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ABSTRACT
The prediction of collisions amongst N rigid objects may be re-
duced to a series of computations of the time to first contact for all
pairs of objects. Simple enclosing bounds and hierarchical par-
titions of the space-time domain are often used to avoid testing
object-pairs that clearly will not collide. When the remaining pairs
involve only polyhedra under straight-line translation, the exact
computation of the collision time and of the contacts requires only
solving for intersections between linear geometries. When a pair
is subject to a more general relative motion, such a direct collision
prediction calculation may be intractable. The popular brute force
collision detection strategy of executing the motion for a series of
small time steps and of checking for static interferences after each
step is often computationally prohibitive. We propose instead a less
expensive collision prediction strategy, where we approximate the
relative motion between pairs of objects by a sequence of screw
motion segments, each defined by the relative position and orienta-
tion of the two objects at the beginning and at the end of the seg-
ment. We reduce the computation of the exact collision time and of
the corresponding face/vertex and edge/edge collision points to the
numeric extraction of the roots of simple univariate analytic func-
tions. Furthermore, we propose a series of simple rejection tests,
which exploit the particularity of the screw motion to immediately
decide that some objects do not collide or to speed-up the predic-
tion of collisions by about 30%, avoiding on average 3/4 of the
root-finding queries even when the object actually collide.
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Introduction
The calculation of collisions amongst moving 3D objects and be-
tween moving objects and static obstacles has challenged anima-
tion experts and medical engineers for more than two decades [1,
7, 10, 38, 27, 32]. It has also been extensively studied in robotics
[36]. We focus here on rigid bodies, and more precisely on poly-
hedra, and do not address collisions of deformable models [51, 2].
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Figure 1: Collisions between a moving an object A, shown in
several colors and a static object B, in cyan color. A moves
from left(green) to right(blue) along a screw and its intermedi-
ate instance(red) shows it at the moment of first collision with
B for two different configurations: a face of A collides with a
vertex of B (bottom) and an edge of A collides with an edge of
B (top)

When complex 3D motions are involved, the poses (position and
orientation) of each moving object are usually evaluated using a se-
ries of small time increments. At each stage of this simulation, the
transformed instance of each object is tested against the instances
of other objects using a static interference test [37]. Simple contain-
ing bounds [47], convex decompositions [3, 18, 19], hierarchical
models [4, 9, 42, 22, 25, 26, 29, 35, 39, 41], and minimal distance
computation [6, 15, 23, 37, 43] and tracking [13, 14, 5, 24] tech-
niques have been used to reduce the frequency and the complexity
of the interference tests [17, 20, 21, 31]. When an interference is
detected, the last interval may be refined adaptively, until an accu-
rate interval around the initial collision time is isolated. Even when
instantaneous velocities or bounds on velocities are used to esti-
mate the duration of collision-free intervals [11, 21], the number
of interference test that are necessary to guarantee that all colli-
sions are detected imposes limits on the performance of these col-
lision detection approaches. By contrast to the above approaches,
which are based on series of static interference tests, we propose a
collision prediction approach, in which we compute the time and
location of collisions directly from the relative motion of pairs of
objects. Instead of computing swept volumes[36, 28, 34, 49, 52],
or intersecting four-dimensional models swept by the moving ob-
jects in the space-time domain [12], we detect all occurrences of



face/vertex and edge/edge collisions [16], and report the first one
to occur. When both objects move along straight-line translations
[10, 11] or both are rotating around the same axis [50], these direct
collisions calculations may be reduced to the evaluation of a series
of linear or quadratic expressions.

For more general motions where linear translation and rotation
about different axes are allowed, trigonometric functions in the col-
lision equation cannot be removed if the rotation angle and the
translation displacement are interpolated as a linear function of a
single parameter. In [17, 33, 50] these trigonometric functions were
removed by nonlinear interpolation of the rotation angle, resulting
in cubic or higher order polynomials. These nonlinear interpola-
tions can be considered to approximate linear ones, when the rota-
tion angle is small. However, note that if the center of the rotation
is far from the geometric center of the object, nonlinear interpola-
tion on rotation produces a distorted trajectory, which may be quite
different from the linear one. Thus, care must be taken in choosing
the center of rotation.

