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Interactive Continuous Collision
Detection Using Swept Volume
for Avatars

Abstract

We present an interactive algorithm for continuous collision detection between a
moving avatar and its surrounding virtual environment. Our algorithm is able to
compute the first time of contact between the avatar and the environment interac-
tively, and also guarantees within a user-provided error threshold that no collision
ever happens before the first contact occurs.

We model the avatar as an articulated body using line skeletons with constant off-
sets and the virtual environment as a collection of polygonized objects. Given the
position and orientation of the avatar at discrete time steps, we use an arbitrary
in-between motion to interpolate the path for each link between discrete instances.
We bound the swept space of each link using interval arithmetic and dynamically
compute a bounding volume hierarchy (BVH) to cull links that are not in close
proximity to the objects in the virtual environment. The swept volumes (SVs) of
the remaining links are used to check for possible interference and estimate the
time of collision between the surface of the SV and the rest of the objects. Further-
more, we use graphics hardware to accelerate collision queries on the dynamically
generated swept surfaces.

Our approach requires no precomputation and is applicable to general articulated
bodies that do not contain a loop. We have implemented the algorithm on a 2.8
GHz Pentium IV PC with an NVIDIA GeForce 6800 Ultra graphics card and applied
it to an avatar with 16 links, moving in a virtual environment composed of hun-
dreds of thousands of polygons. Our prototype system is able to detect all contacts
between the moving avatar and the environment in 10–30 ms.

1 Introduction

Collision detection is a fundamental geometric problem that arises in
many applications such as virtual reality (VR), physically-based modeling, ro-
botics, computer-aided design, and so on. Particularly in VR applications, sim-
ulating the physical presence of a virtual environment is crucial for enabling
VR users to be immersed in the simulated environment. In order to simulate
the virtual presence, fast and accurate collision detection is required so that the
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behavior of the avatars and objects in the virtual envi-
ronment can correctly mimic the real world. As we sim-
ulate the avatar’s motion and behavior in a virtual envi-
ronment, it is important to check for potential
interference with the rest of the environment.

The problem of interference detection has been ex-
tensively studied in the literature. At a broad level, these
algorithms can be categorized into specialized algo-
rithms for convex primitives and general techniques for
arbitrary polygonal models. However, there are two ma-
jor limitations in using these algorithms for simulating
the avatar’s motion in the virtual environment. First of
all, most of the algorithms check for interference only at
discrete time intervals. As a result, the existing ap-
proaches can miss a collision between two sampled time
instances. Such cases can arise frequently for fast moving
avatars poking through thin objects or virtual objects
moving at a high speed. The position and orientation of
the avatar is typically measured at fixed time intervals
using external tracking devices. For example, it is possi-
ble that some positional data arrives late at the client
because of high latency and is therefore discarded. In
these cases, it is possible that the avatar’s arms or limbs
have collided with the virtual environment in between
time steps, as shown in Figure 1. To overcome this limi-
tation, we need collision detection algorithms that
model the avatar’s motion as a continuous path and that
check for interference along the path.

The second limitation of existing algorithms is the
high preprocessing cost, such as constructing bounding
volume hierarchies of complex objects. As we dynami-
cally model the avatar’s motion between successive in-
stances, these techniques cannot be directly applied for
real-time collision detection. Moreover, since our avatar
model has many articulated links, we cannot completely
precompute bounding volume hierarchies (BVHs) of
the avatar as preprocessing and the runtime updates to
the BVHs should be followed.

1.1 Main Results

We address the problem of continuously detecting
collisions between a moving avatar and its surrounding
virtual environment. In order to enable real-time con-
tinuous collision detection for an avatar in a virtual envi-
ronment, we model the avatar using a relatively simple
model, a line-based skeletal representation. More specif-
ically, each body part (e.g., arm, limb) in the avatar is
modeled by using a straight-line segment with some
thickness or offset radius, that is, line swept sphere
(LSS), and these line segments are linked together to
form an articulated body representing the avatar as
shown in Figure 2. The LSS is defined as the volume
created by sweeping a sphere along a line segment
(Larsen, Gottschalk, Lim, & Manocha, 2000). Even

Figure 1. This figure illustrates the benefits of our continuous collision detection algorithm over discrete

methods. The left image shows two successive configurations of the avatar that highlight a fast arm

motion. No collision is detected at these discrete time steps. The middle image shows the interpolating

path used to detect a collision with the environment between these two configurations. The right image

shows the time-slicing step used to compute the time of collision and the avatar position at that time.

This image also highlights the time interval over which there is no collision with the virtual environment.
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though our chosen model for an avatar is simplistic, it is
sufficiently effective for VR applications.

Furthermore, we assume that the configuration (i.e.,
position and orientation) of the line segment is inter-
mittently available at discrete time steps and obtained by
motion capture or tracking devices. Given the stream of
data as a sequence of configurations, we interpolate the
in between path for each link using an arbitrary in be-
tween motion. Thus, at a given time t, we analytically
represent the configuration Ci(t) of a line segment i.
Given the continuous, interpolated stream of motion
sequences of a human avatar, the collision detection
problem reduces to checking whether the hierarchy of
moving LSSs collides with the underlying environment
and reporting the first estimated time of collision.

