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An analysis of the temporal behavior of the image of a moving object in a simple imaging system is
presented which explicitly takes into account the finite transit time of the light propagating from the object
to the image plane. This analysis, which places no restrictions on the magnification of the imaging system or
on the spatial shape or extent of the object, uncovers a number of novel and highly unorthodox phenomena
hitherto unforeseen. Of particular significance, in the case where the object velocity v, and the magnification
M satisfy (M + 1)v,/c > 1, is the finding that a single object gives rise to two simultaneous images which
move antiparallel to one another away from a common point in the image plane. One of these images
displays a normal, forward time dependence, while the other image exhibits a time-reversal character
resulting in the anticausality in the observed temporal behavior of the object and of time-dependent or causal
events associated with it. The theory is developed to include the imaging of arbitrary, three-dimensional
objects. The important case where the object is stationary but has a time-dependent intensity distribution is
also examined and it is shown, in this case as well, that anticausal behavior can be observed in the image
plane under quite general conditions. The ramifications of this work for high-speed photography in general
are discussed, and numerous illustrations are given of the image behavior in time for moving objects of
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simple geometrical shapes.

1. INTRODUCTION

The development of the optical-Kerr-effect shut-
ter! gated by ultrashort laser pulses has resulted
in the extension of high-speed, two-dimensional
photography to the picosecond regime.?”® Stop-
motion photography of single ultrashort light pulses
in flight has been performed®*’# using an optical-
Kerr-effect shutter switched by picosecond mode
locked pulses from a Nd: glass laser. In addition,
the development of the picosecond optical streak
camera® ! has presented an alternate high-speed
photographic technique enabling a one-dimensional
recording continuous on a picosecond time scale.
This new found ability to photographically time re-
solve relativistic phenomena such as a travelling-
light pulse necessitates a careful reexamination of
the details of image formation paying close atten-
tion to the effects resulting from finite differences
in transit times from the object to the image
plane.’ Indeed, a general interest in the subject of
the instantaneous visual appearance of a rapidly
moving object has existed since the original publi-
cations by Penrose'? and Terrell*® in 1959 on this
topic.* Their work plus that of a number of other
authors since!® have made it clear that what is
“seen” by a single observer at an instant in time
is markedly different and more complex than the
simple Lorentz contraction usually ascribed to a
relativistic body. Work on this subject, however,
has been invariably cast in the mathematical -
framework of Lorentz transformations and relativ-
istic kinematics. More importantly, from the

viewpoint of relevance to practical high-speed
photographic systems, the question of the critical
role played by the imaging system has either been
ignored completely or else implicitly avoided by
effectively assuming the magnification to be «1
(e.g., the human eye as “observer” of distant ob-
jects).

The present paper considers a simple imaging
system and the resulting image behavior in time
when the finite transit time of light travelling from
the object to the image plane is explicitly included
in the analysis. No restrictions are placed on the
dimensions or the magnification M of the imaging
system or upon the spatial extent of the object.
This analysis, which is presented entirely in the
language of geometrical optics, reveals a number
of novel and rather unorthodox phenomena which
would not be possible if a negligibly small magnifi-
cation were assumed. A principal finding, in the
case where the object velocity v, and the magnifi-
cation M satisfy (M +1)v,/c >1, is that the single
object gives rise to two simultaneous images mov-
ing antiparallel away from each other in the image
plane. While one of these images possesses a nor-
mal, forward time-dependent nature, the other
image exhibits a time-reversal character leading
to the anticausality both in the observed temporal
behavior of the object and in that of time-dependent
or causal events associated with the object. The
analysis begins with the simplest case of a point
source object moving with a constant velocity and
is then generalized in steps to include two- and
then fully three-dimensional objects. The case of
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a stationary object having a time-dependent inten-
sity distribution is also discussed and shown to
likewise possess a potential for exhibiting anti-
causality in the image’s temporal behavior. Nu-
merous illustrations are given of the image behav-
ior in time for moving objects of well-defined,
simple geometrical shapes and a discussion is
given of some of the implications of these findings
for high-speed photography in general.

II. IMAGE OF A MOVING POINT SOURCE OBJECT

The imaging system is shown schematically in
Fig. 1. The point-source object travels along the
x, axis in the object plane with a constant velocity
v, >0, while the image of the point source travels
along the x axis in the image plane. For conven-
ience, the x, and x axes have been chosen to run
antiparallel so that corresponding object and image
points carry the same sign. The origin of each
axis lies at its intersection with the optical axis of
the lens L. The simple lens L is assumed to be a
perfect, thin lens and the imaging system charac-
terized by a “static,” positive magnification M=d/
d,. For the purposes of calculating optical path
lengths from the object to the image, Fermat’s
theorem ensures that the perfect, thin-lens system
of Fig. 1 is formally equivalent to a pinhole imag-
ing system with identical object and image plane
spacings.

The position of the point source object at time ¢
is given by its equation of motion

%o (8) = vyt +vy8,/ (1)

where s,=d,+d=(M+1)d/M is the object to image-
plane spacing, and the constant v,s,/c conveniently
ensures that an image of the object appears at x
=0 at /=0. For the perfect, thin lens, the optical

———— BoSX) ————

XO
T N ¢
d, \
\
L=t
\
\
\
e
)
d A
\
\
\
\
I \
x Vi)

FIG. 1. Simple imaging system for the moving-point-
source object. Note the nonconjugate, instantaneous
object and image positions.

path length from x,=x/M to x is given by
s(x) = (M+1)(d? +x2WV2 /M= (M+1)d/Mcos¢, (2)

where the angle ¢ (-n/2 < ¢ <n/2), shown in Fig. 1,
is defined by tan¢ =x/d. The transit time of the
light travelling from x/M to x is simply 7(x) = s(x)/
c. :

The position of the point image at time ¢ is de-
termined by the position of the object at the time
t-T1(x), i.e.,

x(t)=Mxy[t=T1(x)] . 3)

Combining these three equations defines ¢ = #(x) di-
rectly as

Mugt=x+By[(d® +x*)V?-d], (4)
where
By =(M+1)w,/c=(M+1)8,. (5)

Note that this parameter can be =1, unlike the us-
ual relativistic parameter 8,=v,/c<1.