Instead, to obtain a simple formulation of the exact collision pa-
rameters, we propose in this paper to approximate the relative mo-
tion1 between any two objects by a continuous series of screw mo-
tion segments. In [44, 45], Redon et al proposed modified screw
motion to simplify the computation of the collision time. When
linearly parameterized, a screw motion with a total rotation angle
b and a total translation distance d is defined by a rotation angle
tb and a displacement td, where time t varies from 0 to 1. Redon
approximates it by a motion that has the same rotation angle, tb,

but a different displacement: d tan(tb/2)
tan(b/2) . This transformation per-

mits to compute the times of line/line collisions and of vertex/plane
collisions by finding the roots of cubic polynomials. Although a
closed form solution exists for the roots of cubic polynomials, Re-
don has recently opted for an interval Newton method in order to
increase the numeric accuracy of the roots [*REFERENCE: S. RE-
DON, PRIVATE COMMUNICATION, JUNE 2003.]

In contrast to Redon’s approach, we stick to an exact screw mo-
tion, which yields trigonometric equations that can be solved ef-
ficiently and robustly, by exploiting the simplicity of the screw
formulation to compute tight bounds and good initial guesses for
the Newton iterations. A comparative study on efficiency and ro-
bustness between this and cubic polynomial solver has not been
done yet. The exact screw motion formulation was also proposed
in [46] where Redon et al proposed a conservative, interval-based
approach for quickly rejecting pairs of moving boxes that are guar-
anteed not to collide.

For each screw motion segment, we compute the times of col-
lision between all vertices of the first object and the faces of the
other, between the faces of the first object and the vertices of the
other, and between each edge of the first object and each edge of
the second object. We report the smallest of these times. We as-
sume of course that objects are initially disjoint.

To reduce the overall computational costs, one can design several
rejection tests between bounding spheres and cylinders[45] or ver-
tex/triangle and edge/edge pairs. To this goal, we have developed
fast interference tests between simple three-dimensional or para-
metric bounds. We use them to quickly reject most object pairs,
vertex/face pairs, and edge/edge pairs that do not collide. The col-
lision test and the computation of the time of first collision for each
one of the remaining vertex/face and edge/edge pairs require solv-
ing a low-degree trigonometric equation in one variable. Once the
minimal time of collision is found, we compute the collision point.

1The relative motion of an object A with respect to a moving object
B is the motion of A in the body coordinate system of B

Our direct collision computation techniques and simple rejection
tests could of course be combined with hierarchical approaches that
have been mentioned earlier. In the next section, we briefly explain
how the screw motions are computed. Then, we present the simple
rejection tests. Finally, we provide the details of the exact time to
collision calculations and present implementation results.

Approximating screw motions
We propose to use a direct screw motion2 to approximate the mo-
tion of an object A relative to a possibly moving object B. The
screw motion interpolates the relative pose (position and orienta-
tion) of A at the beginning and ending of a given time interval,
which we parameterize with t varying between 0 and 1. The reader
further interested in screw theory and pose interpolation can refer
to [28, 40, 53]. An interpolating, direct, screw motion is unique,
except for the special case of 180◦ rotation between the starting
and ending poses. By definition, it interpolates any two poses by
a combination of a minimal angle rotation with a shortest vector
translation. Note that the rotation axis is parallel to the translation
vector. The interpolation is independent of the choice of coordi-
nate system, thus the roles of A and B may be interchanged without
affecting the results.

