Is length contraction really paradoxical?
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A thought experiment is proposed in which a moving conducting shuttle encounters a gap
between two conducting rails connected at one end through a bulb and a source of steady voltage.
A naive application of length contraction leads to contradictory results when the encounter is
examined from the rail and the shuttle frames, viz., that the bulb should switch off in one frame
but should keep glowing in the other. However the interaction between the shuttle and the gap is
so arranged that it is possible to analyze the experiment quantitatively in both the Lorentz frames
within the framework of elementary relativistic kinematics. It is shown that the results of such a
calculation lead to an exact agreement between the observed effects in the two frames. The article
includes an Appendix that contains a compact bibliography of several of the paradoxes in the

theory of relativity.

I. INTRODUCTION

In this article we present a thought experiment in which
we let a moving object meet a complementary object with a
gap of equal rest length. As in the other length contraction
paradoxes of this genre (see Appendix), the encounter re-
sults in observable effects that appear contradictory at first
sight (viz. a bulb switches off in one frame but glows on in
the other). But, unlike the others, the interaction we
choose (which is electrical) can be made weak enough for
the two objects to continue their original motion. This per-
mits us to calculate the observed effect in detail in both the
Lorentz frames using only the kinematics of a single special
Lorentz transformation and see if the results tally w1th
each other.

It is shown that a careful analysis brings about an un-
equivocal and quantitative resolution of the paradox. The
calculation involves only the length contraction, time dila-
tion, and velocity addition formulas, and as such lies within
the scope of a first course in relativity. It is hoped that the
exercise will help strengthen the ability of the freshman to
switch Lorentz frames and perhaps convince him of the
inner consistency of the rather unfamiliar consequences of
the Lorentz transformations.

II. THE PARADOX

Let us consider two long parallel conducting rails that
are open at one end but connected at the other end through
a bulb and a source of steady voltage all in series (Fig. 1).
One of the rails has a gap of rest length /, that is bridged by a
parallel conducting strip AB very close to the rail itself. An
H-shaped object with conducting prongs C and D connect-
ed by an insulating rod fits snugly between the guide rails
and is capable of moving freely between them like a shuttle
in a weaver’s loom. The rest length of the shuttle is also
equal to /.

When both prongs of the shuttle are to the left of the gap
(see Fig. 1), the rails are shorted by the shuttle and the bulb
glows. We wish to examine from the “rail frame” and the
“shuttle frame” what happens to the glowing bulb if the
shuttle moves forward uniformly at a speed Sc with respect
to the rails. We assume that the friction and electrical inter-
action are small enough that the momentum of the shuttle
changes by a negligible amount during its motion.

When observed from the rail frame the moving shuttle
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CD suffers a length contraction and occupies the position
shown in Fig. 1 at the instant at which C is losing contact
with A. Thereafter, there occurs a period of time during
which both prongs C and D lose contact with the upper rail
and the circuit opens. The bulb should therefore stop glow- -
ing until prong D of the shuttle reestablishes contact with
the rail at B and the circuit closes again. Thus in the rail
frame the bulb switches off for a time T4 before starting to
glow again.

When observed from the shuttle frame, the bulb and the
entire circuit move backwards and it is the gap and the
bridge AB across it that suffer the length contraction (see
Fig. 2). Since the shuttle is now longer than the gap, there is
no instant at which both prongs C and D of the shuttle lie
within the gap AB. Therefore, one or the other of the
prongs C and D is always in contact with the rails since B
establishes contact with D before A loses contact with C.
Hence, in the shuttle frame, the circuit never becomes
open It then appears that the bulb should never stop glow-
ing, which conclusion is paradoxical.

The full resolution of the paradox requires that we
should prove that not only does the bulb switch off in the
shuttle frame as well, but that it switches off in it for a time
T that is longer than T 4. For, the “off time” T of the
bulb in the rail frame is a proper time, and the nonproper
time 7'z must be related to T4 by the time dilation for-
mula

re =VToe, where y=(1—-82)""2 (1

ITI. RESOLUTION

First we convince ourselves that T+ >0 and then we
verify Eq. (1).

Referring to Fig. 11let us call the event of Closing contact
with A as L (for Jeft event) and the event of D making
contact with B as R (for right event). In the rail frame it is
evident that R occurg later than L. Turning now to Fig. 2 it
is also evident that R occurs earlier than L in the shuttle
frame. Sugh a reyersal of the past and future can occur only
if events L and R are separated by a spacelike interval.