The calculations to be presented here and
throughout this paper are considerably simplified
by the introduction of the dimensionless position,
time, and velocity parameters

X=x/d, T=Muv,t/d, V=v/My,, (6)

where v =dx/dt is the instantaneous velocity of the
point image. It follows immediately upon differen-
tiation of Eq. (4) that

ax o -

V= T =(1+B, sing)™! (7)
with sing =Xx/(1 +X?2)¥2, Equation (4) also yields
the quadratic equation in X, determining the image
motion X(T'),

(B3 - 1)X2+2(T +By )X~ (T% +2B,T)=0. (8)

Either of these last two equations clearly reveals
that the form of the image motion is uniquely and
solely determined by the parameter 3.

The precise nature of the image behavior, ac-
cording to Eq. (8), depends critically upon whether
the value of B, is <1, =1, or >1, and care must be
exercised in choosing the solution(s) X(7) from
Eq. (8) in each of these cases. Correctness is as-
sured in each case by referring back to the unam-
biguous Eq. (4) giving T=T(X). Thus, when 8,
<1, T is a strictly monotonic function of X so that
the solution X(T) given by Eq. (8) must be for g8,
<1

X(T)=(1=B%) [T +By — By (T% +28, T +1)V2] ©)

-0 < T < o0

with the choice of the correct root from Eq. (8)
governed by the requirement that it satisfy the
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“boundary” condition X(7'=0)=0 prescribed by Eq.
(1). For the special case of 8, =1, the dependence
of T(X) is asymptotic to the “initial” values X,
and T, (defined below), and the unique solution
given by Eq. (8) is for 8, =1

X(T)=t[1+Q+T)VYT, T>T,, . (10)

Finally, since for 8, >1 the dependence of T(X) is
parabolic about the turning point X;,, and T, the
solution X(7) consists of both the roots to Eq. (8),
i.e., for g, >1

X(T)=X,(T)
=(B% = 1) ~T - By £Bu(T? +28, T +1)V2] ,
T=>T, . (1)

For By =1, the initial values X, and T, are simp-
ly those values of X and T at which | V| — « and are
given by*¢

Xim="'(Bﬁl - 1)-1/2, Tint =(fﬁ{- I)I/Z‘BM(BM = 1),
(12)

with the values T, =-1 and X;,,=-« for the special
case of B, =1.

Figure 2(a) shows the point-image motion X(7')
for each of the cases B, <1, B, =1, and B, >1,
while the dependence of the instantaneous image
velocity V(X) is shown in Fig. 2(b) for the same 8,
values. Also shown in Fig. 2(a) is the limiting
case of B, <1, for which X=7 and V=1 (i.e., «
=Muyyt and v=Muv,). Noteworthy is the fact that,
when B, =1, the image is present only for times
T later than T, with no image being present any-
where in the image plane for times earlier than
Tt But clearly, the most striking anomaly por-
trayed in Fig. 2 is the existence, in the case where
By > 1, of two images simultaneously present in the
image plane which travel antiparallel to one another
from a common origin at X;,,. That image having
V >0 and described by the X,(T) solution of Eq. (11)
is referred to as the normal or causal image. The
other image characterized by V < 0 and given by

dx (d/cos?p)dp
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FIG. 2. (a) Motion of the image of the point-source
object and, (b) instantaneous velocity of the point image,
for <1, =1, and >1.

X.(T) from Eq. (11) is referred to as the time-re-
versed or anticausal image.

To make clearer the physical basis underlying
the rather unorthodox behavior illustrated in Fig.
2, it is helpful, using the identity dx=(d/cos?p)d¢,
to rewrite the expression for the instantaneous
image velocity in the form

v(x)=—

Expressed in this way, it is seen that the incre-
mental time dt required for the image to move
from x to x+dx is composed of two contributions.
The first,

dty = (d/Mv, cos’p)d ¢ = dxy/ vy = dx/Muv, (14)

is simply the time required for the object to move
from x,=x/M to x,+dx, = (x+dx)/M, while the sec-
ond contribution to dtf is

at (d/Mv, cos’p)d¢ + [d(M +1) sing/M cos®p | do/c

(13)

dr =[d(M+1) sing/Mcos’p]dp/c=ds(x)/c (15)

and gives the change in the transit time from x,
=x/M to x compared with that from x, +dx,
=(x+dx)/M to x+dx. The ratio of the two contri-
butions is d7/dt,=B, sing, and it is the variation
of this ratio with position x which principally de-
fines the characteristics of the image motion [note
Fig. 2(b) and the relation d7/dt,=(1-V)/V]. Spec-
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ifically, two completely different types of temporal
behavior occur in the image according to whether
dr/dt, is >=1 or <-1, the latter inequality being
possible only when B8, >1. The case of 8, <1 is the
most straightforward in that dT/dlo is >-1 for all
values of X. This, in effect guarantees that the
light reaching the image plane always does so in
exactly the same temporal order as originally
emitted from the object and so V >0 everywhere.
Of course, although the temporal ordering is pre-
served, absolute temporal differences are not
since the dependence of 7 upon x is highly non-
linear. Hence the image motion X(7') is also non-
linear, becoming linear only in the limit of 8, < 1.
The special case of B, =1 represents a “crossover”
value for which V(X)) first exhibits a singularity
(asymtotically as X ——). The value of dr/dt, is
only very slightly >-1 in the region X «<-1 with
the result that the image appears very nearly si-
multaneously along the entire length of the negative
x axis. Nevertheless, d7/dt, is strictly >~1
everywhere (V always >0) so that no time reversal
in the imaged light occurs in the case of 8, =1.
When 8, >1, however, the ratio dr/dt, will be <—1
in the range X < X;,,. Thus, in this range, the
“foreshortening” in the transit time as the object
moves from x, =x/M (where x/d < X ) to x,+dx,
(where dx, >0) exceeds in magnitude the transla-
tional time df, = dx,/v, with the result that the im-
age at x+dx=M(x, +dx,) appears earlier than that
at x=Mx,, even though the light from x, +dx, was
in fact emitted lafer than that from x,. In short,
the image motion is time reversed or anticausal in
the range X < X;,. In the range X>X,,, on the
other hand, d7/dt,>-1 and so the image motion is
temporally normal or causal.

