
http://ijr.sagepub.com

Research 
The International Journal of Robotics

DOI: 10.1177/027836499501400203 
 1995; 14; 129 The International Journal of Robotics Research

Vincent Hayward, Stéphane Aubry, André Foisy and Yasmine Ghallab 
 Efficient Collision Prediction Among Many Moving Objects

http://ijr.sagepub.com/cgi/content/abstract/14/2/129
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics Research Additional services and information for 

 http://ijr.sagepub.com/cgi/alerts Email Alerts:

 http://ijr.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://ijr.sagepub.com/cgi/content/refs/14/2/129 Citations

 at CALIFORNIA DIGITAL LIBRARY on July 8, 2010 http://ijr.sagepub.comDownloaded from 

http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/14/2/129
http://ijr.sagepub.com


129

Efficient Collision
Prediction Among
Many Moving Objects

Vincent Hayward
St&eacute;phane Aubry
Andr&eacute; Foisy
Yasmine Ghallab
Electrical Engineering Department and
Center for Intelligent Machines
McGill University
Montr&eacute;al, Qu&eacute;bec, Canada H3A 2A7

Abstract

We consider the problem of flagging all collisions between
a large number of dynamic objects. Because the number of
possible collisions grows quadratically with the number of
objects, a brute force approach is not applicable with finite
computational resources.

Hence, we propose a scheduling mechanism that reduces the
computational load by exploiting the coherence of the world
throughout time. This mechanism has a very simple structure
and easily lends itself to distributed processing. It considers all
pairwise interactions between objects and maintains a structure
that reflects the imminence, or urgency, of collision for each
pair. Bounds on the urgency of collisions can be computed
given minimal knowledge of the system dynamics. For example,
we represent physical objects by their positions and by bounds
on their relative speeds and accelerations. These are assumed
to be available at all times. If the environment does not change
too rapidly, the mechanism flags all collisions. False alarms
may also be generated but can be eliminated with a specialized
exact collision post-processor.
We address the question of how often to perform the col-

lision checks while guaranteeing that all collisions will be

caught. Given the large number of possible environments and
motions, no general optimal answer can be provided. Yet the
soundness and efficiency of the proposed algorithm is eaper-
imentally verified in the case of a simple world consisting of
many spheres moving simultaneously and randomly.

1. Introduction

Consider a world made up of N objects, each moving
along an arbitrary, possibly unknown, trajectory. We wish
to design a system capable of flagging all collisions be-
tween them before they occur. A familiar example of this
problem could be that of a traffic controller, placed in the
middle of a busy intersection, who must process sensor

information fast enough to prevent all collisions. It may
also correspond to the case of a robot moving a collection
of limbs, abstracted to a collection of objects, subject to
unpredictable velocity demand signals and for which we
want to automate a collision prevention behavior.

For each of the ( 2 ~ = O(N’ ) object pairs, we com-
pute a time value T. T is the amount of time (measured
from the instant at which it is computed) for which we
are guaranteed no collision will occur for the pair. It can
be computed as long as the rate of change of the world is
guaranteed not to exceed some bounds. This is, of course,
the case of the physical world at a macroscopic scale.
We further assume that this computation can be re-

peated for each pair with a period of At. A brute force
approach to solving the problem of flagging collisions
then leads to a simple algorithm: T is recomputed every
At seconds. Whenever a pair’s r value is less than At,
the pair is flagged, indicating a possible collision. This
algorithm takes O(N 2) computations at each sample time,
which is unacceptable in most practical situations.
Our intuition tells us that we do not apply this sug-

gested simple algorithm to avoid collisions in a crowded
environment (on the street, for example). Instead, we ~ex-
ploit the coherence through time of the world and we
handle the situation with a presumably smaller amount
of computations. We evaluate all the perceived relation-
ships with the objects that surround us and grade them
on a scale of urgency. According to that scale, we dis-
pense a variable amount of attention to each relationship.
In addition, we dynamically adjust our assessment as
the situation evolves. T provides such an assessment, or
measure of urgency. Thus, it not only conveys the fre-
quency with which we must flag for a possible collision,
but it also conveys the frequency with which T must be
recomputed!
The Dynamic Urgency Algorithm (DUA), which this

article presents, uses that strategy. At initialization, T is
evaluated for all pairs of objects. The ones in greater
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danger of colliding are given high priority and hence are
reevaluated more frequently, until we are satisfied they
no longer pose an imminent danger. At that time we let
the frequency of their reevaluation drop in favor of other
pairs whose measure of urgency may have overtaken
theirs. The net effect of the strategy, compared with the
exhaustive simple collision flagging scheme, is a great
reduction in the load of the computational resources,
which are necessarily finite in time and space.
The urgency function used to compute T depends on

the available a priori knowledge. In the case of physical
objects, the laws of mechanics apply and provide such
knowledge. A simple but representative case is worked
out in this article.

We claim that DUA is an example of a very general
strategy, designed to exhibit a gracefully degrading be-
havior when faced with a seemingly intractable problem
of resource allocation with on-line input acquisition.

Section 2 gives a review of &dquo;classic&dquo; collision detec-

tion, whereas Section 3 introduces our paradigm, which
we call collision prediction. The rest of the article is de-
voted to DUA, a collision predictor. Section 4 gives a
brief outline. Section 5 describes the model of the en-

vironment, Section 6 describes the urgency function,
Section 7 describes the algorithm itself, and Section 8
presents experimental simulations made for DUA.

