on the list t = L/2v, 3L/2v, 5L/2v, . . ., it reflects with

amplitude 1. Note, this restriction on barrier A simplifies the evolution, as follows: between

two consecutive approaches of the wave packet to barrier A from Alice’s end (e.g. between

times t = L/2v and t = 3L/2v), the wave packet bouncing between barriers A and B cannot

pass through barrier A, because barrier A is completely closed off. Thus without loss of

generality we can take t from the list (because otherwise the evolution is trivial) and even

take the initial time to be t = 0.

Let us now consider all possible evolutions of Alice’s wave packet once it reaches barrier

A. Let jA index the collisions (separated in time by L/v) of the wave packet on Alice’s side

with barrier A; we take 1 ≤ jA ≤ nA, defining nA implicitly via nAεA = π/2 in analogy

with nB. Likewise, we let jB index the collisions with barrier B of a wave packet between

the barriers. We define a protocol for Bob to choose “logic 0” or “logic 1”: Bob chooses

“logic 0” by not closing his end of the cavity (i.e. “0” indicates “zero closing”). What is

the probability that a wave packet crossing from Alice’s side will exit to the right (through
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“transmission channel”
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FIG. 2. Alice and Bob at opposite ends of an asymmetrical cavity, with two barriers between them.

A particle wave packet is initially at Alice’s end.

barrier B)? We ask this question not only to understand the effect of Bob’s choice, but also

to keep the protocol counterfactual. Once the wave packet crosses barrier A in the direction

of barrier B, it bounces up to nB times between the barriers; and for each bounce, the

probability that it escapes to the right is sin2 εB. The total probability is then nB sin2 εB,

which is negligible for εB → 0. The particle does not pass beyond barrier B; it reaches

barrier B and crosses barrier A back to Alice. As in the toy version with Bob’s mirror in

place, it spends some time on Alice’s side of barrier A and some time on Bob’s side, but

never crosses barrier B.

Now, for the jA-th collision from Alice’s side, the probabilities for the particle to reflect

back to her or cross over to Bob are cos2(jAεA) and sin2(jAεA), respectively, in analogy

with Eq. (1). This result now tells us how to keep the protocol counterfactual. The

total probability for the particle to exit right for 1 ≤ jA ≤ nA is
∑nA
jA=1 sin2(jAεA)nB(εB)2,

which we can rewrite as (nA/2)nB(εB)2, since the average value of sin2(jAεA) in the range

1 ≤ jA ≤ nA is 1/2. Hence the condition εA → 0 does not by itself keep this protocol

counterfactual, i.e. does not zero the probability that the particle enters the transmission

channel. We must require (nA/2)nB(εB)2 = (π2/8)εB/εA → 0 as well, i.e. both εA → 0 and

εB/εA → 0. We will refer to this stricter condition as the “double limit”. Thus for “logic

0” and in the double limit, no part of the wave function exits right. At time TA = πL/2εAv

(after nA = π/2εA trips between Alice and barrier A, each taking time L/v), the particle is

on Bob’s side of barrier A; at time 2TA it is back to Alice with an overall phase factor −1;

and so on.
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For “logic 1”, Bob closes his end of the cavity with a perfectly reflecting mirror. At

jA = 1, a single wave packet of amplitude i sin εA passes through barrier A, then self-

interferes through barrier B into a single wave packet with amplitude i sin εA that is about

to hit Bob’s mirror. Bob briefly removes the mirror, and nothing reflects left. Yet also the

probability of finding the particle to the right of barrier B is negligible for εA → 0. For

successive values of jA the evolution is the same, except that a factor cosjA−1(εA) multiplies

the amplitude; but for εA → 0, it reduces to 1. Thus for “logic 1”, Alice always finds the

particle on her side—not because it returned but because it never left, as in the toy version

without Bob’s mirror. Indeed, the probability for Alice to find the particle on her side after

nA reflections approaches 1 for εA → 0.