III. IMAGING OF A ONE-DIMENSIONAL OBJECT

The analysis just given for the imaging of a
point-source object served to make clear the non-
linear nature of the image motion and to establish
the existence of the two coexisting causal and anti-
causal images in the case where 8, >1. To carry
this analysis fyrther and to introduce the concept
of a “local magnification”, this section examines
the motion of a simple one-dimensional object
(i.e., having a depth and height «d/M). Specifical-
ly, the object described is a one-dimensional
“measuring stick” of length'” ], and is represented
here by five equally spaced point objects which
move according to

Xon = Vol + (By/M)(@® + 1M 12)? + £(3 = n)l,, (16)
' n=1to5.

The front and end of the measuring stick are rep-
resented by the markers =1 and n= 5, respective-

ly, while the =2, 3, and 4 points locate the 11,
éo, and %lo markers, respectively. The constant
of motion in Eq. (16) is included to conveniently
ensure that an image of the object will be centered
about the optic axis at £=0. Using Egs. (2) and (3)
and the dimensionless parameters given in Eq. (6),
the equation determining the motion of the corres-
ponding image points X, to X; is

X,=T-By(1+ X202 48, (1 + 1 L2)2 + (3= n)L,, (17)
n=1to 5,

where Ly=M1,/d is the dimensionless length pa-
rameter, The particular solution(s) X,(T) are
found from Eq. (17) according to the value of 8,
being <1, =1, or >1 as given in the previous sec-
tion.

Figure 3 shows the motion of the one-dimension-
al measuring stick having a length L,=1 for each
of the cases of g, <1, B, =1, and B, >1. The con-
tinuous motion of each of the five markers X, is
shown as well as the instantaneous appearance of
the measuring stick at a series of discrete times
T. Clearly, at no time does the image of the mea-
suring stick correspond to a uniformly Lorentz
contracted rod. Rather, the overall length of the
image varies continuously in time and, moreover,
the spacings between the internal markers within
the image differ at any given instant. Hence, even
though in all cases the overall length of that image
centered about the optic axis at 7=0 is exactly
equal to L, =1, this particular image is nonetheless
unfaithful since there exists a marked degree of
internal distortion within the image. A strictly
faithful image, i.e.; one whichisdistortion-free al-
though not necessarily having the correct overall
length, is only obtained in the limit of L, <1 or
By << 1 or both. Nevertheless, for the purpose of
obtaining the best approximation to a faithful image
in a high-speed photographic system with g, and
L, finite, the image must be recorded precisely at
that instant when it lies centered about the optic
axis. Note that special care must be taken in the
case where 8, >1, Fig. 3(c), to distinguish between
the causal and anticausal images in interpreting
the instantaneous image during that interval of
time after the front of the measuring stick first
appears and before the end of the stick is visible.

As Fig, 3 illustrates, the degree of distortion
within the image at any time varies continuously
with position X. One can thus speak of a “local”
or differential magnification II,(X), which is de-
fined to be the instantaneous value of the ratio dx/
dx,, wWhere dx is the size of the image at X of an
infinitesimally small moving object of length dx,.
Since this is formally equivalent to letting dx be the
distance travelled in the time d¢ by the image of a
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FIG. 3. Image of a one-dimensional measuring stick
of length Ly=1. (a) By<1, () By=1, and (c) B, >1.

moving point source object, dx=wvdt (and dx,
=v,dt), then II,(X) is simply the ratio v/v, given by

I,(X)=MV(X)=M/(1+B, sing). (18)

Alternatively, exactly the same result may be de-
rived with the aid of the measuring stick model of

this section by letting [, -~ dl, in the knowledge that,
by definition, x; - x, +I1,(x,), in this limit. The
overall or “gross” magnification in the image be-
tween any two points x, and x, is found by simply
integrating I1,(X) from x, to x, and then dividing

by |x, - %/, taking care, in the case where g, >1,
to ensure that both x;, and x, lie.in either the causal

- or the anticausal image, but never one in each.

This simple I1,(X)= MV(X) relationship is, in
turn, the basis of a simple but important relation-
ship between the temporal “length” or duration of
the object and that of the image. The temporal
duration (or “time of passage”) of the measuring
stick as measured in the object plane is simply lo/
v,. In the image plane, the temporal width of the
image of the measuring stick when measured at the
point X is given by

t(X.=X) X,
At=[ ° dt;fosv" 9x e (19)
rox=x o1 dsy
which, with dx/dx,=11,(x)=v/v,, gives the result
-1 %05
At=; / dxy =1,/ Vs (20)
%01

showing that the temporal duration of the measur-
ing stick is exactly the same in both the object and
image planes and, furthermore, is independent of
the observer’s position in the image plane. De-
rived in the completely general manner as above,
this result is in fact seen to be a general theorem
valid for arbitrary objects with x,, and x,, taken to
represent the time “markers” for any convenient
measure of the object’s temporal length (e.g., the
FWHM intensity points of an optical pulse). This
finding rules out the possibility of ever generating
or measuring times much shorter than A¢ by, in
some fashion, simply exploiting the “enhancement”
of the instantaneous image velocity in that region
where V >1.

IV. IMAGING OF A TWO-DIMENSIONAL OBJECT

Figure 4 illustrates schematically the imaging
system, where it is noted that both the x and y
axes are chosen to run antiparallel to the x, and y,

~<— d,

FIG. 4. Simple imaging system for two- and three-
dimensional objects.