2. A Review of Collision Detection

Collision detection is the set of techniques used to as-
certain whether moving objects collide with each other,
given their shapes and trajectories. In the robotics field,
such techniques may be used to plan legal trajectories
using a generate-and-test approach. This is in contrast to
the so-called global path planning techniques, which per-
form a search through the graph of legal configurations
(Avnaim et al. 1988; Brooks 1983; Brooks and Lozano-
P6rez 1983; Lozano-Pdrez 1983, 1987; Lozano-P6rez and

Wesley 1979).
In collision detection, there exist two paradigms. In the

first one, the trajectory of the moving object(s) is written
in terms of a parameter, and root-finding techniques are
applied to compute the value of the parameter at which
collisions occur. In the other paradigm, the time scale is
discretized, and static collision tests are applied at each
step. These two approaches are reviewed in the following
subsections.

2.1. l~oot-Finding Techniques

In three-dimensional polyhedral worlds, only two types
of nondegenerate collisions exist: vertex-face (VF) con-
tacts and edge-edge (EE) contacts. This is the basis of
most of the approaches described in this section. These

approaches also assume that the objects under study are
convex or that they have been decomposed into convex
subsets on which the techniques can be applied.
The early work of Boyse exhaustively found the roots

of the algebraic constraints describing all possible VF
and EE contacts and checked whether they were within
the constraints expressed by the polyhedra’s boundaries.
Boyse (1979) considered only purely rotational or purely
translational movements, obtaining quadratic and linear
equations, respectively.
Canny (1988) later generalized the technique to general

trajectories by using a quatemion representation. For two
objects, each moving along a straight line in ~3 x S03,
collisions are detected by solving a quintic. Because the
tests were also exhaustive over the set of possible VF and
EE contacts, the computational complexity was basically
the same as that given by Boyse-namely, of the order of
the product of the number of vertices of each object pair.

Gilbert and Hong (1990) used an iterative technique
based on supporting planes and minimum distance com-
putations and, after extensive experimentation, reported
an expected computational complexity linear in the total
number of vertices of the polyhedra.
Kawabe et al. (1988) recursively split trajectories into

cubic segments until the segments closely approximated
the exact trajectories. The method yielded a sixth-degree
equation for the case of two moving objects. The advan-
tage of the method seems to be its great simplicity and
ease of implementation. Obviously, one is free to choose
the order of the polynomial segments approximating the
trajectories.
Cameron (1985) chose to use linear path segments

and described a hierarchical four-dimensional time-space
data structure based on extrusions. Extruded polyhedra
form hyperpolyhedra in four-space. The data structure
was geared toward quickly checking for intersections in
four-space by pruning entire sections of that space.

Finally, through linear programming, Barford (1989)
gave a simple and efficient solution for objects moving
under pure translations. The theoretical worst-case com-

plexity was linear in the total number of vertices, which
was confirmed by experiments.

2.2. Time Increment Techniques

Time increment techniques are an alternative to find-
ing the time of collision for a specified trajectory: It is

easier to detect a static collision than it is to compute
where on the trajectory a collision may occur. More im-
portantly, there are occasions when trajectories are not
known or only partially known a priori, which is the case
the present article is tackling. For example, object posi-
tions and velocities could be dynamically acquired from
sensors.
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The question of whether a collision occurs is then
answered by the determination of the nullity of the dis-
tance separating the objects. Such a determination can
be performed by an exhaustive or near-exhaustive search
through all pairs of features (vertex, edge, or face), taken
one from each object (Red 1983). More efficient methods
are discussed in the two next subsections.

2.2.1. Distance Computation with Computational
Geometry Methods

These methods optimize worst-case asymptotic compu-
tational complexity, as a function of the polyhedra sizes,
through the use of appropriate data structures.

Dobkin and Kirkpatrick (1985) gave a 8(n) algorithm,
based on a recursive linear-space tree-like representation
of polyhedra. The crucial property of the representation
is that each level of the tree is made up of a number of

vertices, at most a constant fraction a (0 < a < 1) of
the distance to its predecessor. Since the algorithm takes a
linear amount of time at each level of the tree, the ensu-

ing geometric series ensures that the overall complexity is
also linear.

If preprocessing of the polyhedra is allowed, sublinear
algorithms can be obtained. For example, Dobkin and
Kirkpatrick (1983) used a complex data structure for
polyhedra, the drum structure, to design an O(log2 n,)
collision detection algorithm, with 0(n 2) preprocessing.

2.2.2. Distance Computation With Iterative Methods

Iterative methods &dquo;walk&dquo; along the boundaries of the
objects, minimizing a quadratic objective function-
namely, Euclidean distance.

Hurteau and Stewart (1988) pose the problem as a
quadratic programming program. The objective function
to minimize is Ils - t~~, such that s and t are constrained
to lie in their respective closed polyhedra. The objective
function is positive semidefinite in the sixth-dimensional
(s, t)T space, and the number of constraints is equal to the
total number of faces making up the objects. This prob-
lem can be solved using a number of standard techniques
and is trivially extended to any number of dimensions
(Luenberger 1969).
Bobrow (1989) uses a similar technique based on the

Kuhn-Tucker conditions, which relate the active con-
straints and the (linear) gradient of the objective function.
Bobrow reports a linear behavior in the number of con-
straints, although the worst-case complexity is probably
quadratic.

Gilbert, Johnson, and Keerthi (1988) present a tech-
nique based on support properties of convex sets, and on
Minkowski sums. The basic algorithm is as follows:

1. Get an initial four-vertex set from S 8 T, where
S is the vertex set of the first polyhedron, T is the
vertex set of the second polyhedron, and e is the
Minkowski difference. Set t = 0.