In order to check for collisions between a moving
LSS and the environment, we compute a polygonal ap-
proximation of the swept volume (SV) of the LSS. We
initially use the interpolated motion data stream as a
sweeping trajectory, and check for collisions between
the SV and the rest of the environment. Since the SV is
dynamically generated, we use the graphics hardware to
perform collision queries (Govindaraju, Redon, Lin, &
Manochan, 2003). These queries are computed at an
image space resolution. To accelerate the computations,

we also generate a dynamic BVH of the swept volumes
based on interval arithmetic. It is used to cull links that
do not interfere with the environment. We have imple-
mented the algorithm on a 2.8 GHz Pentium IV PC
with an NVIDIA GeForce 6800 Ultra graphics card and
applied it to an avatar model with 16 links. The virtual
environment consists of hundreds of thousands of trian-
gles and our algorithm is able to detect all contacts be-
tween the moving avatar and the environment in 10–30
ms and report the first time of contact, as shown in Fig-
ure 1.

1.2 Organization

In Section 2, we briefly review the earlier work
on SV computation, collision detection and graphics
hardware-based geometric computations. Section 3
gives an overview of our approach. In Section 4, we
present our motion formulation for interpolating any
two successive sets of links positions and orientations of
the moving articulated figure, and Section 5 describes
our algorithm to construct a BVH and perform culling
using interval arithmetic. Section 6 presents our approx-
imation algorithm to compute the SV of LSS, and Sec-
tion 7 describes the graphics hardware-based collision
detection algorithm. In Section 8, we describe its imple-
mentation and highlight its performance on a complex
virtual scene.

2 Earlier Work

In this section, we give a brief survey of the earlier
work related to continuous collision detection, SV com-
putation, and geometric computation using graphics
hardware.

2.1 Continuous Collision Detection

Most of the prior work on collision detection has
focused on checking for collisions at discrete time in-
stances. Check out Lin and Manocha (2003) for a re-
cent survey. These include specialized algorithms for
convex polytopes that exploit coherence between suc-

Figure 2. Skeletal representation of a human avatar.
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cessive time steps, general algorithms for polygonal or
spline models that precompute a spatial partitioning or
BVHs.

A few algorithms have been proposed for continuous
collision detection (CCD). These approaches model the
trajectory of the object between successive discrete time
instances and check the path for collisions. More specifi-
cally, there are four different approaches presented in
the literature: The algebraic equation solving approach
(Redon, Kheddar, & Coquillart, 2000; Canny, 1986;
Kim & Rossignac, 2003), the swept volume (SV) ap-
proach (Abdel-Malek, Yang, Blackmore, & Joy, 2006),
the adaptive bisection approach (Redon, Kheddar, &
Coquillart, 2002; Schwarzer, Saha, & Latombe, 2002),
and the kinetic data structures (KDS) approach (Agar-
wal, Basch, Guibas, Hershberger, & Zhang, 2000; Kirk-
patrick, Snoeyink, & Speckmann, 2000). In practice,
especially for 3D real time applications, the adaptive
bisection approach has been shown to be useful.

Not much work has been reported on continuous
collision detection for articulated models. The pre-
liminary version of our work has appeared in Redon,
Kim, Lin, and Manocha (2004a). Extending from
Redon et al. (2004a), in this article, we give a more
detailed explanation of how we interpolate the mo-
tion of an avatar (Section 4) and how we compute a
dynamic AABB using interval arithmetic (Appendix).
Moreover, we provide an improved solution to esti-
mate the time of collision (Section 7) unlike the one
presented in Redon et al. (2004a) as well as a method
to compute the contact zone and penetration depth
between a moving avatar and the surrounding envi-
ronments. We also test our method with a new set of
complex benchmarking models and use constrained
dynamics to simulate the collision response from an
avatar to the environment using the result of penetra-
tion depth computation (Section 8). Finally, in Sec-
tion 6, we provide a better analysis on the error
bound of our swept volume formulation.

The extension of Redon et al. (2004a) to general ar-
ticulated models has been presented in Redon, Kim,
Lin, and Manocha (2004b); however, its performance is
too slow for interactive VR applications (e.g., Liu &
Badler, 2003; Lok, Naik, Whitton, & Brooks, 2003).

2.2 Swept Volume Computation

SV has been widely investigated in various disci-
plines such as geometric modeling, computer graphics,
computational geometry, and robotics.

The mathematical formulation of the SV problem has
been studied using the singularity theory, sweep differ-
ential equation, Minkowski sums, envelope theory, im-
plicit modeling and kinematics. A survey of these for-
mulations is given in Abdel-Malek et al. (2006).
Algorithms to compute and visualize the boundaries are
presented in Kim, Varadhan, Lin, and Manocha (2003)
and Rossignac and Kim (2000). However, they are not
fast enough for interactive applications.

A few algorithms have been proposed to use SVs for
collision detection. Kieffer and Litvin (1990) applied a
SV-based interference detection to moving mechanical
solids like gears; Cameron (1990) suggested a collision
detection algorithm using four dimensional SV in the
time and space domain, Xavier (1997) extended the
GJK collision detection algorithm to handle a linear SV
problem, and Foisy and Hayward (1994) also proposed
a SV-based collision detection. Korein (1985) used a
SV-based formulation to compute the reachability of a
robot. However, none of these approaches address real-
time collision detection for articulated bodies based on
the SV.

2.3 Geometric Computations Using
Graphics Hardware

Interpolation-based graphics hardware is increas-
ingly being used for geometric applications (Manocha,
2002). This is mainly due to the recent advances in the
performance of the graphics processors as well as sup-
port for programmability. They have been used for visi-
bility and shadow computations, CSG rendering, and
proximity queries including collision detection, mor-
phing, object reconstruction, and so on. A recent survey
on different applications is given in Harris (2003) and
Theoharis, Papiannou, and Karabassi (2001). These in-
clude different algorithms for collision detection be-
tween closed objects (Hoff, Zaferakis, Lin, & Manocha,
2001; Rossignac, Megahed, & Schneider, 1992), as well
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as a recent algorithm for general and deformable objects
that utilizes the visibility queries (Govindaraju et al.,
2003; Govindaraju et al., 2005). All of these algorithms
perform computations in the image space and their ac-
curacy is governed by the underlying pixel resolution.