2382 KENNETH L. SALA 19

axes, respectively. In this section, it is assumed
that the object is strictly two-dimensional and lies
in the z,=0 plane. Then, with I,(x,, y,, ) represent-
ing the instantaneous intensity distribution in the
object plane (z,=0), the intensity distribution in the
image at time ¢ is given by

I(x, 9, =K, I(x/M, y/M, t -7 (x,y)) , (21)

where 7(x, y) =s(x, y)/c is the transit time from
(o =2/M, yo=9/M, 2,=0) to (x, y) with

s(x, )= (@2 +x% +y2 W2 (M +1)/M=d(M+1)/(Mcosy),
(22)

where the angle y (0 <y <7/2), shown in Fig. 4, is
defined by tany = (x? +9%)2/d. The constant K, in
Eq. (21) is a lumped transmission coefficient in-
tended to implicitly account for a variety of loss
factors (aperturing, scattering, reflections,...) ®)
which, although they may alter the relative distri- o X P
bution in intensity within the instantaneous image, ‘ oy T T
do not affect either its spatial profile or extent.'® 128 B e—e—
The dimensions of I, are those of a power density ' B Ne————
(energy area”'time™!), while K, has the units of -100 A
time. :

Figure 5 illustrates the instantaneous appearance -075 \/\ ~~~~~~~~~~~
of the image at a series of discrete, sequential f\
times for a square, two-dimensional object!” [with -0s0 O
diagonals as shown “at rest” in Fig. 5(a)] for each N =7
of the cases of 8, <1, B, =1, and B, >1. The side w0z V=
length of the square object has the value L,=Ml,/d .
=1 for Fig. 5, and the image is described entirely ) VANY
in terms of the dimensionless “coordinates” X =x/ 025 KA
d, Y=y/d, and T=Mu,t/d. These images were cal- /AN
culated directly from Eq. (21) with the object de- 050 N
scribed as a sum of appropriate Dirac & functions s
specifying the positions of the boundaries and dia- @
gonals of the square. A constant of motion (i.e., X
the T origin) was included which ensured that, for o0
all values of B,, the boundary points ¥=0 in the ors
(causal) image at 7=0 lay centered about the opti- B2 N~/
cal axis. Clearly, at no time does the image faith- Y M
fully “reproduce” the object and, indeed, at certain
instants, bears rather little apparent resemblence -025 N
to it. The case of B8, >1 is again particularly note-
worthy with the appearance, ultimately, of two o A O V.
distinct, two-dimensional images which travel 7 N~
away from each other from points along the “ini- [LPL) SN ' SR T P ——
tial line” Xy =~ (1 + ¥2)V2/(82 — 1)*/2, The anti- 7 v

. . 050 i

causal image, in the case where 8, >1, of the two- W LN
dimensional object exhibits a rather peculiar fea- ors - ~ -
ture unique to it alone. Thus, the causal images ' A LN
(V>0)in all cases are normal in that, as usual, 100 M
both the x and y directions in the object appear in- [Ag LN
verted in the image. In the anticausal image, how- FIG. 5. Sequential, framed images of a travelling,

ever, only the y direction is inverted with the x square object with sides of length Ly=1. (a) B ,<1, (b)
direction in the image remaining absolutely paral- Bu=1, and (c) B,>1.
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lel to that in the object. This “semi-inverted”
characteristic of the anticausal image may be ex~
pected to produce, in its own right, bizarre and
potentially confusing images. Also note that, for
all of the images, the magnification parameter M
remains as a “good” parameter for variations in
the y direction, i.e., points in the object with a
separation in their y, coordinates of Ay, appear in
the image with a separation of Ay=MAy,. How-
ever, the local magnification along the x direction,
I1,(x), varies markedly and so lengths in the object
will generally transform into lengths in the image
which depend quadratically upon M and the inte-
grated II,. '

The use of the term “anticausal” to describe the
7 <0 image in the case where 3, >1 refers to more
than just the retromotion of the whole object. Any
sequence of events occurring within the object as
it moves along are also observed in a time-re-
versed order so that “cause followed by effect” in
the object is observed as “effect followed by cause”
in the image. To underline this time-reversed,
anticausal characteristic, Fig. 6 illustrates the
motion of a simple clock giving the “hours” and
“minutes.” Solely for convenience, the size of the
clock face has been deliberately chosen to be small
(«<d/M) so that, upon enlargement, it may be seen
essentially as undistorted (this does not¢ affect the
observation of time reversal). In Fig. 6, the
length of one ‘“hour” as measured by the clock has
been chosen to correspond to the time it takes the
clock to travel a distance 0.5d, in the object plane.
The image of the clock with ¥V <0 in Fig. 6 is clear-
ly seen to be that of a clock running backwards in
time.

V. IMAGING OF A THREE-DIMENSIONAL OBJECT

To finally extend this phenomenological formal-
ism to include the imaging of an arbitrary, three-
dimensional object, an assumption is first intro-
duced which helps to make this extension straight-
forward. Specifically, it is assumed that the depth
of field limits for the imaging system (Fig. 4) are
greater than the spatial extent of the object along
the (optic) z, axis. This assumption amounts to

J
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FIG. 6. Image of a travelling “clock” with 8 ,>1. The
clock faces are shown enlarged.

saying that all parts of the object can be brought
to a sharp focus by the lens in the image plane 2
=0. More precisely, allowing explicitly for per-
spective in the imaging, all those points in the ob-
ject which lie along the line [x, =x/M,(2,), yo=y/
M,(2,), 2,] are imaged onto the point (x, y) in the
image plane, where

M, (2,)=M/[1- (Mz,/d)] (23)

is the z, dependent, “effective” magnification [M
=M fz,=0)=d/d, is the “principal” magnification
from the z,=0 object plane to the image]. Thus,
the instantaneous image intensity distribution may
be expressed as, with Z,=z,/d,,

I(x,v,t) =K, fw I, {/M,(2,), y/M,(2,), 2o, t = T(x, 9, zo)} dz, , (24)

where T(x,,2,)=s(x, vy, 2,)/c is the transit time
from the point [x, = %/M,(2,), v/M,(24)z,] to
(x,y,2z=0) with

s(x, v, 20) = (@2 +x% +y2)/2[1+ M;*(2,)]
= {1~ [Mzo/(M+Dd]}s(x,9), (25)

T

where s(x, y)=s(x, y, z,=0) is given by Eq. (22).
The 1w limits of integration in Eq. (24) are admis-
sible under the assumption that the object lies en-
tirely within the depth of field limits of the imaging
system. The intensity distribution of the object is
I,(%5, ¥o520,%), in units of power area~! and
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represents the power radiated or scattered W -
from the plane of thickness dz, centered at z,. The Y L S — rj;T’F": 5
constant K,, with the units of time, is a lumped 0siY TS —
transmission coefficient representing the various -15 - S —
losses in the imaging.’® Note that Eq. (24) implic- B« L\JF*J
itly assumes the object to be optically transparent— -10 @
an opaque object would require using only the min- m
imum value of s(x, y, z,) at each point in the image 08 i u
plane. [