Because the maximum error3 of a screw approximation of a mo-
tion segment is expensive to evaluate exactly for all points of an
object, we advocate the following conservative estimation. We ex-
press the discrepancy motion, D(t), as the product of the approx-
imating screw motion by the inverse of the original motion. We
then apply D(t) to the eight vertices of an axis aligned 4 block con-
taining A. The error is bounded by the maximum distance between
the original position of each one of these vertices and its image by
D(t), as t varies between 0 and 1. Hence, we have reduced the er-
ror estimation problem to one of computing geometric bounds on
the trajectory of several isolated points. When the error estimate
exceeds a predetermined tolerance, the time interval is split in two
and the motion split into two screw-motion segments continuously
joined at the time where the two intervals meet.

The parameters of the direct screw motion may be computed eas-
ily for each segment. Assume that at instant t, the pose of object A
is represented by a transformation that is the composition of a rota-
tion RA(t), which is represented by a 3×3 matrix, with a transla-
tion by a vector vA(t). Assume that the pose of object B is similarly
represented by a rotation RB(t) and a translation vB(t). We can ex-
press the relative motion of A with respect to B as the combination
of a rotation R(t) with a translation by a vector v(t). R(t) may
be represented by a 3× 3 matrix that results from the multiplica-
tion of the transpose of the matrix of RB(t) by the matrix of RA(t).
The vector v(t) is the difference between vA(t), transformed by the
transpose of the matrix of RB(t), and vB(t).

The parameters for a direct screw motion that interpolates the
relative position of the two objects at times 0 and 1 may be simply
derived from the matrix RT (0)R(1) and from the vector v(1)−
v(0). These parameters define the direction s, a fixed point p, a
translation distance d along s, and the angle b of a rotation around
the axis parallel to s and passing through p.

2A screw motion with smallest angle.
3The error is defined for each point of an object at a given time
as the distances between its images in original and approximating
poses.
4Aligned to the axes of global coordinate system.
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Computation of Screw Parameters s, p, d and b

Suppose that two poses of an object at time time t = 0 to t = 1 are
given and we want to find a screw motion that interpolates them.
In this section, we briefly discuss computing such screw parame-
ters. Full description of computing pose interpolating screw pa-
rameters can be found in [48]. Let Rx(t),Ry(t),Rz(t) represent
respectively the first, second, and third columns of R(t) and let
∆Rx,y,z ≡ (Rx,y,z(1)−Rx,y,z(0)). Fig. 3 illustrates these vectors.
Then the rotation axis and rotation angle can be computed as

s = s̃/|s̃| ,where s̃ = ∆Rx ×∆Ry +∆Ry ×∆Rz +∆Rz ×∆Rx

b = 2sin−1 |∆Rx|/2
|s×Rx(0)|

(1)

We have expressed s̃ as the sum of three cross-products, so as to
guarantee that the formula works in all situations and gives the
maximum accuracy. Note however that at most one of ∆Rx, ∆Ry,
or ∆Rz can be null and therefore at most two of the cross-products
can be null. Therefore, if ∆Rx and ∆Ry are both not null, we could
also compute s̃ as ∆Rx ×∆Ry.

After computing the screw axis direction vector s and rotation
angle b, a point on the screw axis p and translation d can be com-
puted. Consider a point o in the object. Let o(t) be the position of
o at time t. Since poses of time t = 0 and t = 1 are given, o(0) and
o(1) are also given. From Fig. 3, d and p can be simply computed
by

d = (o(1)−o(0)) · s

p =
1
2

(
o(1)+o(0)+

s× (o(1)−o(0))
tan (b/2)

)
(2)

Early Rejection Tests
In this section, we propose a series of simple tests for identifying
situations where collision is clearly impossible. We assume that,
in a direct pose interpolating screw motions, the magnitude of the
rotation angle b is less than π , without loss of generality. When
expressed in a relative coordinate of B, object A moves along a
relative screw motion and object B is static. We assume for sim-
plicity that the boundaries of both objects have been triangulated
and that the objects are initially disjoint. (The latter conditions
may be tested using a static interference test.) We must test for
vertex/triangle, triangle/vertex, and edge/edge collisions. Since the
triangle/vertex case can be converted to a vertex/triangle case by
swapping the roles of A and B, or equivalently by inverting s, there
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Figure 3: Computation of screw parameters s,p,d,b

are only two different cases to consider. If the two objects have n
and m vertices, O(nm) pairs of entities need to be tested. We de-
scribe here quick rejection tests. They could be combined with hi-
erarchy based algorithms, such as those based on sphere hierarchies
[30], for example. Redon et al also proposed collision predictions
with moving hierarchical bounding spheres and boxes in [45, 46].