3 Algorithm Overview

In this section, we give an overview of our ap-
proach to perform collision detection between a moving
avatar and the virtual environment. We initially describe
the representation of the avatar model, discuss the com-
plexity of performing continuous collision detection on
the model, and present our pipeline that proceeds in five
stages.

3.1 Notation

We begin this section by explaining the notation
used throughout the paper. In the following section, we
describe the representation for an articulated avatar
model that we use in the paper.

We use boldface type to distinguish a vector from a
scalar value (e.g., a vector for the origin o). Let ui* de-
note the 3 � 3 skew-symmetric matrix such as ui*x �

ui � x for every 3D vector x. If ui � (ui
x,ui

y,ui
z)T, then:

ui* � � 0 � ui
z ui

y

ui
z 0 � ui

x

� ui
y ui

x 0
� (1)

We assume that there is no loop in the graph describ-
ing the articulated avatar. Consequently, each link has a
unique parent link, except for the root node which has
no parent. On the other hand, any link can have any
number of children, as long as there is no loop induced.
We first begin by expressing the motion of each link in
the reference frame of its unique parent. The motion of
the root node is similarly expressed in the global frame.
For the sake of simplicity of notation, we assume that
the index of link i’s parent is i �1. This can be easily
modified when a parent has multiple children per link.
Figure 3a illustrates our notation for a link i moving
within the reference frame of its parent.

For a given node i, let Pi denote the reference frame
associated with it. We assume that, in its local reference
frame, the line segment is positioned along the x-axis
between the two endpoints Li

a and Li
b:

Li
a � �li

a

0
0
� and Li

b � �li
b

0
0
� (2)

Moreover, we denote the position and orientation of
Pi relative to Pi�1 as Ti

i�1 and Pi
i�1, respectively. Also,

the motion of Pi relative to Pi�1 is described as Mi
i�1.

3.2 Complexity of Continuous Collision
Detection

The main challenge in our continuous collision
detection algorithm is to compute the swept volume of
an avatar consisting of many LSSs and quickly check for
its intersection with other objects in the environment.
As will be explained in detail in Section 6, computing
swept volume of an LSS requires calculating the offset
surface of a ruled surface. However, it is difficult to
compute the exact offset surface and check for interfer-
ence. This is due to the following reasons:

● It is challenging and still an open problem to com-
pute the exact offset surface where the progenitor

Figure 3. (a) Link i is moving in the reference frame of its parent.

The initial and final positions are outlined. (b) Offset of the rule

surface. (c) Pipe surfaces.
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surface includes nonrational functions. Even when
the progenitor can be described using regular
NURBS, the offset surface can have holes for convex
edges and vertices and loops for concave edges and
vertices (Farouki, 1986). Therefore, the offset sur-
face can contain self-intersections and singularities
(Hoffmann, 1989) and thus require costly trim-
ming or arrangement computations to obtain a final
surface representation. As a result, computing an
explicit representation of the offset surface is non-
trivial.

● The problem of performing exact collision detec-
tion between high order or nonlinear surfaces is
considered hard in practice (Lin & Manocha,
2003). The underlying algorithms suffer from ro-
bustness and accuracy problems.

● The VR application demands interactive perfor-
mance, which calls for a 30 Hz or higher update
rate. It is a major challenge to perform exact colli-
sion detection between curved primitives at such
rates.

3.3 Our Approach

In order to meet the above challenges, we present
an approximate but fast solution to the problem. The
main idea is to approximate the SV of LSS and use the
graphics processors to perform the collision queries. To
accelerate this process, we also build a dynamic BVH
based on interval arithmetic. We apply it to the motion
of each link in the articulated figure, and prune away
some links that do not collide with the environment.
Moreover, we simplify the motion trajectory by using an
arbitrary in between motion, and this reduces the com-
putation time for both approximating the offset surface

and the BVH construction. Our overall algorithm uses a
five-stage pipeline (shown in Figure 4 and discussed
below).

3.3.1 Motion Interpolation. Given two succes-
sive available configurations of the avatar, we determine
an interpolating path from the initial to the final config-
uration.

3.3.2 BVH Construction. For each link in the
articulated model, we use interval arithmetic to com-
pute an enclosing bounding box, and recursively con-
struct a dynamic BVH around the entire avatar.

3.3.3 BVH Culling. Based on the BVH, we use
conservative tests to cull some of the links that do not
collide with objects in the environment.

3.3.4 SV Generation. For the remaining links,
we compute a polygonal approximation of their SV by
tessellating the offset surface.

3.3.5 Collision Checking and TOC Estima-
tion. We use graphics hardware to check whether the
approximate SV collides with objects in the environ-
ment. These queries are performed at an image-space
resolution. Our algorithm also estimates the time for
each collision.

4 Motion Interpolation

In this section, we describe a motion formulation
to compute a continuous path for each LSS between
discrete time instances. In particular, we use an arbitrary

Figure 4. The overall pipeline of our collision detection algorithm. Different stages are performed on the

CPU and the graphics processor.
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in between motion to interpolate successive configura-
tions of the avatar (Redon et al., 2000; Redon et al.,
2002). As is the case in many applications, the actual
motion of the avatar is not known and we are only given
its position and orientation at discrete time instances.
This is mainly due to the fact that the tracking device
can sample positions and orientations only at discrete
time steps. Moreover, the avatar is simulated as a virtual
object. It is modeled as part of a constraint-based multi-
body dynamics simulation system. In most cases, the
differential equations governing the system’s dynamics
are solved using discretized techniques (e.g., Euler or
Runge-Kutta methods). As a result, we do not have a
closed-form expression of the avatar’s motion.