2. Calculate vt, the furthest point of the set from the
origin.

3. Among remaining vertices in S 8 T’, find vt+,, the
one with maximum dot product in direction -vt.

4. Update the set to include vt+i and the minimal
vertex set needed to express vt. Set t = t + 1. Go

back to step 2.

This algorithm is proven to generate a converging
sequence in an n-dimensional space (Gilbert and John-
son 1985). Further, it converges finitely in the case
of polytopes. Extensive testing indicates a computa-
tional complexity of about 20 flops per point, with an
empirically established, almost linear growth. Although
contrived examples can be found with quadratic growth,
the error in such cases is exceedingly small after a few
iterations. We note that the method presented by Faverjon
and Toumassoud (1988) is similar to that of Gilbert et al.,
even though their nomenclature is quite different.

In a later article, Gilbert and Foo (1990) also general-
ize the method to quadrics using the Lagrange multiplier
rule, yielding a great improvement in efficiency.

Finally, we mention the Roider method, which con-
structs a witness of disjointness-that is, a cone whose
apex is at a boundary point of one object and whose in-
terior entirely contains the other object. Unfortunately,
no comparison with other methods is offered (Roider and
Stifter 1987; Stifter 1988).

Although the methods cited in this section greatly
differ in their implementation, most of them report
running times that are linear in the number of con-
straints-namely, the sum of the number of faces of
the objects. This is in agreement with previously reported
quadratic programming’s empirical complexity results
(Powell 1985).

2.3. Iterative Methods and Coherence Through Time

The iterative methods presented in the last section are
generally simpler than those presented in Section 2.1.
Still, one of their drawbacks is that the same repetitive
tests must be performed anew at each time step, even
though it is likely that the state of the world changes little
between adjacent steps.
Some recent iterative methods exploit such coher-

ence across the time axis by picking the previous step’s
solution as the current step’s initial solution (Gilbert
et al. 1988). This leads to faster expected convergence,
as measured in the number of iterations, because the ini-
tial guess is generally &dquo;close&dquo; to the actual solution. The
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speed increase causes a large reduction in the number of
computations over the course of a complete trajectory.

Using this idea of coherence, Lin and Canny ( l 991 )
present an algorithm that solves the collision detection
problem at time n + 1 in expected constant time, provided
the solution at time n is known. They carefully enumerate
the type (vertex, edge, or face) of the features realizing
the closest distance between the polyhedra under consid-
eration and their connectivity with neighboring features.
At a given time step, they perform a graph search around
the previous solution’s features. The search provably
converges monotonically toward the solution. Empirical
results confirm the efficiency claim.
A similar idea is presented by Baraff (1990), using

separating hyperplanes. It is well known that disjoint con-
vex figures can be separated by a hyperplane. As with
the Roider method, the hyperplane is used as a witness
of disjointness. The witness is found at initialization and
is updated in sublinear expected time as the motion pro-
gresses.

In summary, although the methods of Section 2.2.1 are
provably &dquo;optimal,&dquo; it is not clear how efficient they are
in practice for polyhedra with relatively small numbers
of vertices. Empirical results show that iterative methods
are very efficient on average, particularly if coherence is
taken advantage of.

3. Collision Detection versus Collision
Prediction

The collision detection techniques described in the last
section are concerned with one pair of objects only. As
is often mentioned in the literature, the basic collision
detection check must be repeated a number of times,
and this number grows quadratically with the number of
moving objects in the space, regardless of the technique
in use. In general, most of the computational time is spent
checking for collisions between pairs of objects with
low colliding urgency. The large number of pairs to be
checked may easily overwhelm even the most efficient
collision detector.

One way to reduce this potentially enormous load is to
perform collision detection only for the pairs that are
likely to collide within a given time horizon. Culley
and Kempf (1986) introduced the notion of a &dquo;driv-

ing pair,&dquo;-namely, the pair of objects that are nearest
neighbor among all pairs. This driving pair was used to
determine the time increment until the next invocation of

the collision detector.
This concept can be developed much further if the

coherence of the world throughout time is explicitly ex-
ploited to schedule the pairs to be tested. Note that this
use of coherence among object pairs is different from the

expected coherence of the solution for a given object pair
mentioned in Section 2.3.

Sensing and processing resources will be used more
effectively if attention is allocated to pairs of objects that
are near and/or fast approaching, rather than to those that
are immobile, far, and/or separating. Figure 1 makes this
clear.

Instead of a collision detector, we present here a colli-
sion predictor (Fig. 2). A collision predictor must either
flag all collisions before they occur, thereby generating
alarms, or indicate its inability to keep up with the dy-
namically changing environment. However, it may also

predict collisions that will never occur. Such collisions
are called false alarms. Obviously a good collision predic-
tor should generate as few false alarms as possible.
As shown in Figure 2, the predictor may also act as a

preprocessing filter for a &dquo;pure&dquo; or exact collision detec-
tor. In such an arrangement, the role of the predictor is to
cull out the safe pairs from consideration by applying a
simple and conservative test. An appropriate collision de-
tector then determines whether the selected events (pairs)
are true of false alarms.

By exploiting the coherence through time of which ob-
ject pairs are in danger of colliding, the predictor acts as
a scheduler for pair testing. Hence, one of its components
is a specialized data structure that dynamically reflects the
value of the urgency measure T. DUA implements such
a collision predictor. We describe its main components in
the next subsection.

