
*Corresponding author.
E-mail addresses: jimenez@iri.upc.es (P. JimeH nez),

thomas@iri.upc.es (F. Thomas), torras@iri.upc.es (C. Torras).

Computers & Graphics 25 (2001) 269}285

Technical Section

3D collision detection: a survey

P. JimeH nez*, F. Thomas, C. Torras

Institut de Robo% tica i Informa% tica Industrial (CSIC-UPC), Gran Capita% 2-4 (Ed. Nexus), 08034-Barcelona, Spain

Abstract

Many applications in Computer Graphics require fast and robust 3D collision detection algorithms. These algorithms
can be grouped into four approaches: space}time volume intersection, swept volume interference, multiple interference
detection and trajectory parameterization. While some approaches are linked to a particular object representation
scheme (e.g., space}time volume intersection is particularly suited to a CSG representation), others do not. The multiple
interference detection approach has been the most widely used under a variety of sampling strategies, reducing the
collision detection problem to multiple calls to static interference tests. In most cases, these tests boil down to detecting
intersections between simple geometric entities, such as spheres, boxes aligned with the coordinate axes, or polygons
and segments. The computational cost of a collision detection algorithm depends not only on the complexity of the
basic interference test used, but also on the number of times this test is applied. Therefore, it is crucial to apply this test
only at those instants and places where a collision can truly occur. Several strategies have been developed to this end: (1)
to "nd a lower time bound for the "rst collision, (2) to reduce the pairs of primitives within objects susceptible of
interfering, and (3) to cut down the number of object pairs to be considered for interference. These strategies rely on
distance computation algorithms, hierarchical object representations, orientation-based pruning criteria, and space
partitioning schemes. This paper tries to provide a comprehensive survey of all these techniques from a uni"ed viewpoint,
so that well-known algorithms are presented as particular instances of general approaches. � 2001 Elsevier Science Ltd.
All rights reserved.

Keywords: Geometric algorithms; Languages and systems; Collision detection; Interference tests

1. Introduction

Many collision detection algorithms have been pro-
posed in recent years within the "elds of Computational
Geometry, Robotics, and especially Computer Graphics.
Some appear tailored to particular applications,
others stem from theoretical concerns, and their diverse
origins and aims often hide the common ground on
which they lie. This article tries to unravel this common
ground.
A recent survey [1] on the subject classi"es collision

detection algorithms according to the geometric
object model used. The present paper is rather oriented

towards a systematic characterization of the solving
strategies, as explained below. The reader interested in
a quick comparison of the most well-known algorithms
can have a look at the table in http://brl.ee.washing-
ton.edu/BRL/shc/collide.htm.
Computer Graphics encompasses a broad set of

applications related to Computer-Aided Design, Virtual
Reality and Physical Simulation that require fast colli-
sion detection. The algorithms developed in this context
are above all intended to be of practical use. Contrarily,
the "eld of Computational Geometry seeks to synthesize
algorithms with the best possible worst-case complexity,
which in many cases entails the design of intricate
data structures. Thus, while computational geometers
and graphicists have a substantial overlap of interest in
geometry, their algorithms obey markedly di!erent
purposes.
Computational geometry algorithms often assume
`general positiona but real-world models tend to have

0097-8493/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 7 - 8 4 9 3 (0 0) 0 0 1 3 0 - 8

�Almost all "gures that illustrate the di!erent issues in the
text represent the corresponding 2D situation for clarity.

a lot of degeneracies such as coplanar or parallel faces.
Thus, any assumption of `general positiona is inappro-
priate in practical settings. Not only degeneracies, but
also `bad dataa, lead to challenging problems. For
example, as noted in [2], polyhedral models generated by
some widely used CAD systems tend to have various
degrees of nearly coplanar vertices, i.e., polygonal faces
bounded by four or more vertices where the vertices only
approximately lie on the same plane. And even worse,
many models tend to have self-intersections, i.e., they
contain faces which intersect at places other than their
boundaries. As a consequence, practical collision detec-
tion algorithms are shaped not only by the application
itself, but also by the challenging inputs arising in
practice.
The application largely delimits the kind of algorithms

to be applied. For example, while the path taken by the
moving object in Virtual Reality applications is not
known a priori, precisely speci"ed trajectories have to be
checked for collision in rigid-body physical simulation
systems that involve the exact reproduction of mechan-
ical processes. Thus, a trajectory-based approach,
suitable in the latter case, would be useless in the former
one. Moreover, when the application allows it and for
e$ciency's sake, a collision detection algorithm might
deliberately introduce error. For example, objects might
be crudely approximated by cubes, spheres, polyspheres,
etc., and complex trajectories decomposed into simpler
ones or simply discretized. Practical collision detection
algorithms have long sought to exploit this tradeo!
between solution quality and computational time. We
devote an important part of this survey to these approxi-
mations.
The paper is structured as follows. Section 2 shows

that the available collision detection approaches lie with-
in two main categories: geometric and algebraic, and
explains how those based on the former category apply
two techniques: projection and sampling, or combina-
tions of them. This overview makes clear that tests for
static interference between simple geometric entities lie at
the base of most detection approaches. Section 3 presents
these tests. The e$ciency of a basic interference test does
not guarantee that a collision detection algorithm based
on it is in turn e$cient, because the number of times the
test is applied is another key factor. Thus, Section 4 re-
views the di!erent strategies to restrict the application of
the interference test to those instants (time bounds) and
object parts (space bounds) at which a collision can truly
occur. Finally, conclusions are sketched in Section 5.

2. Approaches to collision detection

Collision detection admits several problem formula-
tions, depending on the type of output sought and on the
constraints imposed on the inputs. The simplest deci-

sional problem, that looking for a yes/no answer, is
usually stated as follows: Given a set of objects and
a description of their motions over a certain time span,
determine whether any pair will come into contact. More
intricate versions require "nding the time and features
involved in the collision. Placing constraints on the
inputs is a usual way of simplifying problems. Thus, often
objects are assumed to be polyhedra, usually convex
ones, and motions are constrained to be translational or
linear in a given parameter space.
In the following subsections, the four main approaches

that have been proposed to deal with the di!erent instan-
ces of the collision detection problem are described.

2.1. Spatio-temporal intersection

The most general representation of the collision detec-
tion problem is based on the extrusion operation [3].
The extruded volume of an object is the spatio-temporal
set of points representing the spatial occupancy of the
object along its trajectory. A collision between two
objects occurs if, and only if, their extruded volumes
intersect (see Figs. 1 and 2).�
The extrusion operation is distributive with respect to

the union, intersection and set di!erence operations. This
motivated the development of the extrusion approach
in the context of constructive solid geometry (CSG)
representations. The mentioned distributive property
guarantees that an object and its extruded volume can be
represented through the same boolean combination of
volumetric primitives and extrusions of these primitives,
respectively.
The formal beauty of this approach is partially oc-

cluded by the high cost of its practical implementation,
whose bottleneck is the generation of the 4D extruded
volumes themselves. Thus, for example, the extrusion of
a linear subspace subject to a constant angular velocity is
bounded by a helicoidal hypersurface. For this reason,
the implementation deals only with linear subspaces sub-
ject to piecewise translational motions [3].
If the computation of the extruded volumes in 4D were

simple, no other approaches would have been introduc-
ed, since they are all aimed at avoiding this explicit
computation. These approaches are either geometric or
algebraic. Among the geometric ones, two main alterna-
tives have been proposed, namely projecting the extruded
volume onto a lower-dimensional subspace * which
leads to the swept volume approach * and sampling
along the trajectory, which boils down to the repeated
application of an intersection detection algorithm. The

270 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

Fig. 1. Extruded and swept volumes. Time is explicitly taken
into account. Since the extruded volumes interfere, a collision is
detected. Below, the corresponding swept volumes in 2D are
shown.

Fig. 2. Extruded and swept volumes (cont.). Here no collision
takes place, and therefore the extruded volumes do not interfere.
Note that the corresponding swept volumes in 2D are the same
as those in the previous "gure.

algebraic approach consists of parameterizing the traject-
ory. Next, we describe these approaches.