Figure 7 shows, for a sequence of discrete times o Paal
T, the instantaneous framed images for an object 05 | =
which is a simple cube'” of side [, travelling paral- L
lel to the x, axis with a velocity v, >0 and which has 10 [l
that face closest to the lens lying in the plane z, ) L—*f)
=0. The value L,=MIl,/d=1 has been adopted in 15 [ 2
calculating Fig. 7. Figure 7(a) shows the usual L—]L/J
image behavior when 8, < 1, while Figs. 7(b) and 20 'IE
7(c) show the image behavior for 8, <1 and 8, >1, :
respectively. A constant of motion has been in- ®
cluded such that, at 7=0, the midpoints of the 21;) X oo
front face of the cube in the causal image lie cen- Pl
tered at X =+0.5 about the optical axis. The ex- s !
istence of a finite depth for a three-dimensional B,=05 :
object is seen to further add to the overall distor- "o B0z T
tion in the image. Thus, for example, the images : M
seen at the times 7'=-0.75 and 0.25 in the case of -05 -
By =2 in Fig. 7(c) can certainly be said to bear al- = ]
most no resemblence to the cubic object they in 0 it
“fact portray. ' 3

An essential point to note concerning the imaging 08 iy
of a three-dimensional object is that, in order to . N
calculate the instantaneous image, it is necessary ) LA
to specify the values of 3, and of M separately and s by
not just simply the single combined parameter j3, Lt
=(M +1)B, as was the case for the two- and one- 20 . '

dimensional objects (in Fig. 7, M has been kept =
constant and only j, varied). The intrinsic reason ©
behind this is the fact that, for a three-dimension- T
al object, the parameter M, and hence the param- oo
eter B,, are no longer, strictly speaking, ‘“good”
parameters which characterize the entire object.
Rather, because of imaging perspective and the
“effective” magnification M,=M/[1~ (Mz,/d)], one

~0.75 f---o

-0.50

must also speak of an “effective” B = (M, +1)f, -025
with B, =B§(z,=0). A close examination of Figs.

7(b) and 7(c) reveals that the amount of distortion , o
is considerably less in the back face of the cube

than in the front face, reflecting the fact g8 is less 025

for the back face [note, however, thatg,, M, and
L, were chosen such that g is <1 for the entire
object in Fig. 7(b) and 8§ is >1 for all parts of the
object in Fig. 7(c)]. Thus, for a three-dimension-
al object, to specify a value of 8, =1 would be
somewhat misleading since a specific value of 8,
applies strictly to only a single z, plane in the ob- FIG. 7. Sequential, framed images of a travelling cube
ject. However, it is possible for the cubic object of side length Ly=1. (a) B, <1, () By<1, and () B

to have a value of 8, >1 such that the effective val- >1.

0.50
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FIG. 8. Sequential, framed images of a travelling
cube of side length L =1 with g 4,=1.25.

ue Bf decreases to a value <1 at the rear face of
the object so that, at some intermediate plane in
the object, a value 8§ =1 is realized. Exactly this
case is illustrated in Fig. 8, where g,=0.5, 8,
=1.25, and, as for Fig. 7, M=1.5 and L,=1. For
Fig. 8, B =1 exactly at the midplane z,=-0.5 so
that points behind it have g < 1, while g§ >1 for
points in front of it. The resulting image behavior
in time is one of the most bizarre yet. Thus, the
back half of the object, with 85 <1, is visible for
all times and forms only a single (causal) image
while the front half of the object, with ¢ >1, be-
comes visible only after some initial time and then
produces two images which travel antiparallel to
each other. At earlier times then, only the back
half of the object is visible while, at later times,
one complete image is visible along with a second,
incomplete image describing only the front half of
the object. .

The imaging of a three-dimensional object gives
rise to a new type of image distortion referred to
as “longitudinal shearing,” which is the distortion
resulting from the object’s finite depth along the
optic axis of the imaging system. The effect of
longitudinal shearing in the image can best be seen
by carefully comparing Figs. 7(a) and 7(b). Thus,
focusing attention solely on the front and back
faces of the cube, it is observed in Fig. 7(b) that
the back face is always seen to “lag” behind the
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front face by an amount well in excess of the per-
spective position. This is a result of the fact that,
in the instantaneous image, the front and back
faces, although recorded at the same instant in
time in the focal plane, are in effect “seen” to cor-
respond to quite different times in the object space
since, because of the finitely longer time required
for light from the back face to reach the image
plane, this face is always ‘“seen” at a time slightly
earlier than that for the front face. The image is
thus continuously sheared along its depth. Direct
experimental confirmation of this longitudinal
shearing effect has been given by Duguay and Mat-
tick® who, using an optical-Kerr-effect shutter
switched by the picosecond laser pulses from a
Nd: glass laser, photographed two longitudinally
displaced but identical ultrashort laser pulses in
flight through a scattering medium.

VI. IMAGING OF TIME-DEPENDENT ,
STATIONARY OBJECYTS

It would be seriously incorrect to leave the read-
er with the impression that the various phenomena
described by this imaging theory apply only to mov-
ing objects. Rather, the theory here developed ap-
plies quite generally to any object, stationary or
moving, having an intensity distribution which is
time dependent. Thus Eq. (24) is valid for any
time-dependent intensity distribution I,(xy, o, 2, £)
and does not necessarily nor indeed explicitly in-
volve any motion of the object in part or in whole.
This section examines the time-dependent behavior
of the image of a stationary object, where the def-
inition of a “stationary object” is taken in its most
general sense to include a collection of either re-
lated or unrelated “events” occurring at specific,
fixed points in the object space. For simplicity,
the analysis presented is one-dimensional only;
the extension of these results to fully three-dimen-
sional objects is straightforward.