Given these constraints, we choose a motion formula-
tion to interpolate between different avatar configura-
tions. The goal is to use a formulation that is general
enough to interpolate between any two successive con-
figurations and preserves the rigidity of the links, yet is
simple enough to allow us to perform the various steps
of our collision detection algorithm. We assume that the
links are not deformed during the interpolation, as is
the case for linear interpolation between the endpoints’
initial and final positions. Note that the arbitrary in be-
tween motion (Redon et al., 2002) used to detect colli-
sions is also used to compute a position of the object at
the time of collision. This ensures that all the objects in
the scene are maintained in a consistent state and there
are no interpenetrations. Next, we give details of the
specific arbitrary in between motion (Redon et al.,
2002) used to compute the path between successive
instances.

Let’s now describe the motion of the reference frame
of link i, Pi, relative to that of link i �1, Pi�1. We use
the 3D vector ci and the 3 � 3 matrix Ri to denote the
position and orientation of Pi relative to Pi�1 at the be-
ginning of the time interval [0, 1]. We assume that the
motion of Pi relative to Pi�1 is composed of a rotation
of angle �i around an axis ui, and of a translation si. The
parameters ci, Ri, ui, and si are constants for a given
time step and are expressed in Pi�1. Moreover, we as-
sume that Pi moves with constant translation and rota-
tion velocities, as shown in Figure 3a.

The position of Pi relative to Pi�1 for a given time t
in [0, 1] is thus:

Ti
i�1�t� � ci � tsi (3)

The orientation of Pi relative to Pi�1 is given as:

Pi
i�1�t� � cos��it� � Ai � sin��it� � Bi � Ci (4)

where Ai, Bi, and Ci are 3 � 3 constant matrices that
can be computed at the beginning of the time step:

Ai � Ri � ui � ui
T � Ri

Bi � ui* � Ri (5)

Ci � ui � ui
T � Ri

Consequently, the motion of Pi relative to Pi�1 is de-
scribed by the following 4 � 4 homogeneous matrix:

Mi
i�1�t� � � Pi

i�1�t� Ti
i�1�t�

�0, 0, 0� 1 � (6)

resulting in coordinates in the reference frame of the
parent link Pi�1. Consequently the matrix:

Mi
0�t� � M1

0�t� � M2
1�t� . . . Mi

i�1�t� (7)

describes the motion of link i in the world frame.
Note that our formulation makes it extremely simple

to compute all the motion parameters si, ui, and �i for a
given time step. For a given link i, assume that ci

0 and
ci

1 (respectively Ri
0 and Ri

1) are the initial and final po-
sitions (respective orientations) of Pi relative to Pi�1.
Then si � ci

1 � ci
0, and (ui, �i) is the rotation extracted

from the rotation matrix Ri
1(Ri

0)T. An example of mo-
tion interpolation between successive instances of an
avatar is illustrated in Figure 5.

5 Dynamic BVH Generation and Culling

Given the motion formulation between successive
links, the next step in the collision detection algorithm
is to compute a BVH around the avatar. In this section,
we describe the dynamic BVH generation algorithm
and use it to cull some of the links that do not collide
with the environment.
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Each bounding volume (BV) in the BVH corre-
sponds to an axis-aligned bounding box (AABB). We
compute an AABB for each link that encloses its com-
plete trajectory over the time step. These leaf boxes are
then used to efficiently compute a complete hierarchy of
AABBs used to quickly cull links that are far from the
environment.

The leaf boxes are computed using interval arithmetic
(Moore, 1979). For more information about interval
arithmetic, we refer the reader to the appendix at the
end of this paper. We use interval arithmetic to bound
the functions describing the trajectories of the links that
produce the AABBs that enclose these trajectories. To
bound the trajectory, we perform elementary interval
arithmetic operations (Moore, 1979) recursively on
their expressions. We begin by bounding the sine and
cosine functions from Eq. 4 over the time interval [0,
1]. Using elementary interval operations, we bound
each component of the orientation matrices Pi

i�1(t)
over the entire time interval [0, 1]. Similarly, we use
elementary interval operations to bound the translation
components Ti

i�1(t).
Eventually, we obtain 4 � 4 homogeneous interval

matrices M̃i
i�1 whose interval components bound the

corresponding components of Mi
i�1 over the time in-

terval [0, 1]. These interval matrices are concatenated
by again performing elementary interval operations to
compute the interval version M̃i

0 of the matrix Mi
0.

By applying this interval matrix to the both endpoints
of a link, Li

a and Li
b, we obtain two 3D interval vectors

that bound the coordinates of the endpoints of the links
over the time interval [0, 1]. In other words, we obtain
two AABBs that bound the endpoints’ trajectories over
the time interval. By using a convexity argument, it can
be seen that the AABB that encloses these two boxes
bounds the entire link over the time interval. Next, we
enlarge the box by an offset equal to the radius of the
corresponding LSS to make sure that the AABB bounds
the LSS and its whole trajectory, as illustrated in the left
figure of Figure 6. Given the AABBs around the leaf
nodes, we compute the BVH in a bottom-up manner
around the entire avatar. After computing the BVH, we
recursively check for overlaps with the environment and
cull a subset of the links that do not collide with the
virtual environment, as illustrated in the right figure of
Figure 6.