2.2. Swept volume interference

The volume containing all the points occupied by
a moving object during a time period is called the swept
volume. If the swept volumes for all the objects in a scene
do not intersect, then no collision between them will
occur during the speci"ed time period. However, this is
a su$cient, but not a necessary condition: It may happen
that the swept volumes intersect but no collision takes
place. This fact is shown in Figs. 1 and 2. In both
situations, the same swept volumes are generated, but
only in the "rst situation collision actually occurs.
In order for the condition to be also necessary, the

sweep has to be performed according to the relative
motion of one object with respect to another one, for
each pair of objects. In this case, while one of the objects
is considered "xed, the volume swept out by the other
one during its relative motion is computed. This can be
computationally very costly, although now it can be
ensured that, if the swept volume intersects with the "xed
one, collision actually happens.
The generation of the swept volume is also computa-

tionally expensive. This is the reason why many works
adhering to this approach deal with convex approxima-
tions of the swept volume and, only when the global
swept volumes intersect, they proceed to split the traject-
ory into pieces and to compute a convex approximation
of the swept volume for each piece. For convex objects,
Foisy andHayward [4] have proved that the approxima-
tions obtained in the successive splittings of the traject-
ory converge to the real swept volume.
Simplifying alternatives are restricting the shapes and

trajectories to very simple ones [5], and creating impli-
citly the swept volume from the volumes swept out by the
primitives of the boundary representation B-rep [6].
Recall that an object can be described by the surface
bounding it, so that the B-rep description of a polyhedra,
for example, consists of a list of its boundary primitives
(vertices, edges, and faces) together with their topological
adjacencies.

2.3. Multiple interference detection

The simplest way to tackle collision detection is to
sample object trajectories and repeatedly apply a static
interference test. The way sampling is performed is
crucial for the success of the approach. A too coarse
sampling may miss a collision, while a too "ne one may
be computationally expensive. The reasonable way out is
to apply adaptive sampling.
Ideally, the next time sample should be the earliest

time at which a collision can really occur. The di!erent
sampling strategies di!er in the way this earliest time is
estimated. The most crude estimation is the one relating
a lower bound on the distance between objects to an
upper bound on their relative velocities [7,8].

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 271

Fig. 3. Adaptive time sampling. The starting position is depicted
in (a), where the closest points and the line joining them are
computed. The projections of the objects on this line meet at
instant (b), which is taken to be the next time sample. At this
instant, the new closest points are computed (c), and the next
time sample, where the polygons do actually collide, is deter-
mined in the same way (d).

More sophisticated strategies take not only distance
into account, but also directional information. One such
strategy [9] requires computing the closest points from
two convex polytopes (extended to general convex ob-
jects in [10]) at the current time sample, as well as the line
joining them. The "rst future instant at which the projec-
tions of the objects on the line meet is taken as the next
time sample (see Fig. 3). Therefore, this technique can be
viewed as a hybrid of sampling and projecting onto
lower-dimensional subspaces (a 1D subspace in this
case), according to the terminology introduced at the end
of Section 2.1. Since the closest points between two ob-
jects lie always in their boundaries, it is usual practice to
resort to B-reps when following a multiple interference
detection approach. However, as we shall see in Section
4, to con"ne the application of the interference test to
those object parts susceptible of colliding "rst, spatial
partitioning techniques such as octrees and voxels have
also been used in conjunction with this approach.

2.4. Trajectory parameterization

The collision instant can be analytically determined if
the object trajectories are expressed as functions of a
parameter (time). For example, consider the simple case
in which a point undergoes a linear motion and we want
to detect if it intersects a "xed triangle in space. Then, the
parametric vector equation

p#(p�!p)t"p
�
#(p

�
!p

�
)u#(p

�
!p

�
)v,

where p and p� are the initial and "nal positions of the
point and the p

�
's de"ne the triangle, is set up and solved

for the variables u, v, and t. u and v are parametric
variables for the plane de"ned by the triangle, whereas
t is a time variable which is 0 at the beginning of the
simulation step, and 1 at the end. If 0)t)1 and u*0
and v*0 and u#v)1, then the point intersects the
triangle during the time step [11]. This vector equation
represents three scalar equations in three unknowns
which can be reduced to a single polynomial in t.
Conditions of intersection for general polyhedra fol-

lowing complex trajectories can be set up in the same
way, the only di!erence being the degree of the poly-
nomials in the variable t to be solved.When rotations are
present, the resulting expressions contain trigonometric
functions, but they can also be reduced to polynomials
in a single variable by means of a proper change of
variables.
Depending on the trajectories, the degrees of the re-

sulting polynomials may be arbitrarily high. Then, as
polynomials of order 5 and above cannot be solved
analytically, the determination of the collision instant
can be computationally very expensive for arbitrary
trajectories.
In [12], the problem is tackled in a radically di!erent

way: a trajectory connecting two arbitrary con"gurations
for a moving polyhedron in a polyhedral environment is
designed so that the obtained polynomials are of degree
3; i.e., the lowest possible degree when the moving
polyhedron translates and rotates simultaneously.
A polyhedra interference test is expressed as a combina-
tion of parameterized basic contact functions, these
functions re#ecting the spatial relationships between the
primitives of the B-rep of the polyhedra. The zeros of
these functions delimit several time intervals, whose com-
bination according to the interference test provides the
desired set of intervals over which objects would be
intersecting, if they were adhering to the prede"ned tra-
jectories. While [12] uses a parameterization based on
quaternions, [13,14] follow the same approach using
homogeneous coordinates.
In [15], the problem of detecting collisions between

deformable models is regarded as a constrained minimiz-
ation problem, which is solved using interval Newton
methods.
In the context of Computer Graphics, a parameterized

collision condition can be easily derived for triangulated
surface representations [11], which can be extended to
non-rigid time-dependent parametric surfaces [16].

3. Static interference detection

All but the last approach described in the preceding
section eventually require to apply a static interference
test between either 3D volumes or 4D ones. Here e$cient

272 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

�Later it is shown that this case is no exception, since it can be
dealt with using the same procedures.

Fig. 4. Geometric elements involved in the de"nition of the
predicates associated with Type-A (a) and Type-B (b) basic
contacts.

interference detection strategies are described, where the
considered objects are convex or non-convex polyhedra.
Convexity plays a very important role in the performance
of interference detection algorithms, and it is therefore
used as criterion for classifying these strategies.

3.1. Convex polyhedra

As pointed out in [17], intersection detection for two
convex polyhedra can be done in linear time in the worst
case. The proof is by reduction to linear programming,
which is solvable in linear time for any "xed number of
variables. If two point sets have disjoint convex hulls,
then there is a plane which separates the two sets. The
three parameters that de"ne the plane are considered as
variables. Then, a linear inequality is attached to each
vertex of one polyhedron, which speci"es that the point is
on one side of the plane, and the same is done for the
other polyhedron (specifying now the location on the
other side of the plane).
Moreover, convex polyhedra can be properly prep-

rocessed [18] to make the complexity of intersection
detection drop to O(log n logm). Preprocessing takes
O(n#m) time to build a hierarchical representation of
two polyhedra with n and m vertices. The lowest level
P
�
in the hierarchical representation is the original poly-

hedron, the highest one, say P
�
, is a tetrahedron (where

r"O(logn)). At each level of the hierarchy, vertices of the
original polyhedron are removed, such that they form an
independent set (i.e., are not adjacent) in the polyhedron
corresponding to the previous hierarchical level, and the
corresponding edge and face adjacency relationships are
updated. These hierarchical representations need to be
computed only once, and they can be used for any inter-
ference query involving the same polyhedra. The algo-
rithm described in [18] actually computes the separation
(i.e., the minimum distance) between the polyhedra, inter-
ference is detected implicitly when this separation turns
out to be null.
Actually, most algorithms used to detect interferences

between convex polyhedra rely on the computation of
the minimum distance and will be described in Sec-
tion 4.4.1.

3.2. Polyhedra with convex faces

Disregarding the case in which one polyhedron is fully
inside another one,� they intersect if their boundaries do.
The detection of intersections between polyhedral surfa-
ces reduces to detecting that an edge of one surface is
piercing a face of the other surface. Since all edges are to

be tested against all faces, the complexity of procedures
following this scheme is necessarily O(nm). However,
when faces are convex polygons, interference detection
becomes quite simple and easy to implement, as
explained below.
This reduction of the interference problem to detecting

edges piercing convex faces, formulated using the idea of
predicates associated with basic contacts, was introduced
in [19]. There are two basic contacts between two poly-
hedra. One takes place when a face of one polyhedron is
in contact with a vertex of the other polyhedron (Type-A
contact), and the other when an edge of one polyhedron
is in contact with an edge of the other polyhedron
(Type-B contact).
It is possible to associate a predicate with each basic

contact, which will be true or false depending on the
relative location between the geometric elements in-
volved. Let us assume that face F

�
is represented by its

normal vector f
�
; edge E

�
, by a vector e

�
along it; and

vertex <
�
by its position vector v

�
. Although this repres-

entation is ambiguous, any choice of vector orientation
leads to the same results in what follows.
According to Fig. 4(a), predicateA

�� ���
, associated with

a basic contact of Type-A, is de"ned as true when

�f
�
,v
�
!v

�
�'0 (1)

for any vertex <
�
in face F

�
, and false otherwise.