Consider two points in the object plane, x, and
Xop, Where “events” occur at the times 4, and {,,,
respectively. Without any loss in generality, it
may be assumed that event “1” occurs before event
“2”, i.e., At =t,, —t,, 20. These events are then
observed to occur, referring back to Fig. 1, at the
image points X, =Mx,,/d and X, =Mx,,/d at the
times ¢, =f,, +7(X,) and ¢, =t,, +7(X,), respectively.
Thus the time difference between these two events
as measured in the image plane is given by the
expression

At=t,-t,
= Al +[(M+1)d/Mc][(1+X2)V2 - (1 + X2)/2] . (26)

Major errors in the interpretation of this measured
time difference may occur whenever the two terms
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on the right-hand side of Eq. (26) are comparable.

Typical values of the second term (taking X, =0 and
|X;| in the range 0.1 to 0.5) vary from a few pico-

seconds to several hundred picoseconds, with even
larger values when M 1.

In general then, one must expect that Az #Af,
whenever the second term on the right-hand side
of Eq. (26) is comparable to Af,. However, one of
the more serious errors which can arise is when
the value of A¢ becomes <0, i.e., the observed or-
der of the two events is reversed. Clearly no such
error is possible as long as |X,|>|X;| since then
the second term on the right-hand side of Eq. (26)
must always be strictly >0 and so A¢>Af,. When
|X,| <|X,|, however, this term is <0 and so A¢
< Af,. To examine this behavior in more detail,
the cases of causally related events and indepen-
dent events are now considered separately.

A. Causally related events

In this case, some earlier event at x,, at time {,,
causes some “effect” to occur at x,, at the later
time ¢,, >4, by propagation of some signal from
%01 tO xg, With a velocity v, (0 < v, <c¢). Since Af, is
strictly >0 (assuming x,, #x,,), then one can cal-
culate the ratio

Al/Aty=1-ByA,,
=1-B,{[1+X22 - (1+X5V/2)/ | X%, - X, 1},
(27)

where, as before, B, =(M+1)y,/c>0. Note that the
factor A,, >0 only if | X,|<|X;|. Thus, as long as
By < Az, Al/At,>0 (but, significantly, <1)and so
the events are observed in the “correct” order
(albeit “incorrectly” spaced in time). The special
case where B8, =A;;! means that the events of
“cause” and “effect” are observed to occur simul-
taneously in the image plane. However, when the

" inequality

|X1"X2]
A+ -1+ )7

By >Am = (28)
is satisfied, then 'At/At0 < 0 and the “effect” is ob-
served in the image plane to occur earlier than its
“cause.” Causal behavior is always the case,
however, when |X,|>|X,|, with at/a¢,>1. Note
that, unlike the simpler case of a moving object
considered previously where the nature of the
image behavior was governed by the value of 3,
being either <1, =1, or >1, the critical values of
By deciding the exact nature of the temporal behav-
ior of the image for a stationary object depend upon
the value of A,,, i.e., upon the separation between
the events as well as absolutely upon their posi-
tions.

B. Independent events

Consider first the case where Af, is strictly >0.
In this case, it is possible to define a purely fic-
ticious velocity v} (>0) as

V¢ = | %1 — %o | /Al (29)

where, since Af, can be arbitrarily small, values
of vi > ¢ are permitted (v} may be thought of as an
imaginary propagation velocity for an imaginary
signal linking the two independent events).' The ra-
tio A#/At, is given by

At/Aty=1=BhA, , (30)

where A,, is exactly as defined before in Eq. (27)
and gf =(M+1)vi/c>0. So, as was the case for
causally related events, there exists three distinct
possibilities whenever |X,|<|X,|:(1)8} < Ay gives
At/Af, >0 and the observed temporal order of the
two events in the image is the same as that in
which they occurred in the object, (2)B8) =4 gives
Al/At;=0 so that the events are observed to occur
simultaneously in the image plane, and (3)8} >A;}
yields A#/At, <0 and the events are observed in the
image plane in a temporal order, which is re-
versed to their original occurrence in the object.
When |X,|>|X,|, then At/AtL; is always >1 and tem-
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FIG. 9. Calculated images of the results of the ex~
perimental measurement of the delay time in the fluor-
escence induced by the radiation from a laser produced

spark.
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poral ordering is preserved in the imaging. The
special case of Af=0 must be examined with the
aid of Eq. (26). Thus, when |X,|<|X,]|, the event
at X, is seen earlier in the image plane while,
when |X,|>|X,|, the event at X, is observed first.
To dramatically illustrate these temporally dis-
torting effects in the imaging of a stationary ob-
ject, Fig. 9 shows the results of a hypothetical one-
dimensional experiment. Here, an ultrashort laser
pulse is focused in air to produce a laser spark
and the uv radiation from this spark is then ob-
served to induce fluorescence in a cell situated at
a distance [, from the spark. The experimental
objective is to measure, using a high-speed streak
camera, the delay time between the initiation of the
spark and the onset of the fluorescence after al-
lowing for the transit time of 7,/c, i.e., the mea-
sured delay time will be given by %™ =At - (I,/c).
In calculating Fig. 9, an actual delay time of 10
psec (=0.31,/c) has been assumed and the param-
eter g, has been fixed throughout. The top three
results shown in Fig. 9 have identical values of x,,
and x,, with M as a variable while the bottom three
results have a constant magnification M but varying
values for x,, and x,, (subject, of course, to the
requirement I, = | x,, — x| ). In particular, the
reader’s attention is drawn to the two extreme

J

t

right-hand results, where the condition g, >Ap}

is satisfied and thus where the induced fluores~
cence caused by the laser spark is in fact observed
to occur before the initiation of the spark! Fur-
thermore, as Figs. 9(a) and 9(b) illustrate, a neg-
ative delay time is measured whenever the param-
eter A,, of Eq. (27) is >0 since, even though the
ratio At/Af, may be >0, the difference Af— Af, is
<0 by virtue of the fact that At/af, is <1. In Fig.
9(f), the image of the fluorescing cell lies at the
point X, given in Eq. (12).