6 Swept Volume Generation

In the previous section, we described an algorithm
to cull some of the links that do not collide with the
environment. In this section, we present an algorithm to
compute the SV of the LSS for the remaining links. We
compute a polygonal approximation of the SV and use
it for collision detection with the environment.

6.1 Swept Volume-based Collision
Detection

Our goal is to check collisions between moving
articulated human figures and the surrounding environ-
ment. We use a simple model of the avatar for collision
detection and formulate each joint in the articulated
figure as an LSS. As a result, the collision detection
problem reduces to checking for collision between each
moving LSS and the environment. We pose this prob-

Figure 5. Interpolation of successive instances of avatar motions.
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lem as a swept volume (SV) problem; that is, we gener-
ate the SV of each moving LSS and check the SV for
interference with the environment.

The SV is the volume created by sweeping a solid (or
surfaces) in space along some continuous trajectory.
Mathematically, the sweep equation of an object, �,
under rigid motions [�(t) and R(t)] can be expressed
as the following equation:

��t� � ��t� � R�t�� (8)

Here, �(t) and R(t) are translation and rotation matri-
ces, respectively, at time t during the sweep. Notice
that, since we are dealing with articulated bodies, the
transformation matrices, �(t) and R(t), may contain
general, nonrational functions such as a high order of
trigonometric functions. Finally, the SV is defined as
follows:

SV��� � {���t��t � �0, 1�} (9)

where we assume that the time parameter t, is normal-
ized to a unit time interval. In our formulation, the gen-
erator � is an LSS. Notice that the medial axis of an LSS
corresponds to a line segment, and conversely, the offset
surface of the line segment reconstructs the LSS. There-
fore, the SV of an LSS is equivalent to the offset surface
of the swept surface of the medial line segment. In gen-
eral, the swept surface of a line segment creates a ruled
surface (Pottmann & Wallner, 2001).

A ruled surface x(t, s) has the following form:

x�t, s� � b�t� � s��t� (10)

Here, b(t) is a directrix and �(t) is the direction of a rul-
ing line. In the case of sweeping a line segment, the di-
rectrix curve is computed by the endpoints of the line
segment at time t, and the direction of a ruling line by
the direction of the line segment at t. Therefore, given
rigid motions, we can easily determine the SV (i.e.,
ruled surfaces) of line segments.

The definition of the offset surface xd(t, s) of a given
ruled surface x(t, s) with offset distance d is expressed as
follows:

xd�t, s� � x�t, s� � dn�t, s� (11)

where n(t, s) is the unit normal vector field defined on
the surface of x(t, s), and x(t, s) is assumed to be regular;
that is, each n(t, s) is uniquely defined.

We assume that LSS with radius d follows the sweep
equation given in Eq. 8, and its medial axis at time t is
thus parameterized as x(t, s). Then, the SV of the LSS
following Eq. 8 is xd(t, s) in Eq. 11. Mathematically
speaking, our goal is to check intersections of xd(t, s)
with other objects in the environment.

6.2 Swept Volume of Line Swept
Sphere

It is well known that the envelope (or swept vol-
ume) of a moving cylinder following a continuous tra-

Figure 6. Dynamic AABB hierarchy construction and culling. The left figure illustrates an example of

AABBs that enclose the links of an avatar under motion. The right figure shows a result of the AABB

culling of an avatar with the environment; only the AABB of a couch collides with that of the avatar.
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jectory is equivalent to the offset surface of a ruled sur-
face as illustrated in Figure 3b. Moreover, the axis and
radius of the moving cylinder correspond to the ruling
line and offset radius of the ruled surface, respectively.
As a result, we can calculate the SV of a moving cylinder
with radius d by computing the offset surface of a ruled
surface with the offset distance d.

The mathematical formulation of an offset surface is
given in Eq. 11. Also notice that, in Eq. 11, xd(u, v) is
defined as a two-sided offset surface suited for our appli-
cation. It is possible that x(u, v) may contain nonregular
points. One of the conventional techniques to handle
such cases is to bound n(u, v) with a spherical polygon
(Pottmann & Wallner, 2001).

We extend the relationship between the offset of a
ruled surface and the SV of a cylinder by computing the
SV of LSS. This volume is obtained by independently
computing the SV of the cap portion of LSS and com-
puting the union with the remaining portion of LSS
(i.e., the SV of the LSS). The SV generated by the caps
of LSS is a pipe surface as illustrated in Fig. 3c. In fact,
the pipe surface is a special case of a canal surface. A
canal surface is generated by sweeping a sphere of vary-
ing radii along some continuous trajectory, C(t). A pipe
surface is a special case of the canal surface where the
radius is fixed. The parametric equation K(t, �) of a pipe
surface can be given in terms of t and � as follows (Kim
& Lee, 2003):

K�t, �� � C�t� � R�cos �b1�t� � sin �b2�t�� (12)

b1�t� �
C ��t� � C ��t�

�C ��t� � C ��t��

b2�t� �
C ��t� � b1�t�

�C ��t� � b1�t��

Here, C(t) is defined as a trajectory of the center of a
swept sphere whose radius is R, and b1(t), b2(t) form
the basis vectors of the normal plane of the spine curve
C(t). The above equation is obtained by computing the
envelope of a moving sphere centered at C(t) with a
fixed radius, R.

Once we have computed the offset of ruled surface
and pipe surface (see Figure 7), we compute the SV of

LSS by taking the union of them. In the next section,
we explain how to approximate the offset of the ruled
surface and pipe surface.