Have we achieved counterfactual quantum communication with this protocol? Indeed,

we have. Bob is beyond the cavity, at its very end, which he either covers or doesn’t cover

with a mirror. He is never in the “transmission channel” between barrier B and his end of

the cavity. Nor is the particle ever in the transmission channel, for εA → 0 and εB/εA → 0.

For logic 1, the total amplitude to be in the transmission channel cannot be greater than

εA. After nA times that the wave packet on Alice’s side hits barrier A, the total probability

that the particle enters the transmission channel is at most nA|εA|2 = (π/2εA)|εA|2 = πεA/2

and is negligible for εA → 0 (as in the case of logic 0). Bob uses the particle to send one bit

to Alice: if the wave packet is consistently at her end of the cavity then Bob chose “logic

1”; if the wave packet is at her end only at specified times, then Bob chose “logic 0”. Either

way, the particle never crosses the transmission channel separating them.

So far we have merely argued, with Salih et al. [1], that complete counterfactual quantum

communication is possible. We now show, however, that this argument leads to a paradox:

it violates Noether’s fundamental theorem on symmetries and conservation laws. Figure 3

shows a variation on our experiment, with a z axis and two identical cavities placed parallel

to it, symmetrically above and below. Define Lz ≡ −ih̄∂/∂φ where φ is the conjugate angle

about the z axis; then eiπLz/h̄ effects a π rotation about the z axis. If |ψ↑〉 and |ψ↓〉 represent

the same state but in the upper and lower cavities, respectively, then the operator eiπLz/h̄

interchanges them (up to a relative phase).

Now suppose Bob applies logic 0 to the upper cavity and logic 1 to the lower cavity. Figure

3 shows the wave packet in a symmetric superposition above and below the z axis (at Alice’s

end). The cavities in which the particle moves (in a superposition) are invariant under a
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z

FIG. 3. Alice and Bob at opposite ends of two cavities, symmetrically about the z axis. The

potential (excluding the mirror) is invariant under a π rotation about the z axis, as is the initial

particle superposition.

rotation of π about the z axis, and the operation eiπLz/h̄ leaves the state of the particle

invariant. And herein lies the paradox. We have seen that the particle’s evolution depends

sensitively on the conditions in the transmission channel—whether or not there is a mirror,

etc. But we have also seen that in the double limit εA → 0 and εB/εA → 0, the probability

that the particle enters the transmission channel is negligible! If the particle doesn’t enter

the transmission channel, then the potential in which it moves is invariant under a π rotation

eiπLz/h̄ and the “modular angular momentum” Lz mod 2h̄ must be conserved. (Note that, in

the exponent, Lz is automatically Lz mod 2h̄.) But, it seems, modular angular momentum

is not conserved: if the initial phase between the components of the particle is set to 0,

after a time 2TA it will be π, and vice versa, corresponding to a shift in angular momentum

(mod 2h̄) of h̄. This paradox arises when we consider the particle in a superposition of

states in two cavities. A related paradox (Fig. 4) has just one cavity, with Bob’s mirror

in a superposition that is invariant under a π rotation about the Z axis. The particle in

the cavity, facing a superposition of logics 0 and 1, becomes entangled with the position

of the mirror. After a time 2TA, the particle and mirror disentangle, with only a relative

phase factor −1 between the mirror positions testifying to the transient entanglement. What

happened to conservation of modular angular momentum? Do the particle and the mirror

exchange Lz? Both paradoxes suggest that the particle entered a region from which it was

excluded.

As Sherlock Holmes would say, “When you have eliminated the impossible, whatever
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remains, however improbable, must be the truth!” We have, with Salih et al. [1], eliminated

the possibility that the particle entered the transmission channel; therefore, its evolution

must conserve modular angular momentum, however implausible that might seem.