According to Fig. 4(b), predicate B
�� ���

, associated with
a basic contact of Type-B, is de"ned as true when

�e
�
�e

�
,v
�

!v
�
�'0, (2)

<
�
and <

�
being one of the two endpoints of E

�
and E

�
,

respectively, and false otherwise.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 273

Fig. 5. Basic edge}face intersection test (convex faces).

It can be checked [19] that if one of the following
boolean expressions:

O	
�
�� ���

"�A
�� ���

�A
�
 ���

� R
����������� �

B
�� ���

,

O��
�� ���

"A
�� ���

��A
�
 ���

� R
����������� �

�B
�� ���

(3)

is true, then edge E
�
intersects convex face F

�
, provided

that its edges (E
�
) are traversed counter-clockwise (refer

to Fig. 5).
The case where one of the polyhedra is completely

contained inside the other one can be handled with the
same tools, by drawing an arbitrary ray from any point
on the "rst polyhedron: if this ray intersects an odd
number of faces of the second polyhedron (which can be
checked with Eq. (3)), then inclusion exists.

3.3. General polyhedra

General non-convex polyhedra are qualitatively more
di$cult to handle. Therefore, most authors resort to
decomposing them or their boundaries into convex parts
(convex polyhedra or polygons, respectively), and to ap-
ply interference detection algorithms to those parts. Few
works try to cope directly with non-convex polyhedra,
without decomposing them. Moreover, note that, in gen-
eral, it is not possible to express a non-convex curved
object as the union of convex objects; for example, con-
sider a block with a cylindrical hole drilled into it. This is
the reason why the more accurate is the polyhedral
approximation of a curved object, the more complex is, in
general, its decomposition into convex parts.

3.3.1. Decomposition into convex parts
It is possible to apply the above algorithms to non-

convex polyhedra just by decomposing them into convex

entities. Typically, decomposition is performed in a pre-
processing step, and therefore has to be computed only
once. The performance of this step is a tradeo! between
the complexity of its execution and the complexity of the
resulting decomposition. For example, the extreme
case of solving the minimum decomposition problem is
known to be NP-hard in general [20]. On the other
hand, algorithms such as that in [21] can always parti-
tion a polytope of n vertices into at most O(n�) convex
entities.
Some interference detection algorithms work exclus-

ively with convex polyhedra, others need only the faces
of the polyhedron to be convex. In the "rst case, prepro-
cessing will consist in a solid decomposition of the
non-convex polyhedra, the output consisting of a set of
smaller convex polyhedra (see [22,23]), whereas in the
second case only a surface decomposition algorithm will
be needed [24,25]. In any case, a number of additional
"ctitious entities are created, that have to be considered
in the intersection tests.

3.3.2. Direct approach
It has long been known [6] that, even for non-convex

faces, a simple two-step test su$ces to detect whether an
edge intersects a face. First, check if the edge endpoints
are on opposite sides of the face plane. If so, check
whether the point of intersection between the edge and
the face plane is located inside the face, by simply casting
a ray from this point and determining how many times
the ray intersects the polygon. Then, if this number is
odd, intersection does exist (odd-parity rule). Note that
the latter check corresponds directly to solving a point-
in-polygon problem, for which several alternatives, di!er-
ent from that of shooting a ray, have been proposed
[26, p. 239].
As mentioned in the preceding section, the application

of this test to all edge}face pairs leads to an O(nm)
complexity. Thus, a quadratic number of intersection
points may need to be computed to ascertain that there is
no intersection between two polyhedra. A way to avoid
these intersection computations is to reduce the test to
computing the signs of some determinants [27], as in
many other problems arising in Computational
Geometry [28].
Consider a face from one polyhedron, de"ned by the

ordered sequence of vertices around it, represented by
their position vectors p

�
,2, p

�
, expressed in homogene-

ous coordinates (that is, p
�
"(p

��
, p

�
, p

��
, 1)), and an edge

from the other, de"ned by its endpoints h and t. Then,
consider a plane containing the edge and any other
vertex, say v, of the same polyhedron, so that all edges in
the face whose endpoints are not on opposite sides of this
plane are discarded. In other words, we de"ne, according
to Fig. 6, s :"sign�h t v p

�
�. Then, if p

�
and p

���
are on

opposite sides, s should have a di!erent sign from that of
�h t v p

���
�.

274 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

Fig. 6. Basic edge}face intersection test (general faces).

It can be checked [27] that, if the number of edges
straddling the plane and satisfying s sign�h t p

�
p
���

�'0
is odd, then the face is intersected by the edge. Actually,
this is a reformulation of the odd parity rule that avoids
the computation of any additional geometric entities
such as those resulting from plane-edge or line-edge
intersections.
The two special cases in which the arbitrary plane

intersects at one vertex of the face or it is coplanar with
one of the edges lead to determinants that are null.
Actually, equivalent situations also arise when the ray
shooting strategy is used. In order to take them into
account, a simple modi"cation of the odd parity rule has
to be introduced as in [6].
It is also worth mentioning that, if the arbitrary point

v is a vertex of one of the two faces in which the edge lies,
di!erent from its endpoints, the above approach is a gen-
eralization of Canny's predicates, since these predicates
can also be expressed in terms of signs of determinants
involving vertex locations [27].
Thus, in order to decide whether two non-convex

polyhedra intersect, only the signs of some determinants
involving the vertex location coordinates are required.
Since the signs of all the involved determinants are not
independent, it is reasonable to look for a set of signs
from which all other signs can be obtained. This is dis-
cussed in [29] through a formulation of the problem in
terms of oriented matroids.

4. Strategies for time and space bounding

Even if a basic interference test is made very e$cient,
as described in the preceding section, the collision detec-
tion algorithm can still be computationally expensive if

the basic test has to be applied many times. Thus, the key
aspect of any collision detection scheme is to restrict as
much as possible when and where this test is applied, by
taking advantage of the objects' geometry and the ob-
jects' dynamics, if this information is available. Knowing
how the objects are moving and how far away they are
from one another, it is possible to bound the time interval
where the collision is likely to occur. Therefore, it is
important to determine quickly the distance between
objects. On the other hand, if the complexity of the
objects is high, it is desirable to restrict the search for
collisions to those object parts that may actually collide.
Finally, if there are many moving objects in the scene,
means to avoid having to check every pair of objects for
collision need to be provided. These are the issues of the
next subsections.

4.1. Distance computation for collision time bounding

Spherical representations are appealing because the
elementary distance calculation between two spheres is
trivial. The problem rather consists in determining which
spheres of the representation have to be tested. In [30],
objects are described in terms of spherical cones (gener-
ated by translating a sphere along a line and changing
its radius) and spherical planes (which are obtained
by translating a sphere in two dimensions, and eventually
changing also its radius). These primitives can also be
viewed as a collection of spheres. Any distance can be
expressed as a combination of the distances between two
spherical cones and between a sphere and a spherical
plane.
In [31], ellipsoids are used to approximate convex

polyhedra. A free margin function of one ellipsoid with
respect to the other is then computed. This function
behaves in a manner similar to the euclidean distance,
except in that it is negative (instead of zero) as the
ellipsoids interfere, and it is not symmetric in the general
case.
Computing the distance between implicit and para-

metric surfaces is a very involved problem in general.
Basic approaches to compute the closest points of two
free-form objects neglect the fact that these points satisfy
the necessary condition that their normals are aligned
and opposite in direction. In [32], this constraint is used
to obtain a measure of penetration distance, in the case
that both objects intersect.
Most distance computation algorithms have been de-

veloped for convex polyhedra. Some exploit speci"c fea-
tures of polyhedra and therefore cannot be used with
other types of geometric models. Others, like the method
explained in [33], can be used with spherical [34] or
other non-polytopal surface descriptions [10]. These al-
gorithms follow two main streams, namely the geometric
and the optimization ones, which are the objects of the
next subsections.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 275

Fig. 7. The hierarchical representation allows to build up and
search only those parts of the polygons where the closest points
can be found.

Fig. 8. The Minkowski di!erence M
���

(- - - - - -) can be con-
structed by taking the convex hull of the points resulting from
subtracting the vertices of Q from the vertices of P (**). (a) The
distance between P and Q (22) is the same as that from the
origin to M

��
. (b) If P and Q are interfering, the origin will be

within M
��

.