4. Outline of DUA for Collision Prediction

The algorithm proceeds as follows. The entire set of
O(N 2) pairs is considered at initialization time. A mea-
sure of urgency, T, is computed for each pair as a func-
tion of instantaneous relative distance and velocity and
relative velocity and acceleration bounds.
The set of pairs is partitioned according to the value of

T, and pairs are placed in equivalence classes of unequal
cardinality. Class cardinalities grow as a geometric series,
from those containing pairs that are deemed to be very

Fig. J. The pair on the left is closer, but the one on the
right is deemed more uyent because of its relative veloc-
ity vectors.
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Fig. 2. Block diagram of collision prediction. The dashed
lines indicate that the collision predictor can replace the
detector entirely, at the expense of the possible generation
of false alarms.

&dquo;urgent&dquo; to those containing pairs that are not. Classes are
implemented as subarrays that are called buckets.
The algorithm then proceeds by testing more frequently

the pairs belonging to the buckets of lower cardinality.
Pairs percolate from bucket to bucket according to their
time-evolving value of T.

Data Structures

~ Time-varying array A(t) of maximum length (~):
Each element of A is a structure containing all the
information pertaining to a given pair of objects.
Within A, these pair structures are grouped into
buckets of different size.

~ Time-varying array W(t) of maximum length
11092 ( 2 } 1. W (t) is used to store and access the
pairs under investigation at time t.

Algorithmic Steps

~ Initial bucket allocation: For each pair, an underes-
timate T of its possible collision time is computed,
and a partial sort of the pairs is performed to initial-
ize and populate the buckets.

~ Each time sample: One element of each bucket is
picked from A and transferred into W . The underes-
timate T is then recomputed for each element of W.

The structure W’ is completely sorted by the new
value of T and its elements are reinserted into the

buckets. If a collision may occur, it is reported as an
alarm.

The reinsertion can proceed in different manners, and
the proposed scheme is as follows: the ith element
of the sorted structure W is put in the corresponding
ith bucket in the position of the previously withdrawn
element. As time varies, the reinsertion location is not

always the same. This way of reinserting the elements
is equitable, in the sense that all elements of a bucket
are evaluated an equal number of times.

5. Spatial Decomposition and Relative Motion
Consider a set R = f R ,... , RN } of N moving objects
and a conservative covering R of the elements of R. 7Z
is conservative if and only if the closure of the elements
of R is a superset of the closure of the elements of R. In
the following the size of R is assumed to be O(N).

To each r e 7z., a coordinate frame is associated, and a
position function fr(t) is defined on it, twice-differentiable
with respect to time in a given interval [0, T].

Let P = ( (rz , r j ) ) r.i,7-j E R,i, j E {1,..., A~}, K ~’}.
To each element p = (r~ , r~) E P, a relative position
function xp(t) = fr2(t) - frl (t), a relative velocity function
vp(t) = dxP/dt, and a relative acceleration function
ap(t) = d2xp/ dt2, all defined on [O, T], are associated
(Fig. 3).

Fig. 3. Every pair of P defines a relative position, a rel-
ative velocity, and a relative acceleration vector function.
o is the origin.
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If p consists of two spheres of radii cl and E2, a colli-
sion occurs at time t if

The minimum acceptable distance between elements of
a pair p is this sum, augmented by a safety margin 6p for
errors made in estimating the relative position function
and its derivatives.

Spheres are a simple but effective way to model
arbitrary three-dimensional objects (Hayward and
Aubry 1987; O’Rourke and Badler 1979), and they
easily allow for a conservative representation. We ar-
gue that richer object primitives, such as polyhedra, are
not warranted for a collision predictor. If necessary, these
primitives should instead be used by the later-stage colli-
sion detector, whenever the predictor flags a collision for
a given pair.
The following relative motion equation always holds

for all pairs:

Given xp(to), vp(to), a bound Vp on Ilvp(t)11 and a
bound Ap on l~ap(t)ll, we can use (2) to solve the mini-
mization problem

for all possible relative trajectories. The solution is a
conservative relative distance for p, valid over the range
[to, to + At]. It indicates the smallest relative distance the
pair can assume in the time interval, given the initial
distance and velocity and the acceleration and speed
bounds.

In general, these bounds are given by the physics of
the collision problem we are solving. The acceleration
bound may result from bounds on the active forces be-

ing exerted on the object, while the speed bound may
be given by a measure of viscosity of the environment
or other physical characteristics. In general, the relative
bounds for the object pairs are the sum of the individual
bounds on the objects themselves. If the bounds are uni-
form, then the relative bounds are twice the individual
bounds.

Alternatively, (2) can be used to determine a lower
bound for the smallest time that can elapse until a colli-
sion occurs. The object is then to find

for all possible relative trajectories, subject to the same
conditions as above. A sufficient condition for a pair not
to generate a collision is

We choose T{p, to) as our urgency function, and we
show in the next section how to calculate it.

6. Calculating the Urgency Function T

Setting to = 0, xp (0) = xo and vp (0) = vo in (2), and
otherwise dropping the reference to the particular pair p,
we get

b.l. Case without a Speed Bound

The higher the acceleration of a body, the further it trav-
els. Thus, it is intuitive that the minimum-time trajectory
has the constant bound value A for the norm of its ac-
celeration vector a(t). Variational calculus predicts that
maximum range is achieved when the acceleration is con-

stant in both norm and direction (Bryson and Ho 1987;
Lawden 1963). Keeping the acceleration norm constant
and maximum, (7) yields

where a = a(to). From (9), the locus of attainable relative

positions at time t is a sphere S centered at xo + vot
and of radius 2 At2. The boundary of S is the locus of
relative positions attained when the relative motion has
maximum constant acceleration, as in (9). Because the
radius of S grows with the square of t and its center
shifts linearly, any point in space is reachable given a
long enough period of time (Fig. 4). From (5), a collision
may occur during the time interval At if and only if

From equation (9), the earliest time at which the above
inequality can be verified occurs when a is of opposite
direction with xo + vot (Fig. 5). Let U be a unit vector
also of opposite direction from a. Taking c into account
in equation (9), a collision occurs when
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Fig. 4. Case with no speed bound. Two-dimensional pro-
jections onto a plane containing vo of the loci S(t) of
feasible positions at time t = At for several values of Ot.
vo is shown as an arrow. The tail of the arrow lies on xo.