Rejection Tests for Entire Objects
• We first check the collision between the bounding sphere,

Sph(oB,rB), of B and the sphere, Sph(oS,rS), that encloses
the volume swept by a bounding sphere of A. The symbols
o and r with the appropriate subscripts represent respectively
the centers and radii of these spheres. As is illustrated in
Fig. 4, center and radius of Sph(oS,rS) are computed as oS =
p′ +d/2 s and rS = rA +

√
d2/4+ |oA −p′|2. The rejection

condition is |os −oB| > rB + rS

• If the two bounding spheres are intersecting, we check whether
the sphere around B and the infinite cylinder centered around
the axis of the screw and containing the Sph(oA,rA) intersect.
First, the distance between the screw axis and the center of
the bounding sphere of B is computed. The rejection condi-
tion is

| −→
oBp − −→

oBp ·s s| > |oA −p′|+ rA + rB (3)

If |p′ −oA| is larger than rA, the following condition can also
be used as a rejection test, identifying the cases where B lies
inside a shrunken version of the cylinder.

| −→
oBp − −→

oBp ·s s| < |oA −p′|− rA − rB (4)

• Finally, the planes that cap the finite cylinder that contains
the volume swept by the sphere around A are considered. If
|(oB −oS) · s| > d/2+ rA + rB, there is no intersection.

Vertex/Triangle rejection tests
If the above tests fail to reject the pair of objects, we test for colli-
sion between the individual pairs of elements of their boundaries.
First we test all vertex/triangle and triangle/vertex pairs. As de-
picted in Fig. 5, the following rejection situations for a vertex and
triangle pair are considered.

• After projecting the vertices of a triangle to the screw axis,
the distances to the cylinder that contains the helix along
which q moves are tested. If (q0 − vi) · s > 0,∀i = 1,2,3
or (q0 −vi) · s < −d,∀i = 1,2,3, then there is no collision.
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Figure 4: Trivial rejections: cylinder/sphere collision
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Figure 5: Trivial rejections: vertex/triangle

• Rejection is also possible when the triangle lies inside the
cylinder. If |(vi−p) ·s|< |(q0−p) ·s|,∀i = 1,2,3, then there
is no collision.

• Trivial rejection is also possible when the triangle is out of
the angle swept by the vertex as projected on a plane per-
pendicular to the screw axis. From the plane equations that
include the screw axis, q0 and q1, if 0 ≤ b ≤ π,(q0 −p)×
s · (vi −p) < 0,∀i = 1,2,3 or (q1 −p)× s · (vi−p) < 0,∀i =
1,2,3, there is no collision. If π < b < 2π , the six conditions
must be satisfied at the same time, i.e., if (q0 −p)× s · (vi −
p) < 0 and (q1 −p)× s · (vi −p) > 0,∀i = 1,2,3, there is no
collision.

Edge/edge rejection tests
Finally, we develop rejection tests for edge/edge pairs. Assume
that an edge of A having vertices a1 and a2 is moving along a screw
segment. Let b1 and b2 be vertices of an edge of static object B.
For convenience, define the two radii as rmin = min((a1,2 −p) · s)
and rmax = max((a1,2 −p) · s).

• If the projected line segment does not intersect with the cylin-
drical annulus, there is no collision. The rejection condition

d

s

a1

a2 = a1 + la

b1
b2 = b1 + lb

p′ = p+
−→
pa1 ·s s

b′
i = p+

−→
pbi ·s s

Figure 6: Trivial rejections: edge/edge

is (a1,2 −b1,2) · s > 0 or (a1,2 −b1,2) · s < −d.