Let us again refer to Fig. 2. In the shuttle frame we have
already seen that one or the other of the prongs C and D
always touches the upper rail and the circuit never becomes
open at any given instant. However, this is not a sufficient
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Fig. 1. Configuration of the circuit in
the rail frame.
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condition to keep the bulb glowing. The bulb will switch off
if it does not receive current continuously, and for that it is
essential that the electrical pulse generated at B, when it
makes contact with D, should reach A before A loses con-
tact with C. Otherwise, A will lgse contact with C before it
receives the current pulse from R and there will be a break
in the continuity of the current crossing A towards the
bulb. The bulb would therefore switch off during the inter-
regnum. This in turn means that the electromagpetic signal
sent along the transmission line from the event R should be
fast enough to reach the event L if there were to be no
switching off of the bulb.

We have already seen that the two events L and R havea
spacelike separation, which implies that they cannot be
connected by any physical signal. Hence it follows that
however fast it travels along the line (which depends on the
circuit parameters like the distributed inductance, capaci-
tance, and resistance of the line), the current pulse from R
will reach A only after A loses contact with C. This proves -
the assertion that the bulb will switch off for a period of
time T /¢ > 0 in the shuttle frame as well.

To calculate the off-time of the bulb in the rail frame let
us refer to Fig. 1. It is evident that current stops flowing
from A to the bulb from the event L till the pulse from R
arrives at A. This time interval is just the off-time 7 of the
bulb. (It can be checked that there is no need to consider
the time delay caused by the traversal of the pulse from A to
the bulb because it cancels away from the equations in both
the frames.) Thus 74 of the bulb is equal to the sum of the
time (#,) required for D to reach B in Fig. 1 and the time
(t,) required for the pulse sent at R to reach back to A:
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e \B, B Be
where f3, ¢ is the speed of the electromagnetic signal along
the two-rail transmission line. However, we do not need an
expression for B,: our purpose is not to calculate T,z but
only to verify Eq. (1).

Let us now compute the off time 7T'/; in the shuttle
frame. Refer to Fig. 2. Taking, for mstance, t' =0atevent
R, let us call 7 | asthe time at which event L occurs, i.e., the
instant when C beaks contact with A and stops sending
current to the bulb. Let us call ¢} as the time at which the
pulse sent by B at event R reaches A on its path to the bulb.
We have already shown that 7} > ¢ ;. Thus the off time T/
of the bulb is given by

To:r:tn T4 =

, (2)

Te=t,—t;. (3)

From Fig. 2 it is obvious that
t,_lo—l_l(,(l——\/l—ﬁ’z) 4
' Be Bec '

In order to calculate ¢ ;, we note that it is the time at the
instant when the electromagnetic pulse traveling along the
moving transmission line overtakes the moving end A of the
bridge AB. Let 3 ;¢ be the speed of electromagnetic waves
along the moving transmission line. Then it is obvious from
Fig. 2 that ¢ ; satisfies the equation

Fig. 2. Configuration of the circuit in
the shuttle frame.
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B ety =Pct; +1. _ (5)
From Eq. (5) it follows that : '
ty=IN1—-B%/c(B;—B). (6)

Thus from Egs. (3), (4), and (6), we get
loxll—ﬁz( 1 1) b
+—)——.
c ! Be

We now recall that 3, ¢ is the speed of the electromagnet-

ic pulse with respect to the transmission line and SBc is the
speed of the transmission line with respect to the shuttle.
Hence the speed B ¢ of the electromagnetic pulse with re-

spect to the shuttle is given by the relativistic velocity addi-
tion formula:

B:=B,+B/1+B.B). (8)

Substituting for B | in Eq. (7) from Eq. (8), it is a simple
matter to get

(N

I,J1 =82
Tip=—— [—I—( 1 +i)——° d ] (9)
VI—47 B B Be
A comparison of Egs. (9) and (2) reveals that
(10)

which is identical to Eq. (1) and which we set out to verify.
This, therefore, completely resolves the paradox.