Fig. 5. Graphical illustration of the four vector terms
of (10) at some time t during the acceleration components

Rearranging and squaring ( 11 ) yields

with (a, u) = A. Solving for t, we find that the earliest
possible collision time T is the smallest positive root of
the fourth-degree polynomial

6.2. Case With a Speed Bound

We now include a bound V on the relative speed. As
above, we represent the locus of attainable positions at

time t by a closed geometric figure S’ (Fig. 6). A colli-
sion may occur if and only if the origin is in the closure
of S’. Of course, the results of the previous section hold
over any given time interval At, if the maximum speed is
never achieved over it.

Suppose that the maximum speed is achieved during a
certain time interval. Assuming the initial relative speed
is less than V, the relative motion generating the earliest
possible collision is split into:

1. An acceleration component, during which the move-
ment has maximum constant acceleration a, of mag-
nitude A, until the speed V is reached.

2. A velocity component, during which the movement
has zero acceleration and maximum speed V = ~ ~ llvll.

This result is quite intuitive but is left to be proved.
We first determine T, the time at which the relative

speed reaches V. Differentiating (9), we get v(t) = at +
vo. Hence,

Solving (14) for IIv(T)11 = V, we obtain a second-
degree equation with roots of opposite signs. By choosing
T positive, we get

Fig. 6. Case with a speed bound. Two-dimensional pro-
jections onto a plane containing vo of the loci S(t) of
feasible positions at time t = flt for several values of At.
vo is shown as an arrow. The tail of the arrow lies on xo.
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The speed bound is encountered at time T. Of course,
if At < T, it will not be reached, and we revert back to
the case with no speed bound.

Note that T varies with the direction of a. For exam-

ple, from (15), we can isolate the two special cases where
a is collinear with vo. This yields T = (V - ~~vo~~)/A if a
and vo point in the same direction, and T = (V + ))vo )) ) />4
if they point in opposite directions.
Summing up both motion components, we find that T

is the smallest positive solution, greater or equal than T,
of

Because v(T) = vo + aT, (16) becomes

From (5), a collision may occur if and only if

The earliest time at which the above inequality can be
verified occurs when a is collinear with xo + vot and of

opposite direction. Equations (17) and (18) yield

Rearranging terms and squaring and solving for t, we
obtain a second-degree equation

The earliest possible collision time T is the smallest
positive root of the previous second-degree equation.
We have then completely specified T as a function of
T. However, because T is itself a function of a, whose
direction is not known a priori, T is still not completely
determined. We need an additional equation to convey the
fact that the two conditions on the motion components are
verified only when v(T) points toward the origin. Hence,
v(T) and x(T) are collinear:

Expanding (22), we obtain a second-degree equation
in T. This equation is solved for T for the smallest pos-
itive root, and the root is equated with the one found in
equation (15) to get an expression relating a to the known
values A, V, vo, xo. This expression can be quite com-
plex in the general case and is more easily solved using
numerical methods.

The net effect of including the velocity bound in our
calculations is to reduce the loci of feasible relative po-
sitions attainable after a given time interval, as can be
observed from Figures 4 and 6. This is desirable because
it makes the function less &dquo;conservative.&dquo; Namely, the
more refined the urgency function, the less conservative it
is and the fewer the false alarms. As expected, however,
we find that more involved computations are the price to
pay for less conservative measures.

Referring to Figure 2, it is clear that the more complex
the urgency function is, the more work gets shifted away
from the collision detector onto the collision predictor.
How complex the urgency function should be, therefore,
depends not only on the available dynamic model, but
also on the desired distribution for the computational
resources.

6.3. Active and Inactive Pairs

As described, the urgency measure T does not take into
account special relationships that may exist between ob-
jects forming pairs. The most obvious of these relation-
ships is that of pairs consisting of elements belonging to
the same rigid object. Such pairs cannot generate colli-
sions and should not be included in the data structure A,
thus eliminating them from consideration at the onset of
the algorithm.

Other relationships may also arise as motion pro-
gresses. For example, when a robot is required to graze
or contact objects, DUA should alter its behavior. The
considered pairs should be ignored as long as contact is
desired. This is not only for reasons of efficiency, but also
because desired low distance values for the pairs must be
maintained.

This concludes the description of the urgency function.
The next section gives a detailed description of DUA.

7. The Dynamic Urgency Algorithm
7.1. Spatiotemporal Sequencing Data Structure

Given a time interval At, we organize the O(N 2) pairs
into a time-varying sequencing structure A(t) that in-
dicates the urgency with which those pairs should be
checked for a possible collision. A(t) serves the following
purposes:

1. To determine the most likely pairs that may generate
a collision. The algorithm tests these pairs more
often.

2. To sequence the collision checks among elements

of P that are equally likely to generate a collision,
thereby reducing the number of computations.
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7.1.1. Initial Bucket Partitioning

For each pair we calculate T, which we defined in the
last section as a measure of collision urgency. We first
use T to perform initial collision checks and flag for
possible collisions for all pairs. We describe these tests
in Section 7.2.4.