4.1.1. The geometric stream
The idea is to determine the closest points of two

polyhedra, and then compute the euclidean distance be-
tween them. Three methods for determining the closest
points have been proposed, two of them proceed by
expanding an incremental representation in the direction
of the minimum distance, while the third navigates
along the boundaries of the polyhedra to "nd the closest
points. These methods are described in the following
paragraphs.
Using Dobkin and Kirkpatrick's hierarchical polyhed-

ral representation (described in Section 3.1), distance
computation can be performed in optimal O(logn logm)
time [18]. Every step in the closest points search proced-
ure corresponds to a level in the hierarchical representa-
tion. In the "rst step, the closest points of two tetrahedra
(the lowest level in the hierarchy) are trivially determined.
Now, consider the direction of the segment that joins
the closest points found at a given step. The two planes
perpendicular to this direction that touch each polyhed-
ron (at the level expanded so far) bound the zone where
the next closest pair has to be searched for. The intersec-
tion of this zone with the polyhedra expanded at the next
level may consist of either two simplices, one simplex or
the empty set. If the closest points are not the same as in
the previous step, then at least one of them belongs to one
of these simplices. Therefore, every search step is
restricted to at most two simplices. The number of steps
is bounded by log n logm. Fig. 7 may help to understand
this procedure.
The Minkowski di!erence M

���
"�p!q � p3P,

q3Q� of two polytopesP andQ has been used in distance
computation algorithms [35], exploiting the fact that the
distance between P and Q is equal to that from M

��
to

the origin (Fig. 8). Since the complexity of computing the
entire M

���
is quadratic, a directional construction of

this set, similar to that used by Dobkin and Kirkpatrick,
has been proposed [33]. Starting from an arbitrary tet-
rahedron contained in M

���
, vertices closest to the origin

in the direction of minimum distance are added one at
a time, while non-relevant vertices are deleted, so that the
search for the point closest to the origin is always per-
formed on a simplex, as shown in Fig. 9. The `vertex-
selectiona part of the algorithm can be done in linear
time: a single direction is tested over the set of vertices of
one of the original polyhedra and the opposite direction
over the vertices of the other one.
An alternative to the incremental construction of data

structures, for speeding up distance computation, is to
navigate along the boundaries of the involved polyhedra
in the direction of decreasing distance. The key notion
here is that of Voronoi region (refer to Fig. 10). Every
feature (vertex, edge or face) of a polyhedron has asso-
ciated one such region, consisting of all the points that
are closer to it than to any other feature. The Voronoi
regions for rectangular boxes were introduced in [36],
and extended to convex polyhedra in [17], where
an incremental algorithm for distance computation was

276 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

Fig. 9. (a) The closest point from the Minkowski polygon to the
origin 0 has to be determined. (b) The "rst simplex is chosen

arbitrarily, and the segment 09 realizing the minimum distance
is computed. (c) The vertex 6 whose projection on this segment is
closest to the origin is selected, vertex 1 is deleted, and the new
direction realizing the minimum distance is computed. (d) The
next vertex selected, 7, turns out to be the closest point from the
Minkowski polygon to the origin.

Fig. 10. Voronoi regions of a vertex (a), an edge (b), and a face
(c).

proposed. The algorithm works as follows. First, two
arbitrary features are selected and the closest points
between them are obtained. If each of the two points
belongs to the Voronoi region of the other feature, then
they are actually the sought closest points between the
polyhedra and the procedure stops. If not, each point has

to be closer to another neighboring feature, which is
selected, and these steps are repeated until the condition
of inclusion in the respective Voronoi regions is met. This
algorithm is linear in the total number of features. Note
that, if the polyhedra are intersecting, the algorithm
would go into a cyclic loop. To overcome this di$culty,
some authors have extended the space partition to the
interior of the polyhedron, by de"ning pseudo-Voronoi
regions whose boundaries are faces determined by the
centroid of the polyhedron and its edges [37}40]. These
pseudo-Voronoi regions are used only to determine if the
polyhedra interpenetrate or not. V-Clip [41] does also
handle the case where the polyhedra interpenetrate and is
very robust in both cases. It avoids the explicit computa-
tion of the closest points between features, by using
simple clipping operations together with scalar derivative
tests. The code is simple and its implementation does not
require to specify any numerical tolerance.
In [17], another important point is addressed: consider

that the distance between two polyhedra has to be com-
puted as they move along a "nely discretized path. The
closest features do not change often, and a change almost
always involves neighboring features, due to the convex-
ity of the polyhedra and the small discretization step.
Therefore, not an arbitrary pair of features, but the
closest features at the previous step are taken as initial
features for the next step. Simple preprocessing of the
polyhedra, so that every feature has a constant number of
neighboring features, allows the distance computation
algorithm, once initialized, to run in expected constant
time.
In [42}44], this ability to track the distance between

two convex polyhedra was also analyzed for the
algorithm described in [33], showing that a minor modi-
"cation also gives it a expected constant execution time.

4.1.2. The optimization stream
Distance is viewed here as a quadratic function to

be minimized, under linear constraints due to the con-
vexity of the polyhedra. Formally, in [45], the function
f (p, q)"��p!q���/2 is minimized subject to the linear
constraints �p, n�

�
�)d�

�
, i"1,2, k� and �q, n�

�
�)

d�
�
, j"1,2, k�, where these constraints mean that p3P

and q3Q, with the polyhedra P and Q being described as
intersections of halfspaces. Rosen's gradient projection
algorithm is used. At each step, the active constraints are
determined (those where equality holds, with a certain
tolerance) and Kuhn}Tucker conditions are used to test
whether the global minimum has been attained. If this is
not the case, the coe$cients of the Kuhn}Tucker condi-
tions are used to "nd the new search direction. There are
two alternatives for obtaining the starting points: to
apply a simplex minimization subalgorithm along the
direction de"ned by the centroids of the polyhedra, or to
obtain the points where the segment joining the centroids
intersects the boundaries of the polyhedra.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 277

Fig. 11. The zig}zag phenomenon (a) is avoided if the projection
of S

��
on the active constraint of Q is taken as the search

direction S
��

(b).

In applying Rosen's gradient projection method as
Bobrow did, a convergence problem may occur, as stated
in [46]. This problem is called the zig}zag phenomenon
and it appears when the Kuhn}Tucker conditions are
satis"ed alternatively at each polyhedron. This happens
because a zero vector is given as search direction on the
polyhedron where the Kuhn}Tucker conditions are
satis"ed. The solution proposed by these authors is to
consider as search direction for this polyhedron the pro-
jection of the search direction for the other polyhedron
on the active constraints of the "rst one, instead of the
zero vector, as shown in Fig. 11.
Certain quadratic optimization problems can be sol-

ved in linear time, as shown in [47]. In particular, as
already mentioned in Section 3.1, Lin and Canny [17]
proved that the computation of distances between con-
vex polyhedra is one such problem. In [48], the complex-
ity of computing other measures of proximity between
polyhedra are discussed.
The described algorithms based on optimization tech-

niques have not been proved to be superior to those
based on geometric considerations which, in practice,
have become the prevalent ones in most implementa-
tions, mainly the one described in [17] because of its
conceptual simplicity.
No work has been devoted speci"cally to distance

computation between non-convex polyhedra. In the con-
text of collision detection, non-convex objects are usually
approximated by simpler convex shapes, and a conserva-
tive lower bound on the distance is thus obtained. Some
authors that deal with convex polyhedra mention the
possibility of extending their algorithms to non-convex
ones by decomposing them into convex entities, as ex-
plained in Section 3. Unfortunately, if the number of
generated convex entities is important, a large number of
pairwise distances have to be computed, and although
the individual objects are simpler, the net result is an
important increment in the global complexity. As a con-
sequence, it is important to restrict the pairwise distances
to be computed to those entities included in regions most

likely to collide. The way these regions can be e$ciently
computed is described in the next section.

4.2. Bounding collision areas in objects

Three strategies can be followed to focus the search for
collisions on relevant portions of the objects. One is to
exploit a hierarchy of bounding volumes, another is to
determine forefront features in the direction of motion,
and the third is to exploit temporal coherence to keep
track of closest points. Hierarchical bounding can be
applied to both volume and boundary representations,
while the latter two strategies are speci"cally suited to
boundary representations.