VII. DISCUSSION

The theory presented in this paper pertains to
the instantaneous appearance of the image in the
focal plane of the imaging system, features which
deserve further examination in light of practical,
high-speed photographic devices. Firstly, the
instantaneous image description is only realized in
practice when the resolution time of the photo-
graphic system (e.g., the temporal resolution of a
streak camera or the exposure time of an optical-
Kerr-effect shutter) is « the temporal duration of
the object. When this is not strictly the case, then
Eq. (24) must be generalized to include a time in-
tegration as

K. t+%ts o0
Ii(x’ Y, t) ==3 f . f Io {x/Me(zo)! y/Me(Zo), 20 t- T(xa Yy zo)} dZodtl ’ (31)
f 2d = o0

S %ts

where ¢, represents the resolution or “shutter” -
time of the photographic system and M,(z,) is given
by Eq. (23). Similarly, for the two-dimensional
case, the generalization of Eq. (21) is

t+§ts
1,063, 0= 22 [ /M, 9/ M, 0= 73, )
s Jt-btg

(32)

Hence note that, in the original instantaneous
image equations, the transmission constants K,
and K, incorporated this shutter time ¢, as an
implicit factor. A finite's, which is = the object’s
temporal duration means, of course, that the image
described by either Eqs. (31) or (32) must be
“blurred” or “smeared” in time in comparison to
the ideal case of the framed, instantaneous image
described by either of Eqs. (24) or (21). The sec-
ond feature of the theory presented here is that the
image is temporally resolved or defined in the fo-
"cal plane of the imaging system. Although this is
exactly the case for most streak-camera sys-
tems®™!! and for the focal plane version of the op-
tical-Kerr-effect shutter,’ ® consideration must be

r

given to other systems where the shuttering or
time resolving plane lies somewhere between the
focal and object planes.!™ It suffices to say, qual-
itatively, that as the shuttering plane is moved
away from the focal plane of the lens towards the
object plane, the observability of the various dis-
torting phenomena described in this paper de-
creases monotonically. Indeed, in the limit where
the shuttering plane coincides with the object plane,
all such distorting effects in the image and anti-
causal features vanish exactly since, in this limit,
the image would be formed by light which leaves
the object simultaneously (as opposed to light
which reaches the focal plane simultaneously) and
so must necessarily be exactly faithful.

The many illustrations given in this paper of the
instantaneous images and their evolution in time
for various objects have served to concretely
establish the importance and the magnitude of the
distortions which can arise. Conversely, these
illustrations also serve to establish those criteria
which, when met, would result in essentially dis-
tortion-free, faithful photography. Clearly, the ob-
vious parameter of principal importance is the val-
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ue of 8, since, if its value was at the control of

the experimenter, the realization of a 8, <1 would
in itself be sufficient to ensure distortionless
imaging (imperfections in the optics aside). When
this is not the case, then it is still possible to ob-
tain largely distortion-free instantaneous images by
ensuring that the transverse extent and particularly
the longitudinal depth are negligibly small in com-
parison to d/M. Of course, even though the indi-
vidual instantaneous images would be faithful, a
finite 8, value would still result in the motion of
the object as a whole being highly nonlinear, viz.,
Fig. 6. In any event, as indicated previously in

the paper, best results are generally obtained when
the object, stationary or otherwise, is photo-
graphed exactly when it is centered about the optic
axis of the imaging system.

An important consideration, in those cases where
some degree of image distortion is unavoidable,
concerns the “invertibility” of the recorded image
to give a faithful reconstruction of the object.
Strictly speaking, a unique and true reconstruction
of the object from a knowledge of the instantaneous
image and its temporal behavior is only possible
if, (i) the object is strictly two- (or one-) dimen-
sional and, (ii) the image recorded is truly an in-
stantaneous image (¢, <<the object’s duration).
This, of course, is the case described by the
imaging Eq. (21). Either the presence of some
finite longitudinal depth in the object or the fact
that the recorded image is not a truly instantaneous
one (¢, = the object’s duration) would mean that the
image is no longer uniquely invertible so that the
object’s profile, position, and temporal variation
cannot be exactly or uniquely reconstructed from
a knowledge of the image‘alone. This is the case
when one of Eqs. (24), (31), or (32) is applicable.
Practically speaking, however, some degree of
this “loss of information” resulting from a finite
object depth or a finite resolution time is toler-
able, which still permits a reasonably faithful
image-to-object reconstruction. In this regard,
note is here made of an alternate imaging design
which would ensure.distortionfree imaging for all
By values and object profiles. Specifically, if the
image and object “planes” (see Fig. 4) where
spherical rather than planar, with radii of curva-
ture of 4 and 4,, respectively, and concentric with
the midpoint of the lens, then the optical path
length in such a system would be a constant for all
object-to-image conjugate points. Hence all dis-
tortions due to transit time differences would van-
ish exactly. Even if only the image space were
spherical, then, provided M was not too small, the
degree of distortion which could arise would be
greatly reduced.

Care has been taken throughout the paper to avoid

any reference to the various phenomena described
as “relativistic” since, because the observability
of these phenomena is governed by the enhanced
parameter 8, =(M+1)8,, it is possible to observe
these effects even in the case where 8, < 1, pro-
vided that the magnification M is sufficiently
large. Of course, there will generally exist prac-
tical limitations to the size of M set by the finite
dimensions of the object. Nevertheless, in some
situations, for example the current work on x-ray
streak photography of laser imploded microbal-
loons, large values of M (=50) are commonly em-
ployed®® and special attention must be given to the
possible occurrence of non-negligible values of 3.

A final point to be raised concerns the use of the
term anticausal. Objections may be raised to its
use on the grounds that, although the image can ex-
hibit time reversal and hence exhibit “apparent”
anticausality, the real situation concerning the
temporal behavior to the real object must be cau-
sal. Toanswer this objection, it is necessary to
reexamine the nature of the image—object relation-
ship in general. In the vast majority of cases, By
<« 1 and the object-to-image relationship is unique,
straightforward, and, in some senses, trivial. So
much so, in fact, that this relationshipis invari-
ably ignored and one unconsciously speaks of the
object directly from a knowledge of the image
without the need to explicitly consider the image-
to-object “inversion.” This paper has shown, ~
however, certainly in those cases where g, is fin-
ite, that the image-to-object relationship is a
complicated one resulting in images which often
bear little if any resemblence to the object they
describe. One is thus no longer able to uncon-
sciously equate image and object as faithful repro-
ductions of one another but, rather, must treat the
image asaprincipal entity apart from (albeit re-
lated to) the object. In short, the only real, di-
rectly observable entity is the recorded image it-
self, from which a knowledge of the object must
then be derived. Thus, in this sense, anticausal
behavior is a real, observable phenomenon occur-
ring in a real, observable image; it is subject to
demonstration and measurement just an any other
physical phenomenon. There is, however, zno con-
tradiction with the axioms of relativity since the
correct interpretation of the image, according to
the theory presented in this paper, guarantees that
the object’s behavior must always be strictly
causal,
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APPENDIX: ANALYSIS FOR A FINITELY THICK LENS