Then, using T as a key, we partition the pairs into
buckets of unequal cardinality, where each bucket groups
pairs of similar collision urgency.

Here we propose a binary partitioning scheme in which
the cardinalities of neighboring buckets differ by a power
of 2. Other partitioning schemes with similar size rela-
tionships-based, for example, on the Fibonacci series-
may also be used. The crucial property is that the size of

adjacent buckets grows as a geometric series. This guar-
antees that the number of buckets grows as a logarithmic
function of the original input size.

Suppose the cardinality of the set of pairs P is M and
that 11092 Ml + 1 = L. For efficiency, only a partial sort
of the pairs is performed, using T as the key, and these
are inserted into the array A(0), such that

In other words, the value of the key for any of the
first 2~ - 1 elements must be less than that of any of the
remaining elements of the array. A partial sort can be im-
plemented using a median algorithm, which is faster than
a general sorting algorithm (see Section 7.3). Because
A(t) only implements equivalence classes, the rela-
tive values of T for pairs belonging to the same class,
or bucket, are inconsequential.

Each bucket ~A(t)[2i-1 ], ... , A(t.)[2‘ - 1 ] of pairs is
denoted by Bi. Hence, the cardinality of Bi is 2 i-I, and
there are L buckets. Note that bucket B1 contains one
pair and only the first A4 - 2 Lt~Q, M elements of bucket
BL are valid pairs, the rest being filled with dummy
variables. We say that bucket B.~ is larger than bucket B.~
if and only if i > j (Bi contains more elements than B~ ).

7.1.2. Bucket Selection and Update

After the initial bucket construction, we select at every
time interval one pair from each bucket only, for a total
of L pairs. The pairs are temporarily held in W(t). Be-
cause there are fewer pairs in the smaller buckets, these
pairs will be tested more often: this implements purpose I

above. Furthermore, the computational load will remain
constant at each step, because the number of selected

pairs is constant: this implements purpose 2.

The justification for the sequencing scheme should
now be clear: because T indicates that the pairs from the
larger buckets are less likely to collide than the ones from
the smaller buckets, they need not be checked as often.
Figure 7 shows the selection process through several time
steps.

7.2. Algorithm’s Description

We now describe a full algorithm iteration. We assume
that A(to) has been properly initialized such that the
pairs are partially sorted with respect to the proximity
measure T, as explained in Section 7.1.1. The algorithm is
described in pseudo-code in the Appendix.

At each iteration, we perform the following operations:

1. Select pairs from A(t) and insert them into W(t).
2. Evaluate T for all pairs of W(t).
3. Sort W (t) using the new value for T as the key.
4. Using the new order, check whether any pair of

W(t) may generate a collision before its next up-
date. This depends on the cardinality of the bucket
in which the pair is to be reinserted, which in turn
depends on the order of W (t).

5. Reinsert the elements of W(t) back into A(t).

Fig. 7. Array A(t) at different times ti. The buckets’
upper- limits are indicated by the arrows, and the arr-ay
positions selected for insertion into W(t) are shown by
the shaded regions.
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7.2.1. Pair Selection

Let W(t) be the array of pairs to be examined at a given
time t = (At)n. W (t) is populated in the following
manner: each element W(t)[iJ is the current head of the
corresponding circular queue of bucket B.,.. This is written
4s:

Note that the last element of the above set does not

always exist for all values of n.

7.2.2. Evaluation of T

For each pair p in W(t), we read in the current values
for xp(t) and vp(t). As discussed in the beginning of
Section 2.2, these values are assumed to be available in
real time, either from sensor readings or from trajectory
computations. We use these values to recalculate T using
either of the methods described in Section 6 or any other

urgency function.

7.2.3. Sorting W

The elements of W (t) are sorted according to the most
recent value of T that was calculated in the previous step.
The new positions of the pairs within W(t) now reflect
the current relative urgency for those pairs.

7.2.4. Performing the Collision Checks

The new value for T is then used to determine whether
a collision should be flagged. If p is a pair under consid-
eration, p cannot generate any collision during the time
interval T.

Let p = W(t)[i], where W(t) has been updated as
explained in the previous subsection. From Figure 7 it

is clear that if p is reinserted into A(t), it will next be
selected after 2i - 1 iterations.

Suppose now that the following holds:

Equation (25) means that p is guaranteed not to gener-
ate any collision for an amount of time equal to its update
time. This is because p will be updated after a number
of time increments exactly equal to the cardinality of the
bucket into which p is to be reinserted. To guarantee that

p will not collide until the next update is completed, we
need a slightly more restrictive condition. This condition
must take into account the time needed to complete the

current iteration and the time needed to complete the next
iteration in which p will be selected. Hence, (25) becomes

Condition (26) expresses a sufficient condition for p
to be reinserted into A(t) while guaranteeing that any
collision generated by p will be flagged by subsequent
iterations. Hopefully, a large number of pairs will satisfy
it. If (26) does not hold, we generate an alarm for pair p.
As seen in Figure 2, whether a collision is actually about
to occur can be checked by an exact collision detection
module, if such a module is available.

7.3. Complexity Analysis

The method complexity is driven by the number of pairs.
There are originally M = O(N2) pairs, where N is the
number of spheres induced by the covering ?Z.
The original preprocessing partitioning step using T

takes O(N2). This can be seen considering that A(to) is
obtained by repeated application of the linear-complexity
median-finding algorithm over an exponentially de-
creasing set, the size of the input being O(N 2) (Aho
et al. 1982).