4.2.1. Hierarchical volume bounding
The idea behind the approaches using a hierarchy of

bounding volumes is to approximate the objects (with
bounding volumes) or to decompose the space they oc-
cupy (using decompositions), to reduce the number of
pairs of objects or primitives that need to be checked for
contact. Two main advantages of these approaches must
be highlighted: (a) in many cases an interference or
a non-interference situation can be easily detected at the
"rst levels in the hierarchy, and (b) the re"nement of the
representation is only necessary in the parts where colli-
sion may occur. Space and object partitioning repres-
entations for collision detection are surveyed next.
Octrees [49] or octree-like structures [50], BSP-trees

[51], brep-indices [52], tetrahedral meshes [53], and
regular grids [54] are all examples of spatial partitioning
representations. By dividing the space occupied by the
objects, one needs to check for contact between only
those pairs of objects (or parts of objects) that are in the
same or nearby cells of the decomposition. Using such
decompositions in a hierarchical manner can further
speed up the collision detection process. Octrees and
BSP-trees have been the most widely used. As their
names indicate, octrees recursively partition cubes into
octants, and BSP-trees recursively cut the space by hy-
perplanes. The octree representation allows to avoid
checking for collision in those parts of space where oc-
tants are labeled `emptya, that is, those entirely free of
objects. If a `fulla (totally occupied by an object) or
`mixeda (partially occupied) octant is inside a `fulla one
of another object, interference occurs between them.
Only if a `fulla or `mixeda octant is inside a `mixeda one,
the representation has to be further re"ned. The natural
octree primitive is a cube [55,56], but there exist also
models based on the same idea where spheres are used, as
octant-including volumes [57] or within a di!erent space
subdivision technique, where the subdivision branching
is 13 instead of 8 [58]. BSP-trees [59] can be considered
a crossing between octrees and boundary representa-
tions. In them, partitioning is not restricted to be axis-
aligned, as in octrees, and therefore transformations

278 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

(orientation changes, for example) can be simply com-
puted by applying the transformation to each hyper-
plane, without rebuilding the whole representation.

Object partitioning representations are used in the colli-
sion detection context to simultaneously attain the fol-
lowing three goals: (a) approximate tightly the input
primitives; (b) admit a rapid intersection test to determine
if two bounding volumes overlap; and (c) be updated
quickly when the primitives (and consequently the
bounding volumes) are rotated and translated in the
scene. Unfortunately, as recognized in [2], these objec-
tives are usually in con#ict, so a balance among them
must be reached.
Commonly used object partitioning representations

use hierarchies of spheres [60}64] or spherical shells
[65,66] for bounding at di!erent resolution levels. Inner
and outer bounds are often used.
Volume bounding strategies can be used in conjunc-

tion with boundary representations. Hierarchies of vol-
umes enclosing boundary features permit focussing on
those susceptible of interfering. Thus, octrees have been
used to build bounding box hierarchies around features
of the polyhedron belonging to its convex hull and
around concavities of non-convex polyhedra [39]. Once
intersection has been detected between the convex hulls
of two polyhedra, a sweep and prune algorithm is applied
to traverse the hierarchies up to the leaf level, where
overlapping boxes indicate which faces may intersect,
and exact contact points can be quickly determined.
In cluttered environments, oriented bounding boxes

(OBB) perform better than axis-aligned boxes or spheres,
as they "t the objects tighter and, therefore, less intersec-
tions between bounding volumes are reported. An OBB
tree is used in [67] to represent polyhedra with tri-
angulated boundaries. Overlaps between OBBs are rap-
idly determined by performing 15 simple axis projection
tests (about 200 arithmetic operations), as proved by the
authors through their separating axis theorem. Routines
for building OBB trees, as well as for performing fast
overlap tests between them can be found in the RAPID
interference detection package [67]. OBBs have also
been used in [54] where, if interference between boxes is
not discarded, OBBs are further subdivided into voxels
and, if needed, the interference test is "nally applied to
boundary features of objects.
On the other hand, a hierarchy based on axis-aligned

bounding boxes (AABB) has the advantage that the inter-
section test between each pair of AABB trees is not
orientation-dependent, as is the case of OBB trees. In
other words, the boxes in AABB trees need to be projec-
ted on the coordinate axes only once, whereas for each
pair of boxes of OBB trees undergoing an intersection
test, one box has to be projected onto the axes of the
other one. Furthermore, AABB trees need less memory
and are faster to build, and are even faster to update [68],
which makes them specially suitable for deformable

models. SOLID is a collision detection library that uses
AABB trees for determining possible collisions in a scene
composed of polygonal objects that may include complex
deformable models [69].
Hierarchies of AABBs are also used in the context

collision detection between deformable models in [70],
where the problem of self-intersections is also considered.
Self-intersections may be frequent in highly deformable
models due to bending and wrinkling. This problem is
treated in [71] where a surface hierarchy that captures
the adjacency relationships is proposed. In [72],
this hierarchical representation combined with a
simple hierarchy of bounding boxes is used for handling
both self-intersections and collisions between di!erent
objects.
The choice of `discrete orientation polytopesa (k-dops)

as bounding volumes was made in [2] to attain a com-
promise between the relatively poor tightness of bound-
ing spheres and AABBs, and the relatively high cost of
overlap tests and updates associated with OBBs and
convex hulls. k-dops are bounding volumes that are
convex polytopes whose facets are determined by
halfspaces with outward normals coming from a small
"xed set of k orientations. In the implementation re-
ported in [2], their use compares favorably with RAPID,
whose hierarchy is based on oriented volume boxes.
Though not hierarchical, the most common object

partitioning representation is the Constructive Solid Ge-
ometry (CSG) tree and, in [73], a bounding technique
tailored to this representation was proposed. The idea is
to represent all objects to be checked for interference in
one such tree and then iteratively compute simple enclos-
ing volumes (the so-called S-bounds) for each node in the
tree. The resulting bound at the root node delimits the
part of the objects susceptible of interfering. The tech-
nique starts by placing S-bounds of the primitives at the
leaves of the CSG tree. Then, S-bounds are alternatively
propagated upwards and downwards according to the
set operations attached to every node in the tree. Two
examples of S-bounds, namely spheres and rectangular
parallelepipeds aligned with the coordinate axes, are used
and discussed in [73]. This technique has the advantages
of hierarchical representations, as discussed at the begin-
ning of this section, i.e., the cut-o! of subtrees included in
empty bounds, leading to possibly important computa-
tional savings, and the focussing of intersection searching
on zones where intersection can actually occur. Although
originally developed for 3D interference detection, the
technique has been extended to extrusions [3].

4.2.2. Bounding dependent on the direction of motion
If any kind of relative motion between two solids is

allowed, every part of their boundaries may intersect. But
if a polyhedron can only move in a speci"c way with
respect to the other one, only certain parts of them can
actually collide.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 279

Fig. 12. Only the faces (shown as heavy lines) whose normals
have positive projections on the relative motion vectors (v

���
and v

���
) need to be considered.

Fig. 13. (a) An applicable vertex (<
�
)}face (F

�
) pairing. (b) Edges

E
�
and E

�
are also applicable.

Back-face culling techniques, which have been widely
used in Computer Graphics to speed up the rendering of
polyhedra, can also be used in the collision detection
context to avoid unnecessary checking of boundary ele-
ments for collision, as shown in [74]. The basic idea
consists of comparing the normal vectors of the faces of
the polyhedra with the relative velocity vectors. A face is
culled if its normal has a negative projection on the
motion vector, as can be seen in Fig. 12. On the average,
half of the faces of the two polyhedra are eliminated in
this way.
Another possibility for feature bounding arises in the

context of convex polyhedra subject to translational
motions. Applicability constraints [75] permit detecting
those vertex}face and edge}edge pairs that can actually
come into contact (Fig. 13). The vertex}face applicability
condition expresses the fact that a vertex can touch a face
only if every adjacent edge projects positively on the
face's normal (taking the vertex as origin of every edge
interpreted as a vector). Analogously, the edge}edge ap-
plicability condition states that two edges can touch only
if there exists a separating plane between their respective
wedges.

The applicability constraints may be used as a pre-
processing step in a collision detection scheme based on
edge}face intersection tests. For each applicable ver-
tex}face pair, only one of the edges adjacent to the vertex
has to be tested for interference with the face. Any other
edge}face test with this face can be cut o!. In a similar
way, edge}edge applicable pairs bound the number of
edge}face tests to be performed. In [76], an e$cient
algorithm for bounding edge}face tests using applicabil-
ity constraints is described. Experimental results show
that the number of tests required is linear in the total
number of edges, the constant of linearity being close to
1. The algorithm is based on a face orientation graph
representation, where face adjacency relations are ex-
plicitly depicted. Both this representation and the bound-
ing algorithm based on it have recently been extended to
deal with non-convex polyhedra [77].