Téﬂ' =7/Toﬁ'!
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APPENDIX

As is well known, the theory of relativity is full of unex-
pected results. It is said that Einstein himself was surprised
by the magnitude of the Thomas precession." Most of us are
puzzled when we first face the paradoxes of relativity.
Clearly, there is no room in physics for any real paradox—
all paradoxes are due to flaws in our understanding. But it
is precisely for this reason that they are such a help in clari-
fying our confusion.” We give here a brief outline of several
paradoxes in relativity. .

1. Length contraction paradoxes

The most popular is the pole-vaulter’s paradox?: Can the
running pole vaulter with the Lorentz-contracted pole be
trapped in the small barn? The paradox is resolved when it
is recalled that shock waves have a finite speed of propaga-
tion.* If both the doors of the barn are treated as open, there
is no collision and hardly any paradox aside from a reversal
of time ordering of events.” If, on the other hand, the rear
door is treated as closed, the pole vaulter is thrown out of
his inertial frame, which leads to acceleration and stress
effects.

Does the sliding coin drop down the hole in the table?®
This paradox is resolved by recalling that there are no rigid
bodies in relativity. The coin “flows,” as it were, down the
moving hole in the coin’s frame. The pull of gravity, once
again, throws the coin out of its inertial frame.

Will the moving brick be able to clear the slit in the mov-
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ing wall?’ The clue lies in Wigner rotation.® It is thus a
“two-dimensional” length contraction paradox.’

2. Visual appearance of moving objects

Can we see and photograph length contraction? The an-
swer'? depends on the distance of the moving object and is
affected by an apparent rotation in perspective due to aber-
ration.

3. Stress effects due to length contraction

When a rod accelerates and shrmks, does it experience
additional stresses?'! This question has led to a critical ex-
amination of rigidity, simultaneity, and the meaning of
proper frame for accelerating objects. '

4. Upper limit on the proper length

When the front end of a rod accelerates and the rod
suffers length contraction, the average speed of the rear end
depends on the rest length of the rod. This gives an interest-
ing upper limit on the rest length of a rod.?

5. The thread paradox

~ Can a flexible string exert a shear force? The solution of
this paradox lies in the fact that force and acceleration need
not be collinear at high velocities. '

6. The right-angle lever paradox

Originally attributed to von Laue, this deals with the
strikingly paradoxical result that the equilibrium of a lever
depends on the state of motion of the observer. The resolu-
tion lies in the fact that a net torque need not produce rota-
tion but only a change in the angular momentum.

7. Tachyon exchange thought experiments

What is exchanged when a tachyon is exchanged? Can
tachyons be used as 'signals and detected? Does the exis-
tence of tachyons violate causality and laws of thermody-
namics? These provocative questions help critically ana-
lyze all the concepts of relativity.'®

8. Superluminal velocities

There are many situations when a speed exceeds that of
light in vacuum. These are in all cases unphysical speeds. !’

9. Oppenheimer paradox and related experiments

A number of little-known experiments of the unipolar
induction variety involving rotating frames with induced
polarizations and magnetizations are likely to assume prac-
tical 1g1portance (as has been the case with the Sagnac ef-
fect).

10. The twin paradox

This is in a class by itself.'® Everyone agrees that there is
no symmetry in the twins’ motions and so no paradox. But
is has generated more literature and livelier debate® than
all the rest put together. Some resolve it w1th1n special rela-
tivity using Doppler-shifted s1gnals Others place it
roundly in general relativity.”” The issue perhaps can be
settled by experiments.?> But despite overwhelming experi-
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mental evidence of the darkness of the night sky, Olber’s
paradox* did take a century to resolve, and Zeno’s absurd
contentions? stood their ground until whole new branches
of science came into being. Perhaps the last word on the
twin paradox has yet to be said.
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SOLUTION TO THE PROBLEM ON P. 874

The equation for the orbit on a displaced circle is

r2 4 2rae cos(@) —a*(1 —€?) =0, (D
which may be written as ,
r/a= —ecos(8) + [1 — e sin?(9)]"2. (2)

For @ = 0 and 8 = 7 the radial distance from the origin
is the same for both orbits. The largest difference occurs at
0= + /2, where

ra=1—¢€ 3)
for the ellipse, and
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r/a=(1—¢e)'"? (4)

for the displaced circle.
The fractional difference is

A=1-&)""—1=€/2. (5

Among the planets in the solar system A > 1% only for
Mercury and Pluto.
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