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Abstract

In this paper, we consider the collision detection problem for general objects. A four-dimensional approach is

proposed for this problem which detects exactly and in one-step when and where the earliest collison will occur between

the objects. This is done by using four-dimensional sets to represent the objects in both space and time. The problem is

then posed as a nonlinear programming problem. The algorithm can handle the case of a rigid body moving on a

general path in R2 or R3 with simultaneous translation and rotation. Simulation results on some example problems are

given, and show that the algorithm is superior to those available in the literature. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The collision detection problem has been ex-
tensively studied in the robotics literature and
various classes of algorithms are available [1±
3,5,8±13,15±26]. For a survey of these various al-
gorithms, see Refs. [1,2]. In [1], two algorithms
that use the multiple interference methodology [10]
are presented. The algorithms apply to objects that
can be represented as polyhedral sets de®ned as
intersections of ®nite halfspaces or as convex hulls
of a ®nite number of vertices. The algorithms can
give in principle exactly the collision points (in
both time and space) for objects moving on a

general path in R2 or R3 with simultaneous
translation and rotation. However, since the al-
gorithms essentially reduce the dynamic interfer-
ence detection problem (collision detection) into a
static interference checking by discretizing the
space-time frame into ®nite grids at which inter-
section is tested, the decisive choice of the time step
length is very crucial to the reliability of the al-
gorithms. Furthermore, polytopic representation
of objects may be very poor in certain applications
especially when smooth objects are involved.

In this paper, we remove some of the limitations
of the algorithms in [1], and perform collision de-
tection in four-dimensional space directly. A formal
notion of four-dimensional intersection testing was
introduced by Cameron [10,11] using an ``extru-
sion'' operation. However, constructive solid
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geometry was used in the implementation of the
algorithm, and various techniques for null set de-
tection were employed. Therefore in this paper, we
follow up the development in [10,11] and present
analytical methods for four-dimensional intersec-
tion testing which are more amenable to computa-
tions, and make the algorithm computationally
e�cient. The algorithm also ®nds the collision point
in one-step without discretization, and can be ap-
plied to both polytopic and smooth objects (that
may be nonconvex in nature) moving on a general
path in R3 (not necessarily linear) with simultaneous
translation and rotation.

In Section 2, we review methods of representa-
tion of objects in four-dimensional space as a basis
for the new algorithm. Then in Section 3, we for-
mally introduce the problem and propose the new
algorithm. We also discuss some of the ways that the
algorithm can be extended to nonconvex objects in
Section 4. This is followed by computational results
from simulations obtained using the algorithm in
Section 5. Finally, in Section 6, we give conclusions
and suggestions for future work.

2. Four-dimensional representation of moving ob-

jects

Cameron [10,11] used the concepts of sweeping
and extrusion to represent the four-dimensional
sets generated by moving objects. While the former
refers to the volume swept by the moving object
over time, the latter refers to the set of all points
occupied by the object at a particular time t. For
an object A represented by a compact set KA, with
a location function KA�t� which describes its po-
sition at a given time t, its swept volume over a
®nite time interval is represented by the set

Sw�KA;KA�t�� � fx j x 2 KA�t��KA� 8 tg; �1�
where ``Sw'' is the sweeping operator. To get a
better understanding of the above operation,
consider a unit cube de®ned by the set

C�x; y; z�
� f�x; y; z�j06 x6 1; 06 y6 1; 06 z6 1g: �2�

Assume that the center of the cube is to move
along a straight line path to the point (10, 10, 10)

at a speed of 1 unit/s. The location function of the
cube is then de®ned by

Lc�t� � fx�t� � t; y�t� � t; z�t� � t; 06 t6 10g:
�3�

To determine the sweep of such an object, we need
to project all its corners parallel to the given path
from its initial position to the ®nal position. It can
however be seen that, it will need a large number
of inequalities (halfspaces) to describe this swept
volume. The best we can do is to represent it as a
union of an in®nite number of cubes. Thus,

Sw�C; L� � lim
Dt!0;N!1

[N
i�1

Ci�x; y; z; t�; �4�

where

Ci�x; y; z; t� � f�x; y; z�ji Dt6 x6 1

� i Dt; i Dt6 y6 1

� i Dt; i Dt6 z6 1� i Dtg:
Furthermore, if any two or more objects interfere,
their sweeps must intersect. This is however not a
su�cient condition. Also, based on the above ex-
ample of the cube, it is di�cult to come up with
analytical expressions for the interference region
between the objects.