4.2.3. Exploiting temporal coherence to track closest
points
The incremental minimum distance realization tech-

nique [17] has already been mentioned in Section 4.1. At
a given instant, the boundary elements that realize the
minimum distance must be close to those realizing it at
the previous instant (this is known as geometric and
temporal coherence), which are therefore taken as initial
points for the search. In this case, it is not a speci"c
orientation, but a neighborhood criterion which is used
for saving computational e!ort. Based on this technique,
the collision detection library I}COLLIDE has been
developed and is publicly available on the web [38].
A library that uni"es I}COLLIDE and RAPID in the
framework of the VRML speci"cation is described
in [40].
The fact that the computation of the distance is not

actually needed for reporting collision, and that it is not
necessary to keep track of the pair of closest points unless
a collision actually occurs, is used in [78] to develop
Q}COLLIDE, a collision detection library also available
on the web. The separating vector algorithm e$ciently
determines whether there exists a separating plane be-
tween two convex polyhedra (see Fig. 14). If so, they
do not collide. Otherwise, the situation at the previous
instant is examined: an improved version of the algo-
rithm of Gilbert et al. [33] is applied in order to
determine the pair of closest points (where the pair
of supporting vertices given by the separating plane
is a good initial guess for the closest points). As
in I}COLLIDE, temporal coherence is exploited, so that
the separating plane can be determined in expected con-
stant time.
The interference test between two hierarchical volume

representations having di!erent de"ning reference frames
can be very costly as to defeat the purpose of having
a hierarchy. Thus, it is important to e$ciently update the
model as the objects rotate and translate. To this end,

280 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

Fig. 14. A. separating vector S
�
is a vector that satis"es the

condition S
�
) (q

�
!p

�
)*0, for p

�
and q

�
the supporting vertices

of two convex polytopes P and Q in the directions S
�
and !S

�
,

respectively. This is a su$cient condition for non-interference
between P and Q. The separating vector may be regarded as the
normal to the separating plane between P and Q. The next
such vector to consider can be obtained by applying
S
���

"S
�
!2(r

�
) S

�
)r
�
, where r

�
"(q

�
!p

�
)/��(q

�
!p

�
)��. In the

case depicted in the "gure, the separating plane, shown in bold
dashed line, is obtained after one iteration. It has normal S

�
and

contains point (q
�
!p

�
)/2.

temporal coherence has also been exploited for updating
hierarchical volume representations based on k-dops.

4.3. Priorizing collision pairs

We have seen how to focus the search for collisions
on relevant portions of the objects. For highly cluttered
workspaces, however, collision checking has to be
performed for a potentially large number of pairs of
objects. Thus, for the sake of e$ciency, several criteria to
priorize candidates for collision checking have also been
proposed.
The "rst criterion one may consider is distance, but it is

not enough if relative velocities are not taken into
account, as pointed out in [79]. These authors introduce
the concept of awareness, which approximates the
earliest time at which two objects may collide, by con-
sidering the distance between them, their instantaneous
relative velocity, together with velocity and acceleration
bounds. Ordered according to increasing values of
awareness, the pairs are partitioned into buckets, whose
cardinalities are increasing powers of 2. Initially, an
awareness value is computed for every pair to establish
the buckets, but only one pair per bucket is updated at
each subsequent time instant. Thus, pairs with lower
awareness values get updated more frequently. More-
over, as their awareness values change, pairs may perco-
late from bucket to bucket.
In [80], a heap is used to store object pairs and earliest

collision times, so that the pair on the top is the nearest to

collide. This earliest collision time is computed from the
distance between the objects, current velocities and accel-
erations, and acceleration bounds assuming ballistic tra-
jectories for the objects. At each instant, integration of
the dynamic state up to the time of collision is carried out
for the pair on the top. Collision detection is performed
for this pair, and if no collision actually occurs, the time
of impact is recomputed and the heap updated. Only the
objects whose bounding boxes for their swept volumes
during the time-step intersect with other boxes are
selected and included in the heap. The intersections
between these n boxes can be done in O(n(1#logR)),
R being the ratio of largest to smallest box size, as shown
in [81].
A similar idea is followed in [37,38,82,83] where tem-

poral coherence is exploited not only to speed up pairwise
intersection detection (as mentioned in Section 4.2.3) but
also to perform less of these pairwise tests. If time steps
are small enough, there will be little change in the posi-
tions of the bounding boxes, and, consequently, in the
sequence of intervals that these bounding boxes project
onto the coordinate axes. Since bounding box interfer-
ence is here determined by the simultaneous overlap of
their projected intervals on the three axes, interval sort-
ing techniques play here a crucial role. One such tech-
nique exploiting temporal coherence permits assessing
interval overlap in expected linear time.

Sweep techniques have been extensively used to prune
the number of object pairs to be checked for interference
[84]. The idea is to sweep a plane through the scene and
test for interference only those pairs of objects simulta-
neously intersecting the plane. A new usage of this tech-
nique is to use a 2D sweep to bound collision pairs in 3D.
In [57], 4D hyper-trapezoids are used to bound the
object along its motion. If one intersection between two
hyper-trapezoids occurs, the corresponding objects are
tested for collision. These intersections are computed
from intersections between their faces. The problem is
reduced, by successive projections, to a 2D segment inter-
section detection problem. The 2D sweep algorithm is
described in [85] and runs in O((m#k) logm) time for
m segments that intersect k times. Although for n objects
the worst-case value of k is O(n�), empirical evidence
shows that the average value of k is much lower (0.07%).

5. Conclusions

Collision detection algorithms are of interest especially
in the domains of Computer Graphics and Robotics. As
described in Section 2, these algorithms usually rely on
static interference tests, most of which have been de-
veloped in the domain of Computational Geometry. In
this paper, we have summarized the basic ideas orig-
inated in the three domains mentioned, in relation to the
topic of static and dynamic interference detection.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 281

The dominating trend in Computational Geometry is
that of obtaining algorithms with the best possible
worst-case complexity. In the case of convex polyhedra,
optimal algorithms have been developed for intersection
and distance computation, which are linear in the total
number of vertices. However, most algorithms developed
within this domain have not been implemented and,
therefore, their e$ciency in a practical setting is hard to
assess. The detailed complexity of the only known sub-
quadratic algorithm for interference detection between
non-convex polyhedra [86] has very large constant fac-
tors, which makes it unfeasible for practical purposes.
The situation in Robotics is in some sense opposite to

the one just described. The key aspects in this domain are
implementation and e$ciency in practical settings. In
many cases, the worst-case complexity of the developed
algorithms either remains unknown or is far from opti-
mal. Comparing algorithms in terms of CPU time is
becoming a general practice. Several algorithms for inter-
ference detection between convex polyhedra have been
shown to have a computational cost approximately lin-
ear in the total number of vertices. Usually, non-convex
polyhedra are dealt with by decomposing them into
convex pieces.
In Computer Graphics, the emphasis is placed on the

possibility of detecting collisions in real-time, especially
in computer animation applications, even if speed is
gained at the cost of losing precision. This is the reason
why hierarchical representations are often used in this
domain, since they provide higher precision as one moves
down the hierarchy, thus allowing to adapt output pre-
cision to the computing time available.
As for e$ciency, a far more challenging application
"eld has appeared recently: haptic interfaces require up-
date rates of about 1 kHz, as compared with the 20}30
updates per second needed in `real-timea graphical ap-
plications. Algorithms developed so far [87] solve the
problem of a probe point colliding with virtual objects,
but this is clearly not su$cient as the feeling of one 3D
object moving in contact with another object is to be
displayed in a realistic manner.
As we have seen, most collision detection schemes only

deal with polyhedral approximations. Nevertheless, there
are some applications where this kind of approximation
is not possible. The task of verifying whether a given tool,
in numerically controlled machining, penetrates beyond
a speci"ed threshold the surface of a part to be machined
is a good example. This is a challenging problem for
collision detection not only due to the nature of the tool
motion but also because, in this case, a polyhedral ap-
proximation is inadequate. When manufacturing plastic
parts using moulds, the di!erent elements of the mould
have to separated to free the manufactured part. This
motion has to be planned and coordinated to avoid
collisions between the mould elements and the part itself.
This is another application where collision detection

between smooth surfaces would be of interest. Although
some research has been performed on robust and interac-
tive computation of closest features, much remains to be
done in the direction of determining contact points and
penetration distances betweenmodels with smooth surfa-
ces (see [88] for some results). As a further step, accurate
and e$cient detection of contacts between deformable
models is also a research area that will certainly deserve
attention in the near future.

Acknowledgements

This research has been partially supported by Comis-
sionat per a Universitats i Recerca, grant 1997-
SGR-00464, and by the Spanish Science and Technology
Commission (CICYT) under Contract TAP99-1086-
C03-01 (`Constraint-based computation in robotics and
resource allocationa).