• When the edge b1b2 is inside the annulus, there is no colli-
sion. The rejection condition is |(b1,2 −p) · s| < rmin.

• When the minimum distance between the edge b1b2 and the
screw axis is larger than rmax, there is no collision. Let n =
s× lb/|s× lb| be the common normal of the screw axis and
b1b2. Then the minimum distance is γ for some t and β that
can satisfy the equation p + ts + nγ = b1 + lbβ . The reject
condition is |γ | = |(b1 −p)× s · lb/(n× s · lb))| > rmax.

Collision Time and Contact Calculation
As justified above, when the trivial rejection test fail, we need to
test for the following collision cases: vertex/triangle and edge/edge.
For each case, the collision condition is formulated as a function of
time and is solved numerically using a Newton’s iterative method
with the careful choices of initial guesses.

Screw Trajectory in Analytic Form
Each point of an object undergoing a screw motion moves along a
helix around the screw axis, which contains a fixed point p and has
the direction s as illustrated in Fig. 7. Our deterministic collision
prediction is based on the Rodrigues equations [8]. Let q0 be the

q′(t)

q(t)

q0 = q(0)

p

p′

−→
pq0

−→
p′q0

−→
p′q0 ×s

tb

ds

s

r

r sin(tb)

r cos(tb)

Figure 7: Rotation and projection of a point q0

initial position and q(t) be the position at time t. Let p′ be an
orthogonal projection of q0 onto the screw axis and q′ be q0 rotated

about s by the angle tb. We first derive
−→
p′q′= q′ −p′, which is the



rotational motion of vector from p′ to q0 about s by the angle tb.
Assuming |s| = 1, from Fig. 7,

−→
p′q′= q′(t)−p′ = r cos(tb)

−→
p′q0

r
+ r sin(tb)

−→
p′q0 ×s

r

= cos(tb)
−→

p′q0 +sin(tb)
−→

p′q0 ×s

(5)

The vector from p to q′(t) can be computed as

−→
pq′ =

−→
p′q′ +(

−→
pq0 ·s)s

= cos(tb)
−→
pq0 +sin(tb)

−→
pq0 ×s+(1−cos(tb))(

−→
pq0 ·s)s

≡ �φ (
−→
pq0,tb)

(6)

where we defined a new notation�φ (a,tb) as a vector a rotated about

the screw axis by the angle tb. From (5), q′(t) = p+
−→
pq′= p +

�φ (
−→
pq0,tb). The screw trajectory q(t) can be obtained by adding

the translation vector tds.

q(t) = tds+q′(t) = p+ tds+�φ (
−→
pq0,tb) (7)

Vertex/Triangle Case
The plane that contains a triangle is defined by a unit normal ns and
a signed distance ds from the origin. Any point q in this plane equa-
tion satisfies ds +q ·ns = 0. The intersection between this plane and
the screw trajectory can be calculated by substituting equation (7)
into this plane equation.

0 = ds +p ·ns + td (s ·ns)+�φ (
−→
pq0,tb) ·ns (8)

We can rewrite (8) in the following form

f (t) = c0 +c1t +c2 cos(tb)+c3 sin(tb)
= c0 +c1t +Acos(tb−θ )

(9)

Where the coefficients are given by 5

c0 = p ·ns +(
−→
pq0 ·s)(s ·ns)+ds , c1 = d s ·ns

c2 =
−→
pq0 ·ns +(

−→
pq0 ·s)(s ·ns) , c3 = (

−→
pq0 ×s) ·ns

A =
√

c2
2 +c2

3 , θ = tan−1
2 (c3,c2)

(11)

Since f (t) does not have an analytic solution, we use Newton it-
erations. Consider extremal points of f (t) where f ′(t) = 0. Since
f (t) is monotonic between these points, if the signs of at two con-
secutive extremal points are identical, there is no solution between
them. If the signs are different, there is one solution. The extremal
points computed from the condition f ′(t) = c1−Absin(bt−θ ) = 0
are

t = (θ +(−1)mα +mπ)/b , α = sin−1
( c1

Ab

)
(12)

where m is integer. Define m1 to be the smallest m such that t > t0.
Then m1 can be calculated as

m1 = min

(
2

⌈−θ −α +bt0
2π

⌉
,2

⌈−θ +α +bt0
2π

− 1
2

⌉)
(13)