6.3 Tessellation of Swept Volume

Our goal is to approximate the offset and pipe
surfaces with piecewise planar surface patches. More
specifically, we want to tessellate these surfaces and ana-
lyze the maximum deviation error from the exact sur-
faces.

The earlier algorithms for approximating an offset
surface assume that the underlying progenitor surface is
a freeform surface such as a Bézier or NURBS surface.
Under this assumption, there are three typical ap-
proaches to approximate an offset surface (Elber, Lee,
& Kim, 1997); control polygon-based, interpolation-
based, and circle-approximation approach. In particular,
the interpolation-based approach is based on directly
sampling the positions and derivatives of the exact offset
surface and attempts to optimize the approximated off-
set surfaces (Farouki, 1986; Hoschek, 1988; Klass,
1983). We adopt this technique in our application be-
cause of its simplicity and its suitability for interactive
applications. In particular, we uniformly sample the off-
set of the ruled surface in the u and v parameter do-
main, as given in Eq. 11, and create strips of triangles by
varying one of the parameters while fixing the other
one. The tessellation of a pipe surface is performed us-

Figure 7. Computing swept volume for moving avatars. In each

figure, two instances of the same avatar under motion are shown at

the left, and the composit of the swept volume of the moving avatar

is shown at the right. For a color version of this figure, see http://

gamma.cs.unc.edu/Avatar/.
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ing a similar approach. Given the formulation in Eq. 12,
we uniformly sample the pipe surface along the t and �

parameters.

6.4 Tessellation Error Bounds

The deviation error of an approximated offset sur-
face is calculated by computing �xd(u, v) � x(u, v)� � d
or squared distance �xd(u, v) � x(u, v)�2 � d2 (Elber et
al., 1997). The error is relatively easy to compute when
the progenitor surface is represented as a Bézier or
NURBS surface. However, the progenitor surface in our
case is a non-rational surface described using trigono-
metric function. As a result, error calculation becomes
nontrivial.

Our method to derive an error bound is based on a
well-known result by Filip, Magedson, and Markot
(1986) stated as follows: Given a C2 surface f : [0, 1] �

[0, 1]3 IR3 and a error tolerance �, a piecewise linear
surface l : [0, 1] � [0, 1]3 IR3 with n and m uniform
subdivision along each [0, 1] satisfies sup � f (t, s) � l(t,
s)� 	 � when

1
8� 1

n2 M1 �
2

nm M2 �
1

m2 M3� � � (13)

where

M1 �
sup

�t, s� � �0, 1� � �0, 1� �

2f �t, s�

u2 �

M2 �
sup

�t, s� � �0, 1� � �0, 1� �

2f �t, s�

u
v �

M3 �
sup

�t, s� � �0, 1� � �0, 1� �

2f �t, s�

v2 �

In our case, f (t, s) corresponds to the offset surface xd(t,
s) of a ruled surface x(t, s) in Eq. 10 and Eq. 11. The
relationship between the derivatives of xd(t, s) and x(t, s)
can be algebraically expressed (Farouki, 1986). There-
fore, we first bound the derivatives of x(t, s) using inter-
val arithmetic, followed by bounding the derivatives of
xd(t, s). As a result, given error tolerance �, we can de-
termine the required subdivision step sizes (i.e., n, m in
Eq. 13) to tessellate the offset surface.

Another possibility to compute an error bound is to
analyze the screen space error when the approximated
surface is projected onto the screen space (Kumar &
Manocha, 1995). This projection is performed as part of
the graphics hardware based collision detection algo-
rithm. In this case, we need bounds on the derivatives
of the projected surface function. These bounds are
computed by applying interval arithmetic techniques to
the derivatives.

7 Collision Detection

In this section, we describe the final stage of our
algorithm that performs the collision queries using the
graphics hardware. We also show how we determine an
estimate of the time of impact and an approximate con-
tact information.

There are two main challenges in performing collision
detection using the SV. These include computing an
accurate, explicit representation of the SV and checking
its interference with the environment. We have de-
scribed an algorithm to compute a polygonal approxi-
mation of the SV of each LSS in the previous section.
Given the polygonal approximation, we use the graphics
processor to check for collisions with the environment.

7.1 Graphics Hardware-based
Computation

The real-time constraints for collision detection
imply that all the computations need to be performed
on the fly. As a result, we are unable to use earlier tech-
niques referenced in Section 2 that precompute hierar-
chies to speed up the runtime queries. Instead, we
choose the CULLIDE algorithm (Govindaraju et al.,
2003) that uses graphics hardware to perform interac-
tive collision detection. The basic idea of CULLIDE is
to pose the collision detection problem in terms of per-
forming a sequence of visibility queries. If an object is
classified as fully visible with respect to the rest of the
environment, it is a sufficient condition that the object
does not overlap with the environment. For those
objects that are classified as partially visible, the algo-
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rithm performs exact triangle-level intersection tests.
CULLIDE performs the visibility queries using the
graphics processors and the exact triangle-level intersec-
tion tests on the CPUs. More precisely, we perform
2.5D overlap tests between the objects on the GPU by
performing orthographic projections along the X, Y,
and Z directions. The graphics hardware is very well
optimized to perform these transformations, scan con-
verting the primitives and performing these pixel level
comparisons by using the multiple pixel processing en-
gines in parallel. In particular, we used the NVIDIA
OpenGL extension GL_NV_occlusion_query (NVIDIA
Occlusion Query, 2002) to perform the visibility que-
ries. This query is available on the commodity graphics
processors.

The main benefits of this approach include:

● The algorithm does not require any preprocessing
and can handle dynamically generated polygonal
objects obtained from the tessellation of the SV.

● The algorithm computes all overlapping objects and
triangles up to screen-space precision and does not
report any false negatives.