On the other hand, in extruding the above cube,
we represent it by the following set:

C�x; y; z; t� � f�x; y; z; t� j t6 x6 1� t; t6 y6 1� t;

t6 z6 1� t; 06 t6 10g: �5�
As another example, a sphere of radius 4 and
centre (5, 5, 5) at time 0 and moving with velocity
(1, 1, 1) units/s is represented by the four-dimen-
sional set

S�x; y; z; t� � f�x; y; z; t�j�xÿ 5ÿ t�2 � �y ÿ 5ÿ t�2

� �zÿ 5ÿ t�26 16g: �6�
In general, given an object A with location func-
tion KA�t� as above, its extrusion is given by the set

Ex�KA;KA� � f�x; t� j x 2 KA�t��KA�g; �7�
where ``Ex'' is the extrusion operator. Further, if
any two or more objects interfere, then it is nec-
essary and su�cient that their extrusions intersect
or have a common point.
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Suppose that the objects under consider-
ation can be represented in their initial posi-
tion and orientation by compact convex sets of
the form

G0 � fx: g0�x�6 0; g0 : Rn ! Rm;

n � 1; 2; 3; g0 2 C2g: �8�
With this representation, both smooth and non-
smooth objects can be treated. Furthermore, in [1]
the authors suggested a polytopic representation
of the objects where g0�x� is a linear function of the
form

g0�x� � Kxÿ b6 0; �9�
where K 2 Rm�n and b 2 Rm. The authors have
also shown that for rigid objects represented in the
form (8) and (9), any rigid-body transformation
(or sequence of transformations i.e., translations
and rotations) results in the new instantaneous
geometry given by the following set:

�G0 � f�x; t�j �g0�x; t� � KRÿ1�t��xÿ p�t�� ÿ b6 0g;
�10�

where R�t� 2 R3�3 and p�t� 2 R3 are the rotation
matrix and translation vector [14] parameterized in
time t respectively.

In this paper, we extend the representation (10)
to cover a more general class of objects (smooth
convex objects) that can be represented by the
following set

G � fx: g�x� � xTQx� cTx� d 6 0;

x 2 Rn; Q 2 Rn�n; c 2 Rn�1; d 2 Rg; �11�
where Q is a positive semide®nite matrix.

This can be used to represent spheres, ellip-
soids, cylinders etc. Moreover, even polytopes can
be represented in this form. The following propo-
sition gives a unique representation of an object in
four-dimensional space under rigid-body trans-
formation.

Proposition 2.1. Consider a solid object represented
by the set G de®ned by Eq. (11). Then the resulting
geometry of the object as a function of time under a
rigid-body transformation is represented by the
following set:

�G � f�x; t�jg�x; t�
� �xÿ p�t��TR�t�QR�t�T�xÿ p�t��
� cTR�t�T�xÿ p�t�� � d 6 0g; �12�

where R�t�; p�t� are the appropriate rotation matrix
and translation vector parameterized in time re-
spectively.

Proof. Let x be any point on the object desribed by
the set (11). Suppose, and without loss of genar-
ality, that the object undergoes a rigid-body
transformation comprising of a rotation and a
translation, then the point x is transformed to the
point �x 2 �G at time t, given by

�x � R�t�x� p�t�: �13�
Substituting for x in Eq. (11) and using the fact
that Rÿ1�:� � RT�:�, we get

�g�x; t� � ��xÿ p�t��TR�t�QRT�t���xÿ p�t��
� cTRT�t���xÿ p�t�� � d 6 0: �14�

Since x is arbitrary, we can drop the bar on the x
and regard the above expression as the trans-
formed object or in the terminology of Cameron
[11], the extrusion of the original object. �

Furthermore, there has been some progress in
research in the approximation of nonsmooth ob-
jects by smooth ones. By appropriately shaping a
superquadric function [4], many other complex
solids can be brought into the above fold. A su-
perquadric function can be de®ned by

f �x; y; z� � x
f1�x; y; z�

� �2r

� y
f2�x; y; z�

� �2r
" #2q=2r

� z
f3�x; y; z�

� �2q

ÿ 1 � 0; �15�

where r; q are parameters and f1; f2; f3 are scal-
ing functions.

3. Collision detection in four-dimensional space

A formal de®nition of the collision detection
problem is as follows:
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De®nition 3.1. Given representations of N � 1
convex objects A;B1;B2; . . . ;BN , whose locations
in space at any time t are represented by the sets
GA�t�; GB1

�t�; GB2
�t�; . . . ;GBN �t�, respectively, over

a time interval �ts; tf �, determine whether any pair
of the objects occupy some common space at the
same time during this interval.

Without any loss of generality, we can assume
A in the above de®nition to be a robot (or robot
link) moving in a workspace W � Rn where there
are obstacles Bi; i � 1; 2; . . . ;N . Hence we are
particularly interested in checking whether

9 t 2 �ts; tf � 3 GA�t� \ GBi�t� 6� ;; i � 1; 2; . . . ;N ;

�16�
where GA�t�, GBi�t�; i � 1; 2; . . . ;N , are of the
form (10) or (12). With the above compact repre-
sentation of the objects by Eqs. (10) and (12), we
now present the problem as an optimization
problem.