At every time increment, we need to consider one pair
from each bucket. There are 0(logN 2) = 0(log N)
buckets. Updating the array using a true sorting algorithm
has a complexity of 0(log N log log N). Note that if a
partial sort such as that performed at preprocessing time
is chosen, the on-line complexity drops to O(log N).

7.4. Completeness

We say that the algorithm is complete if we can guar-
antee that all collisions are flagged. Let Q be the time
necessary to completely process the 0(log N) pairs in the
main loop of the algorithm. A sufficient condition for the
algorithm to be complete is that

If At is chosen too small, (27) shows that the pro-
cessor may not be able to perform all the overhead
associated with every iteration: memory accesses, recom-

putation of T, and resorting of the pairs. Thus collisions
may be missed and DUA is not complete.

However, if At is chosen too large, (26) shows that an
excessive number of &dquo;collisions&dquo; may be flagged. Most
of them would be false alarms. If an exact detection col-

lision module is available, an inordinate number of false
alarms would overload it, leading to system degradation.
If, instead of being post-processed, alarms cause pre-
ventive shutdown of the system, an excessive number of
false alarms would also be very undesirable.
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Even though we have not yet attempted to calculate an
optimal time step, choices can be made based on intuitive
arguments. For example, Culley and Kempf (1986) de-
termine the time interval length between static collision
checks as t = CL~,r;n ~ Ymax where dmin is the current mini-

mum relative distance among all object pairs and Vmax is
the maximum relative speed between the objects.

In the next section, we present simulation results

demonstrating the effectiveness of DUA and discuss
its limitations. Rather than choosing an a priori opti-
mal value for At, as would have to be done in a real-time
application, we elect to let DUA process pairs as fast as
the computational resources allow it, thus empirically es-
tablishing At as Q + 1 instruction cycles. This guarantees
that, once initialized, the simulation satisfies (27).

8. Experiments
As explained in Section 5, we assume that three-
dimensional moving objects are modeled as collections
of spheres. Here, the spheres are constrained to move in
a cube. A collision occurs when the distance between the
centers of any two spheres falls below a certain threshold.
The motion of the spheres is generated by assigning ran-
dom but bounded values to the acceleration vectors, thus

generating relative position and velocity values for all
pairs. This represents a worst-case scenario as far as the
coherence of the system is concerned. In most practical
situations, we would expect a larger amount of coherence
to be present and hence an even better performance of
DUA.

The problem that DUA addresses presents a large num-
ber of parameters. We elected to perform tests showing
the effectiveness of the scheduling mechanism and of the
urgency function.

8.1. Description of the Tests

For purposes of comparison, we implemented three al-
gorithms using Common Lisp and ran them on a SPARC
470:

1. DUA: The algorithm discussed in this article, with
the urgency function set as described in Section 6.1 I

(no speed bound).
2. SA(T) (Select-All): The simple algorithm referred

to in Section 1: at every time step, we recalculate
T and check for possible collisions for all pairs.
No sequencing structure or sorting mechanism is
necessary.

3. SA(d): Same as SA(T), except that the urgency
function is the ordinary Euclidean distance.

8.1.1. Effectiveness of DUA’s Sequencing Technique

We ran DUA and SA(T) for sets of 5, 10, 15, 20, 30, and
40 spheres over 25, 35, 50, 65, and 75 iterations. We use
the naive SA(T) algorithm as a benchmark for assessing
DUA’s effectiveness in terms of its:

Efficiency: Efficiency is measured in CPU cycles per
algorithm iteration, as a function of the number of
spheres.
Precision: Precision measures the number of false

alarms DUA generates. The smaller the number, the
more precise the algorithm. Because the simulation
methodology guarantees completeness (see the com-
ment at the end of Section 7.4), we know that DUA

flags all collisions. However, the more precise DUA is,
the fewer false alarms it generates.

Urgency Belief: DUA maintains a hierarchy of its
belief of pair urgency through the structure A(t). As
time progresses, the belief may become flawed (for
example, if the world is too incoherent for DUA to
update its hierarchy fast enough).

8.1.2. Efficiency 
’

Not surprisingly, SA(T) requires much more CPU time
per iteration. SA(T) exhibits a growth quadratic in the
number of spheres, whereas DUA exhibits a sublinear
growth in the same number. The results are charted in
Figure 8 and further detailed in Table 1. In Figure 9, the
experimental computational growth of DUA is seen to
closely follow the theoretical O(log n log log n) growth.

Fig. 8. Experimental running times for DUA and SA
in CPU cycles, with respect to the number of spheres
present in the scene.
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Table 1. CPU Cycle Time for DUA and SA

Fig. 9. Comparison of the theoretical computational
growth (dotted line) of DUA versus its experimental
growth (solid line), in scaleless units.

8.1.3. Precision

In the tests we ran, the number of collisions between the

spheres turned out to be zero in all cases. Hence, all the
alarms generated because equation (26) did not hold were
false alarms. The numbers of such alarms for both DUA

and SA(T) are charted in Figure 10 and further detailed in
Table 2.