7.2 Estimating the Time of Collision

We first define slices of the swept-volume of the
LSS as a restriction of the swept volume to a subinterval
of the current time step. The number of slices is inde-
pendent of the tessellation parameters used to deter-
mine the approximate swept volume of the LSS. For
ease of implementation, the algorithm described in the
previous section to compute an approximate swept vol-
ume of the LSS can be used for each time slice. Assum-
ing for example that the time interval is divided into
four time subintervals, [t0, t1], . . . , [t3, t4], the geo-
metric model of the third slice includes the LSS at times
t2 and t3, as well as the offsets of the ruled surface and
the pipe surfaces over the time subinterval [t2, t3].

We apply CULLIDE separately for each potentially
colliding link. Precisely, for each potentially colliding
link, we first render in the depth-buffer the correspond-
ing potentially colliding environment obstacles (deter-
mined with AABBs during the previous step), and then

perform occlusion queries for each slice of the link. We
thus obtain an approximate collision time by determin-
ing the first colliding slice.

7.3 Approximate Contact
Determination

Once we have determined the first colliding slice,
we find an approximate contact zone by determining
the intersection between this colliding slice and the en-
vironment. As both the colliding slice and the environ-
ment are composed of triangles, this intersection is a list
of intersection segments, that is, a list of intersections
between pairs of triangles, where each pair contains one
triangle from the slice and one triangle from an environ-
ment obstacle. Figure 8 shows an example of approxi-
mate contact determination after the avatar legs have
collided with a table and a chair. The top left part of
Figure 8 shows collision between the avatar and the ta-
ble, as well as the colliding slices. The top middle part
of Figure 8 shows the valid, nonpenetrating slices only.
The top right part shows a resulting intersection be-
tween the table and the first colliding slice (the bright
white polygonal curve on the table). The bottom row in
Figure 8 shows a case of multiple links of an avatar col-
liding with a chair. When such a multiple-link collision
occurs, the performance of contact determination de-
creases linearly proportional to the number of colliding
links.

Using the intersection segments, we then determine
an approximate penetration depth and direction using
graphics hardware based computations (Redon & Lin,
2006), which can be used to perform collision response
and simulate objects’ dynamics.

8 Results and Analysis

We have implemented our collision detection al-
gorithm on a 2.8 GHz Pentium IV PC with an
NVIDIA GeForce FX 6800 Ultra graphics card. We
have applied it to an avatar with 16 links, moving in a
virtual environment composed of several hundreds of
thousands of triangles. Our method is able to detect all
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collisions between the moving avatar and the environ-
ment in 10–30 ms, resulting in a refresh rate of 30–100
frames per second. All collision queries are performed at
an image-space resolution of 1024 � 1024.

Our benchmark includes a client-server based applica-
tion. The server updates the avatar’s position every 10
ms. The collision detection module is included as part
of the client that requests new configurations when de-
sired. Figures 9 and 10 show our test environments
along with some of the avatar trajectories and interac-
tions. In Figure 9, the top row shows the avatar visiting
a room in the house model. In the middle image, the
lower right arm of the avatar collides with a music
stand. The bottom row shows the avatar in the other
room; the avatar collides with a sofa, as shown in the
last image. In Figure 10, an avatar collides with a chess-
man and as a result of collision, the chessman tumbles
down. The collision response is implemented based on
constraint-based dynamics. We use Open Dynamics En-
gine (ODE; Smoth, 2005) to implement the dynamics.
The ODE requires penetration depth information to

implement constrained dynamics for articulated bodies
and we use the penetration depth information as com-
puted in Section 7.3.

The sequence shown back in Figure 1 highlights the
benefit of our continuous collision detection method
over traditional discrete methods. The left image shows
two successive configurations of the avatar indicating a
fast arm motion. The middle image shows the SV fol-
lowing an arbitrary in-between motion specified in Sec-
tion 4. A collision is detected during the interpolation at
time UTOC. The right image shows that the backtrack-
ing step allows the algorithm to stop the avatar and to
determine a time interval [0, tc], tc � UTOC, over which
there exists a collision-free path for all its links.

Table 1 shows the average computation time required
for different steps in the house and chess models. It
highlights the time for different stages of the algorithm.
Various steps of the algorithm include updating the po-
sition of the avatar, computing its motion parameters
from two successive configurations, and determining the
swept AABBs which bound the entire trajectories of the

Figure 8. Approximate contact determination. Top left: the legs of the avatar have just collided with

the table. Top middle: the first colliding slice is determined, and only the nonpenetrating slices are kept.

Top right: the intersection between the first colliding slice and the environment obstacles is found, and

used to determine an approximate penetration depth and direction. Bottom: multiple links of an avatar

colliding with a chair.
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links using interval arithmetic. We obtain a considerable
speed-up by using a dynamically generated BVH of
AABBs. The cost of generating the BVH and perform-

ing culling with it is much smaller as compared to swept
surface computation and collision detection using
graphics hardware. A detailed analysis of the perfor-
mance of the CULLIDE algorithm is given in Govin-
daraju et al. (2003).

There is an additional benefit of a continuous colli-
sion detection framework in a client-server model. It
can easily handle the variable latency that arises due to
the underlying application or networking delays. For
example, it is possible that some positional data arrives
late at the client because of high latency and is therefore
discarded. In such cases, the continuous collision detec-
tion algorithm ensures that the received configurations
have been interpolated. This approach results in a con-
sistent state of the simulation with no interpenetration
between the objects at any time.