5These coefficients can also be derived in the local coordinate sys-
tem (i, j,k,o) of the screw, where o = p′,k = s, and i is parallel to
p′q0. The screw trajectory is q(t) = |q0|cos(tb)i + |q0|sin(tb)j +
tdk. The screw intersects plane ds +qns = 0 for values of t satis-
fying

ds +(|q0|cos(tb), |q0|sin(tb),td) ·ns = 0 (10)
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Figure 8: Vertex/Triangle collision.
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where it is assumed that b > 0 without loss of generality. Once we
find m1, we can increase it by one to calculate the next extremal
point and then compare the signs of f (t) at these two points. If
the signs are different there is one solution and we need to perform
Newton iterations starting with the inflection points as the initial
guess, which can be computed from f ′′(t) = −Ab2 cos(bt−θ ) = 0
that yields bt − θ = nπ + π/2 where n is integer. We have the
inflection points at

t =
θ +nπ +π/2

b
(14)

We start our root-finding process with n1, the smallest n such that
t ≥ 0, which is computed as

n1 =
⌈
−1

2
− θ

π

⌉
(15)

Note that in pose interpolating screw motion, b ∈ [−π,π] and there
could be up to two inflection points in the interval and we need
to start from these two points. Also, note that Newton iteration in
general converges in three to four iterations.

Whenever a new helix/plane intersection point is found, a trian-
gle containnment test is performed to ensure that the vertex actually
collides with the triangle. If the intersection lies inside the triangle,
the search is stopped. Fig. 8 and 9 show the trajectory and collision
points in 3D on the right and the plot of the f (t) with its two roots
in the left. Once the solution is found, only the roots that pass the
the triangle inside test are accepted. If more than two roots passes
the inside test, we choose the one with smallest t since only the first
collision is interesting.

Edge/Edge Collision Case
Let (a1,a2) be an edge of A and (b1,b2) be an edge of B. Let
la = a2 − a1 and lb = b2 − b1. We express a point on the edge
of A as a1 + αla and a point on the edge of B as b1 + β lb, where
0 ≤ α,β ≤ 1. Let qα(t,α) be the point a1 + αla transformed by
the screw motion at time t. Then, the collision detection problem
amounts to finding three variables t,α and β for which qα(t,α) =
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Figure 10: Edge/Edge collision.

b1 +β lb. qα can be calculated by substituting a1 +αla into (7),

qα(t,α) = qa(t)+α�φ (la,tb) (16)

where qa(t) and �φ(la,tb) are defined as

qa(t) = p+ tds+�φ (a1,tb)
�φ(la,tb) = cos(tb)la + sin(tb)la × s+(1−cos(tb))la · s s

(17)

Note that �φ(la,tb) is the transformed la at time t. The collision
condition is

qα(t,α) = qa(t)+α�φ (la,tb) = b+β lb (18)

To eliminate α , we take the cross product with �φ(la,tb), yielding
qa ×�φ(la,tb) = b×�φ(la,tb)+β lb×�φ(la,tb) and then we take the
dot product with lb resulting in qα ×�φ(la,tb) · lb = b×�φ (la,tb) · lb.
Using the vector identity u×v ·w = u ·v×w, this can be written as

f (t) ≡ (qa −b1) · (�φ(la,tb)× lb) = 0 (19)

Using vector identities6 and assuming |s| = 1, f (t) can be simpli-
fied to the following form

f (t) = c0 +(c1 +c3 t)cos(tb)+(c2 +c4 t)sin(tb) (20)

with the coefficients 7

c0 =
−→
pb1 ·(lb × s)(la · s)+ −→

pa1 ·(la × s)(lb · s)
c1 = (

−→
pa1 ·s s−

−→
pb1) · (la × lb)− (

−→
pa1 +

−→
pb1) · (lb × s)(la · s)

c2 = − −→
pa1 ·(la × (lb × s))+

−→
pb1 ·(lb × (la × s))

c3 = d s · la × lb
c4 = d (la × s) · (lb × s)