Let the motion of each object be represented by
the pair of rotation matrix and translation vector
�RA�t�; pA�t��, �Ri�t�; pi�t��; i � 1; . . . ;N , whose ele-
ments are parameterized in time t. To determine
whether any pair of the objects say A and Bi,
represented by the sets GA�t� and GBi�t� respec-
tively, collide, we seek a feasible solution to the
following system of inequalities:

gA�x; y; z; t�6 0;

gBi�x; y; z; t�6 0;

ts6 t6 tf ;

�17�

where gA�:�; gBi�:� are of the form (10) or (12).
There are algorithms available for ®nding feasible
solutions to the above system [27]. Alternatively,
the problem can be posed as an optimization
problem with zero (or any) objective function. If
the above system has no solution, then the objects
A and Bi will not collide in the time interval �ts; tf �.
However, if the above system has a solution, then
any solution represents a collision point in terms
of location and time. To get all collision points,
one has to enumerate all solutions of the above
system. If however, one is interested in ®nding the
earliest collision in �ts; tf �, then one can solve the
following optimization problem:

min t

s:t: gA�x; y; z; t�6 0;

gBi�x; y; z; t�6 0;

ts6 t6 tf :

�18�

For every pair �A;Bi�; i � 1; 2; . . . ;N , one can solve
the above problem and get the earliest collision in
�ts; tf �.

The above problem is a nonlinear programming
problem [7], and e�cient algorithms for solving
such a problem exist [27]. Thus, by solving the
above problem, we get an exact solution to the
collision detection problem; and if the problem has
no solution, it means that there is no possible
collision between the objects for all the time.
Furthermore, the solution is obtained in one step
without having to compute the distance between
the objects at every step [5,16±18,21,23,24] or
combinatorially checking for intersection between
various features of the objects [8,9,13,20,22]. No-
tice also that the above algorithm is a generaliza-
tion of the algorithm in [1] with the linear system
replaced by a nonlinear system and the linear
program [6] replaced by a nonlinear program.
Moreover, we eliminate the discretization of the
time-dimension which could cause errors in de-
tecting collisions. The algorithm can also be ex-
tended to deal with multiple moving/stationary
objects, and by changing the bounds on the vari-
ables, it can be used to detect all possible collisions
between the objects.

4. Extension to nonconvex objects

In the previous sections, we have presented an
approach for representing complex objects in
three-dimensional space using convex sets, and
developed an algorithm for detecting possible
collisions between them when their motion is pa-
rameterized in time. In this section, we seek to
extend the representation in Section 2 to cover
nonconvex objects. Such objects abound every-
where and a complete solution of the collision
detection problem should certainly encompass
nonconvex objects. It has always been a problem
to represent nonconvex objects directly using al-
gebraic or analytical methods; usually, they are
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approximated by their convex hulls [7] or as union
of convex objects. However, in this section, we
show that a host of nonconvex objects can be
represented as intersections of ®nite number of
convex and nonconvex sets, and hence our algo-
rithm can be applied to them directly.

For example, consider the intersection of two
discs in two-dimensions de®ned by the set

D � D1 \ D2; �19�
where

D1 � fxjs1�x�6 r1; x 2 R2; r1 2 Rg �20�
and D2 is a hollow disc de®ned by the set

D2 � fxj s2�x�P r2 x 2 R2; r2 2 Rg �21�
as shown in Fig. 1 below. Where s1�x� � r1 and
s2�x� � r2 are the equations of the bounding cir-
cles, respectively. Clearly D is a nonconvex disc.
Similarly, many other nonconvex sets can be rep-
resented as in the above, and our algorithm can be
applied to them.

In general, using the representation (11), the
intersection of a convex and a nonconvex object
can be represented by the set

~G � fxj ~g�x�6 0; x 2 Rng; �22�
where

~g�x� � xT Q1

ÿQ2

� �
x� cT

1

ÿcT
2

" #
x� d1

ÿd2

� �
6 0 �23�

and Q1; c1; d1 and Q2; c2; d2 represent the cor-
responding objects.

Remark. In fact, if either Q1 or Q2 is nonpositive
semide®nite, then the corresponding sets do not
de®ne a convex object, while the limiting case
when Qi � 0; i � 1; 2, will always de®ne a convex
object; literally a polyhedron.

5. Simulation results

In this section we give results of simulation with
the algorithm on various example problems to
show its e�ciency. We use a standard subroutine
\constr" for solving constrained optimization
problems from the MATLAB Optimization
Toolbox [27] to implement the algorithm.