The nonlinear motion and the distortion of the
image described in this paper are the result of
small differences in the transit time of the light
travelling from the object to the image plane. For
the perfect, thin lens, these transit time differ-
ences from different points in the object depend
only upon the geometry of the imaging system (i.e.,
upon d and ¢, only). For any real, finitely thick
lens, however, there will exist smail, second-or-
der transit time differences arising in the optical-
path length through the lens itself. By reexamining
the image motion of a travelling point source ob-
ject for an imaging system employing a simple
“thick” lens, this appendix calculates these sec-
ond-order corrections to the “thin-lens solutions”
of the text and shows that, quite generally, the
“thick-lens solutions” are essentially identical.

The simple, thick-lens model adopted here is
that of a symmetrical, biconvex lens and illus-
trated in Fig. 10, With a central lens thickness of
6 and a focal length of f, the (maximum) aperture
radius of the lens is

¥2=2(n-1)f6 ~56%, (33)
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X

FIG. 10. Parameters and optical path lengths for an
imaging system employing simple, “thick,” symmetri-
cal biconvex lens.

strate (the object and image spaces are assumed
to have a refractive index of unity). Fermat’s the-
orem applied to the thick lens still ensures that all
possible paths from the conjugate object-to-image
points x, = x/M to X through the lens have identical
optical-path lengths so that, for the purposes of
calculating the optical-path-length function s(R, X)
for the thick lens, any of the various “rays” may
be used. The simplest choice is that of the ray
which just intersects the lens at its-edge where the
lens thickness may be taken as infinitesimal (the
solid line in Fig. 10). From this, the optical path
length from x,=x/M to x is readily found to be

SR, X) = (d/M){ [1 + (MR - X)?]"/
where 7 is the refractive index of the lens sub- +M[1+(R+Xx)2]V2}, (34)
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where X=x/d and R is the dimensionless lens
“radius”

R?=72/d%=[2(n-1)A -4+ a2] /(M +1)? (35)

with A =6/f.
The position of the point source object is given
by the equation of motion

% (t) = vyt +vys(R, 0)/c, (36)

whence, using Eq. (2), the point image is found to
obey the equation

T=X+[MBy/M+1)J{[1+ (R +X)2]V2 - [1+R?]V2}
+[By/ M+ D1+ (MR - x)?]V?
- [1+M2R2)V?}, (37)

which may be compared with the analogous thin-
lens Eq. (4). The image motion X(7") was calculated
from Eq. (37) for the values g, =0.5, 1, and 2 and
for different values of M, with various values for
the lens thickness as large as A=0.5. These thick
lens solutions were then compared directly to the
thin lens solutions plotted in Fig. 2(a). It was

found that discernable differences between the two
solutions occurred only for the largest A values

and then only in the off-axis regions [X|z 1. To

illustrate, Fig. 11 shows the motion of a traveling
point source object with 8, =2 calculated with the
thin-lens solution, Eq. (11), compared to that cal-
culated with the thick-lens solution, Eq. (37).
Moreover, Fig. 11 represents a “worst case” ex-
ample with a lens thickness equal to one-half of its
focal length and a magnification M =1 chosen to
maximise the difference between the solutions. The
differences in the near-axis regions, |[X|<«1,
were always negligible. This finding is also sub-
stantiated analytically by approximating Eq. (37).
Thus, labelling the T(X) solution to Eq. (37) as T,
to distinguish it from the T'(X) solution to Eq. (4),
one finds, to second order in R?%,

T,— T=~-0.5MR?g,[1- (1+Xx%)"2] (38)

for which it is noted that the maximum value of
MR? occurs at M =1 whence

MR?_ =y2/4f2=1/16F2,

where F=f/2r is the f number of the lens [for the
maximum aperture given by Eq. (33)]. Calcula-
tions with Eq. (38) show that, for any value of §,,
the relative difference between the thick-lens and
the thin-lens solutions at any point X is always
<1% as long as the fnumber of the lens is >1.

max
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160f these two parameters, Xint is the “better” one
since it is an intrinsic parameter of the imaging
system dependent only upon 8, while T, depends
upon the somewhat arbitrary choice of time origin
as set by the equation of motion of the object.

1TA]l references to object shape and length are those
of the object in motion as described in the stationary,
object space coordinate frame of the imaging system.
For material objects in motion, this shape differs
from its rest shape by a simple Lorentz contraction
along that direction parallel to the motion. The theory
presented in this paper deals only with the imaging
transformation of the “objective shape” of the object
(i.e., its shape described in the stationary coordinate
frame) into an instantaneous image and, thus, the
equations derived are valid quite generally for any
object, material or otherwise, in motioh or station-
ary. As such, the theory given here is completely
independent of any relativistic considerations and the
only way in which relativity theory can enter in at
all is through the distinct and here implicit step of a
Lorentz contraction of a material object in motion,

A more detailed discussion of the delineation of the
relativistic and imaging effects is given by Mathews
and Lakshmanan in Ref. 15.

BNote, in theory, that a faithful image can be obtained
for any values of 8 and L, provided the entire image
lies completely in either of the far off-axis regions
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| X|>>1. Realistic limitations, however, on any prac-
tical lens would largely rule out any use of the re-
gions |x|>d and so this possibility is ignored in the
present analysis.

191 particular, no account is explicitly given of the
anisotropy in the emitted radiation or of the Doppler
shifting of this light when 8y~ 1. Again, such rela-
tivistic effects alter only the relative intensity distri-
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bution or the spectral variation within the image and
not its spatial profile or extent. See, e.g., H. Muir-
head, The Special Theory of Relativity (MacMillan,
New York, 1973), pp. 42—-47, 69--75.
Nsee e.g., The Lawrence Livermore Laboratory Laser
Program Annual Report, 1976 (UCRL-50021-76),
pp. 3—68, 3—69 (unpublished).