8.1 Error Analysis

Our algorithm is not exact. In fact, the algorithm
sacrifices exactness in order to achieve a real-time per-
formance. The errors are due to the following sources in
the algorithm:

Figure 9. The benchmark environment and the avatar model used to test the performance of our

algorithm. Top row: the avatar visiting the music room. In the middle image, the avatar’s lower right arm

collides with the music stand. Bottom row: the avatar in the living room colliding with the sofa in the

rightmost image.

Figure 10. The chessboard benchmark environment (50K triangles)

and the avatar model. Top left: the chessboard environment. Top

right: the avatar running toward a chessman. Bottom row: the avatar

collides with a chessman and the chessman tumbles down due to the

impact force.
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● Surface Tessellation Error. In Section 6.3, we
approximate the SV of LSS using planar surface
patches. As a result, we tessellate the pipe and offset
surface within some error deviation, �. Thus, if the
articulated object moves closer to some of the ob-
jects in the environment within � or penetrates the
objects by �, these collisions can be missed.

● Image Space Precision Error. We use a graphics-
hardware based collision checking algorithm to
check for an collision of the tessellated SV. As a re-
sult, the precision of the algorithm is limited by the
underlying hardware precision, such as frame-buffer
and depth-buffer resolution. However, recent re-
sults show that GPU-based interference checking
can be made conservative, so that no collision is
ever missed (Govindaraju et al., 2004).

● Floating Point Error. Essentially, the precision of
the interval arithmetic is limited by underlying
floating point precision. However, with a careful
implementation, the interval arithmetic computa-
tions can be made conservative (Snyder, Wood-
burg, Fleischer, Currin, & Barr, 1993).

9 Conclusions and Limitations

In this article, we have presented a novel algo-
rithm for continuous collision detection between a
moving avatar and the virtual environment. Given dis-

crete positions of the avatar, it uses an arbitrary in be-
tween motion to compute an interpolated path between
the instances, dynamically computes a BVH around the
links of the avatar, generates the SV of each potentially
colliding link, and finally uses the graphics hardware to
check for collisions with the environment. We have ap-
plied the algorithm to an avatar moving in a complex
virtual environment composed of hundreds of thou-
sands of polygons. Our initial results are quite promis-
ing and the algorithm is able to compute all the con-
tacts, as well as the time of first possible collision within
10–30 ms. Moreover, our algorithm has been success-
fully integrated into an existing, fully immersive virtual
environment, the GAITER system (Sibert et al., 2004)
of the U.S. Naval Research Lab, where they utilize our
algorithm to assess human performance in a training
environment.

Our approach presented in this paper has a few limita-
tions. These include:

● We use a relatively simple model for each link of the
avatar using LSS. Furthermore, we assume that
each link undergoes rigid motion.

● Our algorithm assumes that there are no loops in
the articulated model.

● Our overall collision detection algorithm is approxi-
mate. The two main sources of error are the tessel-
lation error that arises during polygonization of the
SV and the image-space resolution used to perform

Table 1. Average Performance (in Milliseconds) of the Various Steps of Our Algorithm for a 16-Link Avatar Moving in a Virtual
Environment Composed of Hundreds of Thousands of Polygons

Step
Timing
(house, ms)

Timing
(chessboard, ms)

AABB computation (all links) 0.034 0.064
AABB culling (all links) 0.026 0.013
Offset computation (per link) 0.098 0.092
Link hierarchy update (per link) 0.6 0.2
Occlusion queries (collision, per link) 4.4 2.7
Occlusion queries (no collision, per link) 1.3 1.6
Contact information (per colliding link) 4.9 3.3
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visibility queries. A technique to overcome the im-
age-space resolution error has been described in
(Govindaraju, Lin, & Manocha, 2004).

There are many avenues for future work. We would
like to work on each of these limitations to improve the
performance and applicability of our algorithm. We
would like to apply it to more complex virtual environ-
ments and interface with virtual locomotion techniques
(e.g., the Gaiter technique, see Templeman, Denbrook,
& Sibert, 1999) for training and other applications.
Moreover, we need to model the avatar more realisti-
cally to avoid collision artifacts such as “clotheslines”
passing through the avatar neck. Recently, we proposed
a new method to perform continuous collision detec-
tion for articulated, general polygonal models (Redon et
al., 2004b); however, the algorithm does not guarantee
interactive performance.
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Appendix: Interval Arithmetic

A good, general introduction to interval arith-
metic can be found in the work by Kearfott (1996).
Snyder (1992) has presented some applications of inter-
val arithmetic to computer graphics, for example to ob-
tain triangulations of implicit surfaces.

In our algorithm, we only use closed intervals. By
definition, a closed real interval [a, b] is:

I � �a, b� � 	x � IR, a 	 x 	 b


This definition can be generalized to vectors in IRn:

In � �a1, b1� � . . . � �an, bn�

� 	x � �x1, . . . , xn�

� IRn, ai 	 xi 	 bi � i, 1 	 i 	 n}

The set of real intervals is denoted IIR, while the set of
real vector intervals is denoted IIRn. Elementary opera-
tions on real numbers can be transposed on real inter-
vals:

�a, b� � �c, d� � �a � c, b � d�

�a, b� � �c, d� � �a � d, b � c�

�a, b� � �c, d� � �min�ac, ad, bc, bd�,

max�ac, ad, bc, bd�]

1/�a, b� � �1/b, 1/a� (14)

if a � 0 or b  0

�a, b�/�c, d� � �a, b� � �1/�c, d��

if c � 0 or d  0

�a, b� 	 �c, d� if b 	 c

For operations in IIRn, the interval computations are
performed for each coordinate. Note that an interval
vector in IIRn is an AABB.
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