Although DUA does generate false alarms, we found
the results quite convincing when compared with SA(T).
The absolute number of alarms is always lower for
DUA, and its growth appears to be sublinear with re-
spect to the number of spheres. In contrast, the number
of false alarms for SA(T) seems to be following at least a
quadratic growth.
A repetitive alarm is an alarm for a given pair that is

flagged at successive iterations. It is clear that repetitive
alarms should be counted only once, because they occur
only because of our artificial time discretization: Objects
collide only once, but the collision predictor &dquo;flags&dquo; a col-
lision as long as the pair’s urgency measure remains too
low (i.e., low earliest time to collision). We also assume
that in a more realistic situation, corrective action is taken
to remedy alarms, thereby preventing repetitive alarms.
SA(T) generates many repetitive alarms, and they were
filtered out from the results of Figure 10. DUA also gen-
erates repetitive alarms, but because pairs are normally

not selected repeatedly over neighboring iterations, filter-
ing DUA’s repetitive alarms is a more subtle task. In the
result we present for DUA, we did not attempt to filter
out the repetitive alarms. Hence, actual results for DUA
are better than those shown.

8.1.4. Urgency Belief

We want to ascertain whether DUA’s hierarchy is accu-
rate. For doing so, we chose an extremely simple test.
At every iteration, we check whether DUA’s belief of
the most urgent pair is correct. SA(T) maintains an accu-
rate hierarchy of urgency and we used its hierarchy as a
reference against which to check DUA’s.
We varied the number of iterations from 25 to 250,

while keeping the number of spheres at 10. For more ac-
curacy, we applied the algorithms for 10 different random
movement sequences for each test. We then computed
statistics on DUA’s belief of the most urgent pair. Overall,
we found that DUA correctly predicted the most urgent
pair 67% of the time, a rather high agreement measure
(Table 3).
We also tested the effectiveness of the urgency function

we used. We applied the same test-of the most urgent
pair-to compare the effectiveness of SA(T) against that
of SA(d). There, the number of agreements between the
two algorithms was 20% (Table 3). We believe this low
number vindicates our use of an urgency function that

incorporates knowledge about the pairs’ positional deriva-
tives. Figure 2 gave a simple case well handled by the
urgency function T(,ro, t) but not by d(p, t). We also vi-
sually verified the prevalence of such cases on graphical
displays, where the color of the spheres was used as an
indicator of the magnitude of T.

8.2. Summary of Test Results

By comparing the performance of DUA to a naive ex-
haustive collision-prediction algorithm, we found it
performed significantly better. The growths of both the
computational cost and the number of false alarms as a
function of the number of spheres decreased from ap-
proximately quadratic to sublinear. These results are
correlated, because the precision of DUA is linked to
its ability to process information speedily.
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Table 2. Number of False Alarms of DUA and SA.*

*In the case of SA, the first number is the count with repetitive alarms excluded, while the number in parentheses includes all alarms.

Table 3. Agreement of DUA With SA(T) and of SA(T) With SA(d) for the Classification of the Most Urgent
Pair in the Case of 10 Spheres.* *

*The sample mean and the standard deviation of the number of agreements between the algorithms are shown.

Fig. 10. The number of false alarms charted agairtst the
number of spheres is shown for 25, 50, and 75 iterations,
for both DUA and SA(T). Repetitive alarms are only
counted once.

According to an arbitrary simple measure, that of the
belief of the most urgent pair, we showed that the se-
quencing mechanism maintains a high degree of agree-
ment (2/3) with the current state of the world. With the
same simple measure, we also showed that using the pre-
diction function generally benefits (four times out of five)
from the incorporation of the positional derivatives in its
computation.

9. Conclusions

We presented a general, gracefully degrading sequencing
scheme for computational problems characterized by large
input sizes, limited resources, and a dynamically changing
environment by assuming that the rate of change of the
environment obeys some bounds. We also generated some
experiments to illustrate the validity of the approach.
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We called the sequencing scheme DUA, for dynamic
urgency algorithm, and we applied it to the problem of
collision prediction for many moving objects. In partic-
ular, we introduced an urgency measure based on the

objects’ positions and positional derivatives. The measure
represents the shortest possible time before a collision,
given the available information. We also showed how it
could be used to implement a collision prediction behav-
ior.

Given an environment made up of N spheres, the naive
method of testing all pairwise interactions at each time
sample has a complexity of O(N2). In contrast, DUA has
an initial classification step of complexity O(N 2) and a
steady-state complexity of 0(log N log log N) per time
sample. We gave a condition for DUA to guarantee the
flagging of all collisions (the completeness property), but
because of its generality we could not specify when such
a condition could be guaranteed.

Within the general framework of DUA, many varia-
tions are possible. Examples of critical implementation
considerations are:

Serial computing: If a serial computer is used, larger
buckets can be assigned to memories of increasing
capacity and decreasing access speed. In such a con-
text, the pair sampling algorithm mimics scheduling
algorithms used in time-sharing operating systems.
Parallel computing: In a parallel computing environ-
ment, a computing unit could be assigned to each
bucket, because the computing requirements are the
same for all buckets. Further, higher speed links be-
tween the central unit, whose job is to manage alarms,
and the larger buckets could be arranged, thus reflect-
ing the urgency hierarchy right in the hardware config-
uration. A more extreme case would be for each pair
to be assigned its own processing unit. In this case no
bucket scheduling scheme is necessary, but an urgency
hierarchy would still be desirable to reduce the num-
ber of connections between the central collision flag
manager and the O(N 2) pairs. Finally, the collision
predictor and detector of Figure 2 can easily be im-
plemented on separate and communicating computing
units.

Partitioning: As mentioned in Section 7.1.1, the size
of buckets can follow other geometric series, such as
the Fibonacci series. The partitioning strategy may in
general have to be tuned to the particular application.
Environment Knowledge: The urgency function T we
developed is by no means restrictive. The system’s
ability to acquire available information and process
it in real time should determine which function DUA

uses. It is clear that the more information is available,
the more accurate T is.

Appendix: Dynamic Urgency Algorithm
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