The ®rst example we consider is from [10].

Example 5.1. Fig. 2 shows a sphere of radius 4
centered at (5, 5, 5) at time 0 moving with velocity
(1, 1, 1) unit/s and a cube of sides 4 units centered
at (44, 54, 5) at time 0 moving with velocity
(0, 0, 1). It is required to ®nd if there is any
possible collision between them over the time span
0±64.

Let the two objects be represented by the four-
dimensional sets

g1�x; y; z; t�: �xÿ 5ÿ t�2 � �y ÿ 5ÿ t�2

� �zÿ 5ÿ t�26 16 �24�

g2�x; y; z; t� :

426 x6 46;

526 y6 56;

36 zÿ t6 7:

8><>: �25�

This problem was solved on an IBM/DX 486
machine. A collision was detected at (46, 52,
47, 44) within 11.25 s. However, such a conclusion
could not be arrived at in [11].

Example 5.2. Consider the objects shown in Fig. 3,
an ellipsoidal object and a spherical object de-
scribed by the following systems:

g1�x; y; z�: x2

22
� y2

1
� z2

1
6 1; �26�

g2�x; y; z�: �xÿ 10�2 � �y ÿ 10�2 � �zÿ 5�26 4:

The sphere is moving on a path
Fig. 1. Representation of a nonconvex object as intersection of

two discs.
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px�t� � 10ÿ t; py�t� � 10ÿ t2; pz�t� � 5ÿ t

�27�
while the ellipsoidal object is rotating around
the z-axis at a constant angular rate of 1 unit/s.

It is required to determine whether a colli-
sion can occur between the two objects in
06 t6 20.

Notice that the ellipsoid can be described in the
form (11) as

Fig. 2. Example 1 from [10].

Fig. 3. Example 2.
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x y z� �
1 0 0

0 4 0

0 0 4

0B@
1CA x

y

z

0B@
1CA6 1: �28�

The rotation matrix around the z-axis [14] at
constant angular velocity h � t is given by

R�t� �
cos�t� ÿ sin�t� 0

sin�t� cos�t� 0

0 0 1

0B@
1CA: �29�

Introducing this in Eq. (28) according to Eq. (12),
we get the following representation of the ellipsoid
at any time t:

x2 cos2�t� � 1

2
xy sin�2t� � 4x2 sin2�t�

ÿ 2xy sin�2t� � 1

2
xy sin�2t� � y2 sin2�t�

ÿ 2xy sin�2t� � 4y2 cos2�t� � 4z26 1: �30�

Observe also that at t � 2p, we immediately get
back our original ellipsoid.

For the sphere, we need not put it in the form
(12), we represent it simply as

�xÿ 10� t�2 � �y ÿ 10� t2�2 � �zÿ 5� t�26 4:

�31�

Fig. 4. Example 3 form [1].
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This problem was solved using the IBM/DX 486
machine, and no collision was detected.

Example 5.3. Our last example is a two-dimen-
sional problem from [1] shown in Fig. 4 which we
used to test the reliability of the algorithm. It was
shown there that when Dt P 0:6 the object O
moving on a linear path misses a collision with
objects O1, O2, O3. We have resolved this problem
with the new algorithm. The collisions at (3.5, 2)
with O1, at (5.9, 4.5) with O2 and at (3, 4) with O3

were all detected within 0.2 s. Moreover, the
computational time for the two algorithms is also
tabulated on Table 1.

6. Conclusion

We have presented a collision detection algo-
rithm for detecting possible collisions between
moving objects in three-dimensional space. The
algorithm can deal with both polyhedral and
smooth objects that can be represented by systems
of linear or nonlinear inequalities. Moreover, it can
handle the case of an object moving on a general
path (parameterized in time) in three-dimensional
space with simultaneous translation and rotation.
To the best of our knowledge, this is the ®rst of its
kind that can handle both polyhedral and smooth
objects (without gross approximation), and with
simultaneous translation and rotation. Further-
more, it detects exactly (in both space and time) the
earliest possible collision between the objects
without having to monitor the distance between the
objects as in most of the algorithms. It does not
also use the combinatorial approach applied in
other algorithms. It utilizes a unique representation
of objects in a four-dimensional space.

The algorithm is also e�cient, because it can
utilize e�cient nonlinear programming routines
which are available. Comparing it with some of the
best algorithms on the subject, Canny [13], Gilbert
et al. [16], Kawabe et al. [20], Cameron [10,11], it is
seen that it supersedes all of them in terms of
simplicity, e�ciency and wider applicability.

Finally, it is desired to explore the possibility of
using quaternions to represent orientation rather
than matrices to compare the performance of the
two approaches.
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