(21)

To find the solution, we perform Newton iterations with initial
guesses that uniformly sample the search interval at a frequency
five times larger than b/2π , the period in f (t). Note that since
b ∈ [−π,π] for pose interpolating screw motion, we may need up
to three initial guesses. Once a solution is found, α and β can be

6 u · (v×w) = (u×v) ·w , u× (v×w) = (u ·w)v− (u ·v)w , and
(u×v) · (u×w) = v ·w− (u ·v)(u ·w)

7Similarly to (10), these coefficient can be computed after the rel-
evant transformation that aligns s with z axis and a1 onto x axis.
Note that qa and �φ(la,tb) are a1 and la at time t.

computed as

α =
((b1 −qa)× lb) ·

(
�φ (la,tb)× lb

)
|�φ(la,tb)× lb|2

β =

(
qa +α�φ (la,tb)−b1

)
· lb

|lb|2

(22)

We are only interested in solutions where t,α,β ∈ [0,1]. Note that
singular situations such as zero length edge or parallel edge may
be ignored since they are detected by vertex/triangle collision. Fig.
10 shows an example of a collision between two edges. In the left
figure, red pluses are the initial guesses and red hexagons are the
solutions found. Among these solutions, only the ones that satisfy
0 ≤ α,β ≤ 1 are accepted as valid contacts. Finally, the one with
smallest t is reported as the collision time.

Results
To report the execution times and the benefits of our rejection tests,
50,000 random cases were generated and tested on an Pentium4
2.5GHz PC. The two polyhedra shown in Fig. 1 were used. The
object A is placed at the origin at t = 0 and moves along a fixed
screw trajectory with parameters p = [3,3,3], d = 6, b = 2π , and
s = [1,1,1]/

√
3. The object B is placed in arbitrary orientations

and positions in the cube of size 15, centered at the origin, but
outside of a cube of size 5 centered at the origin, to avoid ini-
tial interference with A. A has 80 vertices, 156 triangles and 234
edges. B has 85 vertices, 166 triangles and 249 edges. There-
fore, there are 13,280 vertex/triangle, 13,260 triangle/vertex and
58,266 edge/edge pairs. If we treat the triangle/vertex case as ver-
tex/triangle, there are 26,540 triangle/vertex pairs.
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Figure 11: Left: with all types of rejections when objects may
or mat not collide. Right: with vertex/triangle and edge/edge
rejections when objects collide.

The left plot in Fig. 11 shows the timings for all colliding and
non-colliding cases including the sphere/cylinder rejection. This
results show that 50% of the cases were rejected by our cylin-
der/sphere object-pair rejection test. The execution time of these
cylinder/sphere test is negligible. Right plot in Fig. 11 is results
only for the cases when a collision actually occurred between the
two objects. In these cases, 50.5% of the vertex/triangle and 66%
of the edge/edge tests were rejected thanks to the corresponding
rejection tests discussed earlier. The early rejection results in a
speedup of 55%. The average execution time for rejection tests
on 26,540 vertex/triangle and 58,266 edge/edge pairs was 32.8ms,
which yields about 0.39µs for a single pair. If all the rejection tests
failed, Newton iteration is performed. The execution time for com-
puting an exact contact points by root finding is 9.5 µs in average.



Conclusions
The closed form expression of the trajectory of a point under a
screw motion is used to predict the collision time and contact point
between two polyhedra, whose relative motion is approximated
by one or several screw motion segments. Univariate equations
for collision conditions are derived for the vertex/triangle and the
edge/edge collision cases. Several trivial rejection cases are pro-
posed that exploit the properties of screw motions. Our tests show
that early rejection tests speed up the computation by 55% in cases
where a collision occurs.
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