References

[1] Lin MC, Gottschalk S. Collision detection between geo-
metric models: a survey. IMA Conference on Mathematics
of Surfaces, San Diego, CA, vol. 1, May 1998. p. 602}8.

[2] Held M, Klosowski JT, Mitchell J. Evaluation of collision
detection methods for virtual reality #y-throughs.
Proceedings of the Seventh Canadian Conference on
Computer Geometry, vol. 3, 1995. p. 205}10.

[3] Cameron SA. Collision detection by four-dimensional
intersection testing. IEEE Transactions on Robotics
Automation 1990;6(3):291}302.

[4] Foisy A, Hayward V. A safe swept volume method for
collision detection. The Sixth International Symposium of
Robotics Research, Pittsburgh, PE, October 1993. p. 61}8.

[5] Herman M. Fast, three-dimensional, collision-free motion
planning. Proceedings of the IEEE International Confer-
ence on Robotics and Automation, vol. 2, April 1986.
p. 1056}63.

[6] Boyse JW. Interference detection among solids and surfa-
ces. Communication of the Association of the Computing
Machinery 1979;22(1):3}9.

[7] Cameron SA. A study of the clash detection problem in
robotics. Proceedings of the IEEE International Confer-
ence on Robotics and Automation, Saint Louis, MO, vol.
1, March 1985. p. 488}93.

[8] Culley RK, Kempf KG. A collision detection algorithm
based on velocity and distance bounds. Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, San Francisco, CA, vol. 2, April 1986. p. 1064}9.

[9] Gilbert EG, Hong SM. A new algorithm for detecting the
collision of moving objects. Proceedings of the IEEE
International Conference on Robotics and Automation,
Scottsdale, AR, vol. 1, May 1989. p. 8}14.

[10] Gilbert EG, Foo C-P. Computing the distance between
general convex objects in three-dimensional space.
IEEE Transactions on Robotics and Automation
1990;6(1):53}61.

282 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

[11] Moore M, Wilhelms J. Collision detection and response
for computer animation. ACM Computer Graphics
1988;22(4):289}98.

[12] Canny JF. Collision detection for moving polyhedra.
IEEE Transactions on Pattern Analysis and Machinery
Intelligence 1986;8(2):200}9.

[13] JimeH nez P, Torras C. Collision detection: a geometric
approach. In: Modelling and planning for sensor based
intelligent robot systems. Singapore: World Scienti"c Pub.
Co., November 1995. p. 68}85.

[14] SchoK mer E, Thiel C. E$cient collision detection for mov-
ing polyhedra. Proceedings of the Eleventh Annual Sym-
posium on Computational Geometry, 1995. p. 51}60.

[15] Snyder JM, Woodbury AR, Fleischer K, Currin B, Barr
AH. Interval methods for multi-point collisions between
time-dependent curved surfaces. Proceedings of ACM Sig-
graph, 1993. p. 321}34.

[16] Von Herzen B, Barr AH, Zatz HR. Geometric collisions
for time-dependent parametric surfaces. ACM Computer
Graphics 1990;24(4):39}48.

[17] Lin MC, Canny JF. A fast algorithm for incremental
distance calculation. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, Sacra-
mento, CA, vol. 2, 1991. p. 1008}14.

[18] Dobkin D, Kirkpatrick D. Determining the Separation of
Preprocessed Polyhedra * A Uni"ed Approach. Lecture
Notes in Computer Science, vol. 443, ICALP-90, 1990.
p. 400}13.

[19] Canny J. The complexity of robot motion planning.
Cambridge, MA: MIT Press, 1987.

[20] Bajaj C, Dey T. Convex decomposition of polyhedra
and robustness. SIAM Journal on Computing
1992;21(2):339}64.

[21] Chazelle B. Convex partitions of polyhedra: a lower bound
and a worst-case optimal algorithm. SIAM J. Comput.
1984;13:488}507.

[22] Chazelle B, Palios L. Decomposition algorithms in ge-
ometry. In: Bajaj C, editor. Algebraic Geometry and its
Applications, vol. 5. Berlin: Springer, 1994. p. 419}47.

[23] Bern M. Triangulations. In: Goodman JE, O'Rourke J,
editors. Handbook of discrete and computational
geometry. Boca Raton, FL: CRC Press, 1997. p. 413}28.

[24] Chazelle B, Palios L. Decomposing the boundary of a
nonconvex polytope. In Proceedings of the Third Scandi-
navian Workshop on Algorithm Theory, 1992. p. 364}75.

[25] Chazelle B, Dobkin D, Shouraboura N, Tal A. Strategies
for polyhedral surface decomposition: an experimental
study. Computational Geometry: Theory and Applica-
tions 1997;7(4}5):327}42, 484.

[26] O'Rourke J, editor. Computational Geometry in C, 2nd
ed. Cambridge: Cambridge University Press, 1998.

[27] Thomas F, Torras C. Interference detection between non-
convex polyhedra revisited with a practical aim. Proceed-
ings of the IEEE International Conference on Robotics
and Automation, San Diego, CA, vol. 1, May 1994. p.
587}94.

[28] Avnaim F. Evaluating signs of determinants using single-
precision arithmetic. Technical Report 2306, INRIA, 1994.

[29] Thomas F. An approach to the movers problem that
combines orientedmatroid theory and algebraic geometry.
Proceedings of the IEEE International Conference on Ro-

botics and Automation, Nagoya, J, vol. 3, May 1995.
p. 2285}93.

[30] Tornero J, Hamlin J, Kelley RB. Spherical-object repres-
entation and fast distance computation for robotic ap-
plications. Proceedings of the IEEE International
Conference on Robotics and Automation, Sacramento,
CA, vol. 2, April 1991. p. 1602}8.

[31] Rimon E, Boyd SP. Obstacle collision detection using best
ellipsoid "t. Journal of Intelligent and Robotic Systems
1997;18:105}26.

[32] Thomas F, Turnbull C, Ros L, Cameron S. Computing
signed distances between free-form objects. Proceedings of
the IEEE International Conference on Robotics and Auto-
mation, San Francisco, CA, April 2000.

[33] Gilbert EG, Johnson DW, Keerthi S. A fast procedure for
computing the distance between complex objects in three
dimensional space. IEEE Journal of Robotics and Auto-
mation 1988;4(2):193}203.

[34] Hamlin GJ, Kelley RB, Tornero J. E$cient distance calcu-
lation using the spherically-extended polytope (s-tope)
model. Proceedings of the IEEE International Conference
on Robotics and Automation, Nice, France, vol. 3, May
1992. p. 2502}7.

[35] Cameron SA, Culley RK. Determining the minimum
translational distance between two convex polyhedra.
Proceedings of the IEEE International Conference on Ro-
botics and Automation, SanFrancisco, CA, vol. 1, April
1986. p. 591}6.

[36] Meyer W. Distance between boxes: applications to colli-
sion detection and clipping. In Proceedings of the IEEE
International Conference on Robotics and Automation,
San Francisco, CA, vol. 1, April 1986. p. 597}602.

[37] Lin MC, Manocha D, Canny JF. Fast contact determina-
tion in dynamic environments. Proceedings of the IEEE
International Conference on Robotics and Automation,
San Diego, CA, vol. 1, May 1994. p. 602}8.

[38] Cohen JD, Lin MC, Manocha D, Ponamgi MK. I-COL-
LIDE: an interactive and exact collision detection system
for large-scale environments. Proceedings of ACM Inter-
national 3D Graphics Conference, vol. 1, 1995. p. 189}96.
http://www.cs.unc.edu/ �geom/L-COLLIDE.html.

[39] Ponamgi MK, Manocha D, Lin MC. Incremental algo-
rithms for collision detection between polygonal models.
IEEE Transactions on Visualization and Computer
Graphics 1997;3(1):51}64.

[40] Hudson TC, Lin MC, Cohen JD, Gottschalk S, Manocha
D. V-collide: accelerated collision detection for vrml. Pro-
ceedings of VRML, 1997. http://www.cs.unc.edu/

�geom/V}COLLIDE .html.
[41] Mirtich B. V-clip: fast and robust polyhedral collision

detection. ACM Transactions on Graphics 1998;
17(3):177}208. http://www.merl.com/projects/vclip/.

[42] Cameron SA. A comparison of two fast algorithms
for computing the distance between convex polyhedra.
IEEE Transactions on Robotics Automation 1997;
13:915}20.

[43] Cameron SA. Enhancing gjk: computing minimum and
penetration distances between convex polyhedra. In Pro-
ceedings of the IEEE International Conference on Ro-
botics and Automation, Albuquerque, NM, April 1997. p.
3112}7.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 283

[44] Van der bergen G. A fast and robust gjk implementation
for collision detection of convex objects, 1999, submitted.
Available at http://www.win.tue.nl/cs/tt/gino/solid.