What we now calculate is the flow of modular angular momentum across barriers A and

B into the transmission channel, for the case of the first paradox—the two parallel cavities of

Fig. 3. We do this by calculating the expectation value of eiπLz/h̄ in a state that is an initial

superposition [|ψ↑〉+ |ψ↓〉] /
√

2, where ψ↑ and ψ↓ indicate localized particle amplitudes in

the upper and lower cavities in Fig. 3, respectively; ψ↑ and ψ↓ depend implicitly on jA

and jB, and thus on time. To the lower cavity Bob applies logic 1, and then nothing from

Alice’s end of the lower cavity tunnels through barrier A. The amplitude on Alice’s side is

cosjA(εA), which is simply 1 in our double limit εA → 0 and εB/εA → 0: the particle in the

lower cavity never leaves Alice. At the same time, to the upper cavity Bob applies logic 0;

then any wave packet crossing barrier B never returns, but tunnels into the transmission

channel with vanishing probability. Thus the probability that the particle remains on Alice’s

side is cos2(jAεA) while the probability that it tunnels to (and reflects from) barrier B is

sin2(jAεA), as we saw.

We have accounted for the probabilities in detail. But we have not yet calculated the

expectation value 〈eiπLz/h̄〉. Since eiπLz/h̄ interchanges |ψ↑〉 and |ψ↓〉, we have 〈eiπLz/h̄〉 =

<〈ψ↑|ψ↓〉, where < indicates the real part. Thus 〈eiπLz/h̄〉 contains a contribution cos(jAεA)

from Alice’s side of barrier A, but none from between barriers A and B since, in the lower

cavity, the particle never enters the region between barriers A and B. (See Table 1.) Does

the transmission channel contribute to 〈eiπLz/h̄〉?

The amplitude for the particle to enter the transmission channel is a product of factors

that depend on Bob’s choice of logic 1 or logic 0. First, logic 0: the amplitude for the

particle to pass through barrier A is i sin(jAεA), as calculated. Once it passes through

barrier A, there is an amplitude cosjB−1(εB)(i sin εB) for the particle to cross barrier B into

the transmission channel on the (jB− 1)-th collision with it. The product amplitude is then

i sin(jAεA) cosjB−1(εB)(i sin εB), which we can replace with −εB sin(jAεA) in our double limit.

Next, logic 1: the amplitude for the particle to pass through barrier A is cosjA−1(εA)(i sin εA),

since the particle never returns to Alice’s side and only reflects jA− 1 times with amplitude

(cos εA)jA−1 before it finally passes through on the jA-th collision, with amplitude sin εA. It

then enters between barriers A and B where (since Bob has covered his end with a mirror)
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FIG. 4. Alice and Bob again share a single cavity, with the mirror at Bob’s end in a superposition

of two orthogonal states.

Alice’s side Between A and B Transmission channel

logic 0 (open) cos(jAεA) i sin(jAεA) cosjB (εB)

→ i sin(jAεA)

i sin(jAεA) cosjB−1(εB)(i sin εB)

→ −εB sin(jAεA)

logic 1 (covered) cosjA(εA)

→ 1

cosjA−1(εA)(i sin εA) cos(jBεB)

→ iεA cos(jBεB)

cosjA−1(εA)(i sin εA)i sin(jBεB)

→ −εA sin(jBεB)

TABLE I. Particle amplitudes in three regions as functions of jA, jB and “logic 0” (top row) or

“logic 1” (bottom row). The arrows indicate how the amplitudes simplify towards the “double

limit”. In each row, the squared absolute values of the amplitudes sum to 1.

its amplitude to reach the transmission channel is sin(jBεB). Multiplying the amplitudes, we

get cosjA−1(εA)(i sin εA)i sin(jBεB). But in our double limit, we can replace cosjA−1(εA) by 1

and sin εA by εA, to get −εA sin(jBεB) as the amplitude in the transmission channel for logic

1. Now for the product of products in the last column we obtain εA sin(jBεB)εB sin(jAεA),

which factors into [εA sin(jAεA)] × [εB sin(jBεB)], as the contribution to 〈eiπLz/h̄〉 from the

transmission channel, for a given jA, jB.

We now sum over jA and jB. Why? Consider an evolution in which the particle, initially

on Alice’s side, passes through barrier A and reflects between barriers A and B a total of

nB times, ultimately crossing back to Alice. Although there are nB reflections off barrier

B, there is only one “path”, in the sense of Feynman’s sum over paths. By contrast, the

evolution in the transmission channel is a sum over “paths” in which each pair jA, jB defines

9



a unique path with the particle crossing barrier A on the jA-th collision with it and entering

the transmission channel on the jB-th collision with barrier B. There are jAjB distinct

paths. We first sum over jB from 1 to nB. Since εB = π/2nB, the sum simplifies to an

integral in our double limit:

lim
εB→0

nB∑
jB=1

εB sin jBεB = lim
nB→∞

nB∑
jB=1

π

2nB
sin (jBπ/2nB) =

π

2

∫ 1

0
dx sin(πx/2) = 1 . (2)

Then replacing A for B everywhere in Eq. (2), we get the same result, namely 1.

But instead of setting nA equal to π/2εA, as we did for Bob’s protocol, we can leave

it arbitrary. Then the corresponding integral in Eq. (2) approaches (in the double limit)

1 − cos(nAεA). Now let us sum the contributions to 〈eiπLz/h̄〉 from the entire cavity. The

entire cavity includes Alice’s side, which contributes cos(nAεA) to 〈eiπLz/h̄〉; the intermediate

region between barriers A and B, which contributes nothing; and the transmission channel,

which contributes 1− cos(nAεA). For any value of nA, the sum equals 1. There is no loss of

modular angular momentum; the total Lz mod 2h̄ (summed over the range of z) remains a

constant of the motion. And, though we sum over jA and jB, each pair jA, jB corresponds

to a time in the evolution of the particle wave packet—the time at which Alice and Bob

have completed their respective numbers of laps. The flux of modular angular momentum

across barriers A and B into the transmission channel changes with time.

We thus arrive at a striking resolution of the paradox of Fig. 3: the expectation value

〈eiπLz/h̄〉 = 1 is invariant after all, but the particle never enters the transmission channel!

What enters the transmission channel is the angular momentum of the particle, mod 2h̄.

We have integrated the flux of Lz mod 2h̄ between Bob and Alice and shown that it equals

one of the two eigenvalues of Lz mod 2h̄, namely 0 or h̄, accounting for the one bit of

information he sends her. Modular angular momentum is a nonlocal dynamical variable,

but the particle and its modular angular momentum separate locally—at a point—without

action at a distance (just as the “weak Cheshire cat” parts ways locally with its grin [6]).

In the paradox of Fig. 4, the particle itself never entered the space of the mirror, but h̄ mod

2h̄ of its modular angular momentum flowed into it, and would show up as an h̄ shift in LZ

mod 2h̄, i.e. as a π rotation of the mirror wave function.

Note that we can demonstrate local conservation of the nonlocal quantities 〈eiπLz/h̄〉

and 〈eiπLZ/h̄〉 only because z and Z, the locations of the particle and mirror along the

symmetry axis, commute with these conserved quantities. With respect to locality, modular
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angular momentum is a hybrid quantity: 〈eiπLz/h̄〉 and 〈eiπLZ/h̄〉 are locally conserved along

the z, Z axis although they act nonlocally in the perpendicular plane (e.g. reveal relative

phases between the upper and lower wave packets in Fig. 3). There is no modular angular

momentum in Fig. 2, but there is modular energy H mod h/2T , and Bob’s choice of logic 0

or logic 1 governs the distribution of modular energies at Alice’s end. Our calculation is not

a full treatment of quantum conserved currents, yet we have demonstrated a new approach

to nonlocality in quantum mechanics. Quantum mechanics is indeed nonlocal. But instead

of “spooky action at a distance”, we uncover here a much more satisfactory interpretation of

counterfactual quantum communication: properties of a particle can travel locally through

regions from which the particle itself is excluded. Quantum mechanics is not, after all, so

spooky [7].
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