[45] Bobrow JE. A direct optimization approach for obtaining
the distance between convex polyhedra. International
Journal of Robotics Research 1983;8(3):65}76.

[46] Zeghloul S, Rambeaud P, Lallemand JP. A fast distance
calculation between convex objects by optimization ap-
proach. Proceedings of the IEEE International Conference
on Robotics and Automation, Nice, France, vol. 3, May
1992. p. 2520}5.

[47] Megiddo N, Tamir A. Linear time algorithms for some
separable quadratic programming problems. Operations
Research Letters 1993;13(4):203}11.

[48] Sancheti NK, Keerthi SS. Computation of certain
measures of proximity between convex polytopes: a com-
plexity viewpoint. Proceedings of the IEEE International
Conference on Robotics and Automation, Nice, France,
vol. 3, May 1992. p. 2508}13.

[49] Hamada K, Hori Y. Octree-based approach to real-time
collision-free path planning for robot manipulator.
ACM96-MIE, 1996. p. 705}10.

[50] Bandi S, Thalmann D. An adaptive spatial subdivision of
the object space for fast collision detection of animating
rigid bodies. Eurographics'95, Maastricht, August 1995. p.
259}70.

[51] Naylor BF, Amatodes JA, Thibault WC. Merging bsp
trees yields polyhedral set operations. Computer Graphics,
SIGGRAPH' 90 Proceedings, Dallas, TX, vol. 24, May
1990. p. 115}24.

[52] BoumaW, Vanecek G. Collision detection and analysis in
a physical based simulation. Eurographics Workshop on
Animation and Simulation, Vienna, September 1991. p.
191}203.

[53] Klosowski J, Held M, Mitchell J, Sowizral H, Zikan K.
E$cient collision detection using bounding volume hierar-
chies of k-dops.. IEEE Transactions on Visualization and
Computer Graphics 1998;4(1).

[54] GarcmHa-Alonso A, Serrano N, Flaquer J. Solving the Colli-
sion Detection Problem. IEEE Computer Graphics and
Applications 1994;14(3):36}43.

[55] Ahuja N, Chien RT, Yen R, Bridwell N. Interference detec-
tion and collision avoidance among three dimensional
objects. I Annual National Conference on AI, August,
Stanford University, 1980. p. 44}8.

[56] Hayward V. Fast collision detection scheme by recursive
decomposition of a manipulator workspace. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation, San Francisco, CA, vol. 2, 1986. p.
1044}9.

[57] Hubbard PM. Interactive collision detection. Proceedings
of the IEEE Symposium on Research Frontiers in Virtual
Reality, vol. 1, October 1993. p. 24}31.

[58] Liu Y-H, Arimoto S, Noborio H. A new solid model hsm
and its application to interference detection between mov-
ing objects. Journal of Robotic Systems 1991;8(1):39}54.

[59] Thibault WC, Naylor BF. Set operations on polyhedra
using binary space partitioning trees. ACM Computer
Graphics 1987;21(4).

[60] Del Pobil AP, Serna MA, Llovet J. A new representation
for collision avoidance and detection. Proceedings of the

IEEE International Conference on Robotics and Automa-
tion, Nice, France, vol. 1, May 1992. p. 246}51.

[61] MartmHnez B, Del Pobil AP, PeH rez M. Very fast collision
detection for practical motion planning. Part I: the spatial
representation. Proceedings of the IEEE International
Conference on Robotics and Automation, Leuven, Be-
lgium, vol. 1, May 1998. p. 624}9.

[62] Quinlan S. E$cient distance computation between non-
convex objects. Proceedings of the IEEE International
Conference on Robotics and Automation, San Diego, CA,
vol. 4, 1994. p. 3324}9.

[63] Palmer IJ, Grimsdale RL. Collision detection for anima-
tion using sphere-trees. Computer Graphics Forum
1995;14(2):105}16.

[64] Hubbard PM. Real-time collision detection and time-criti-
cal computing. Proceedings of the First ACM Workshop
on Simulation and Interaction in Virtual Environments,
vol. 1, 1995. p. 92}6.

[65] Bonner S, Kelley RB. A representation scheme for rapid
3-D collision detection. Proceedings of the IEEE Interna-
tional Symposium on Intelligent Control, Arlington, VA,
August 1988. p. 320}5.

[66] Krishnan S, Gopi M, Lin M, Manocha D, Pattekar A.
Rapid and accurate contact determination between spline
models using shelltrees. Eurographics'98, Leeds, UK,
March 1998.

[67] Gottschalk S, LinMC, Manocha D. Obb-tree: a hierarchi-
cal structure for rapid interference detection. Proceedings
of ACM Siggraph'96, 1996. http://www.cs.unc.edu
/ �geom/OBB/OBBT.html.

[68] Van der bergen G. E$cient collision detection of complex
deformable models using aabb trees. Journal of Graphic
Tools 1997;2(4):1}13.

[69] Van der bergen G. SOLID. Software Library for Interfer-
ence Detection, 1999. Available at http://www.win.tue.nl/
cs/tt/gino/solid.

[70] Hughes M, DiMattia C, Lin MC, Manocha D. E$cient
and accurate interference detection for polynomial defor-
mation. Proceedings of Computer Animation '96 Confer-
ence, 1996.

[71] Volino P, Thalmann NM. Collision and self-collision de-
tection: e$cient and robust solutions for highly deform-
able surfaces. Eurographics Workshop on Computer
Animation and Simulation'95, Maastricht, The Nether-
lands, 1995.

[72] Volino P, Thalmann NM. E$cient self-collision detec-
tion on smoothly discretized surface animations using
geometrical shape regularity. Eurographics'94, Com-
puter Graphics Forum, Oslo, Norway, vol. 13, 1994.
p. 155}66.

[73] Cameron SA. E$cient intersection tests for objects de"ned
constructively. International Journal of Robotics Research
1989;8:3}25.

[74] VanecekG. Back-face culling applied to collision detection
of polyhedra. Journal of Visualization and Computer Ani-
mation 1994;5(1):55}63.

[75] Donald BR. A search algorithm for motion planning
with six degrees of freedom. Arti"cial Intelligence
1987;31(3):295}353.

[76] JimeH nez P, Torras C. Speeding up interference detection
between polyhedra. Proceedings of the IEEE International

284 P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285

Conference on Robotics and Automation, Minneapolis,
MN, vol. 2, April 1996. p. 1485}92.

[77] JimeH nez P, Torras C. Bene"ts of applicability constraints
in decomposition-free interference detection between non-
convex polyhedral models. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation,
Detroit, MI, May 1999.

[78] Chung K. An e$cient collision detection algorithm for
polytopes in virtual environments. Master's thesis, The
University of Hong Kong, 1996. http://www.cs.hku.hk/
�tlchung/collision}library.html.

[79] Foisy A, Hayward V, Aubry S. The use of awareness in
collision prediction. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, Cincin-
nati, OH, vol. 1, 1990. p. 338}43.

[80] Mirtich B, Canny J. Impulse-based dynamic simulation.
Proceedings of the Workshop on Algorithmic Founda-
tions of Robotics, 1994.

[81] Overmars M. Point location in fat subdivisions. Informa-
tion Processing Letters 1992;44:261}5.

[82] Lin MC. E$cient collision detection for animation and
robotics. Ph.D. thesis, University of California, Berkeley,
1993.

[83] Ponamgi MK, Manocha D, Lin MC. Incremental algo-
rithms for collision detection between solid models. Pro-
ceedings of ACM/Siggraph Symposium on Solid Model-
ling, vol. 1, 1995. p. 293}304.

[84] Turk G. Interactive collision detection for molecular
graphics. Master's thesis, University of North Carolina,
1989.

[85] Bentley JL, Ottmann TA. Algorithms for reporting and
counting geometric intersections. IEEE Transactions on
Computing 1979;28(9):643}7.

[86] Pellegrini M. Stabbing and ray shooting in 3-space. Pro-
ceedings of the Sixth ACM Symposium on Computational
Geometry, 1990. p. 177}86.

[87] Gregory A, Lin MC, Gottschalk S, Taylor R. Fast
and accurate collision detection for haptic interaction
using a three degree-of-freedom force}feedback device.
Computational Geometry: Theory and Applications, to
appear.

[88] Turnbull C, Cameron S. Computing distances between
Nurbs-de"ned convex objects. Proceedings of the IEEE
International Conference on Robotics and Automation,
Leuven, Belgium, May 1998. p. 3686}90.

P. Jime&nez et al. / Computers & Graphics 25 (2001) 269}285 285

