A number of sources of aluminum cylinders to be used as
the rotors were considered. Because of the ease of acquiring
beer or soft-drink cans and because of their very light
weight, these were selected, as can be seen by Fig. 2. What-
ever the source of the cylinders, their height should not be
much more than about 4 in., otherwise the torque caused
by the cross wind can easily become large enough to tilt the
glider so that one of its lower edges rubs against the air rail.
The particular drive motor used turns the cans at about
1500 rpm. The tops of the cans are cut off squarely (as
described below) and the open end is gently pushed onto a
thin aluminum disk turned in a lathe with a shoulder to
hold the axis of the can parallel to the axis of the motor. A
hole in the center of the disk fits onto the motor shaft and is
held in place by a set screw. In order to cut the cans, they
are mounted inside a hollow wooden cylinder, also turned
in a lathe. The cylinder is slit down the side to make insert-
ing the cans easy. When chucked up in a lathe, the wooden
cylinder holds the cans firmly and without wobbling. Cut-
ting of the can is done by means of a razor bladelike tool
made from a piece of drill rod or an old drill which can be
rigidly held in the tool holder of the lathe.

The “cross wind”” which propels the ship best is genera-
ted by the exhaust port of a vacuum cleaner, but a source of
compressed air will also work if the volume of air is suffi-
ciently large. An electric fan can be used to show the effect,
but the one tried here did not work as well. The vacuum
cleaner exhaust provides the greatest mass of air per second

Fig. 2. A model of the rotor ship using an air track glider.

concentrated within a cross-sectional area which matches
the dimensions of the can.

'R. M. Sutton, Demonstration Experiments in Physics (McGraw-Hill,
New York, 1938), p. 117.

*J. Walker, The Flying Circus of Physics (Wiley, New York, 1975), p. 85.
*R. A. R. Tricker, Bores, Breakers, Waves, and Wakes (American Else-
vier, New York, 1967), pp. 105-106.

*Encyclopedia Britannica (Encyclopaedia Brittanica, Inc., William Ben-
ton, Chicago, IL, 1968), Vol. 19—under “Rotor Ship.”
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This note addresses the consistency of the existence of
minimum or “quantized” time and length intervals, re-
spectively, with special relativity. By the existence of short-
est time and length intervals, we mean that no proper time
or proper length intervals exist that are smaller, respective-
ly, than these minimum intervals.' )

A historical account of the possible existence of mini-
mum time and length intervals is given by V. L. Ginzburg
in his informative work, Key Problems of Physics and Astro-
physics.> These notions are also mentioned in an equally
informative article by J. A. Wheeler.?

At first thought, it would appear that so “absolute” a
concept as minimum intervals is alien to special relativity.
Suppose, for example, that a shortest length interval exists
which we label L. A rod of this length is fixed in a frame S,
which moves with uniform velocity with respect to the
frame S. Performing a Lorentz transformation, we find
that the corresponding measured length in S has the value
L = Ly/y<L, which appears to contradict our starting
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premise. In the preceding expression = (1 — 52) =2,
B =v/c

Let us examine this situation more carefully. Let all
frames be equipped with length-measuring devices calibra-
ted to the smallest interval L,. Again, let a rod of length L,
be fixed in S, which in turn moves with constant velocity
relative the frame S. Measurement of this length in § would
find a value less than L,, then we may conclude that this
length is immeasurable in S as such lengths cannot be re-
solved by a measuring device whose minimum calibration
is L,. So, it is consistent with relativity to say that lengths
L < L, are not observed in any frame.

A minimum time interval is more readily shown to be
consistent with relativity. We assume a minimum time in-
terval and call it £,. Let clocks in all frames be calibrated to
this minimum interval. Consider a clock that is stationary
in a frame S, which, in turn, moves with constant velocity
relative to the frame S. An observer in .S measures the time
t = yto> 1y, corresponding to the interval ¢, in S,. (The
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clockinS hasticked off more than one t, interval.) We may
conclude that all observers measure time intervals 71,

We have considered the consistency of the notions of
smallest time and length intervals with special relativity.
Working with simple Lorentz transformations, it was con-
cluded that the existence of shortest length and time inter-
vals, L, and t,, respectively, infers that all length measure-
ments find L>L, and that all time interval measurements
find £>1,.

Diagram for head-on collisions
Manfred Bucher
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"The proper time of a clock is the time observed in a frame in which the
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A collision may be regarded as the simplest interaction
mechanism between two particles (or bodies) since the in-
teraction takes place only for a very short time inverval
when the particles are in very close proximity, i.e., in “con-
tact.” The quantities directly accessible to measurement
are the masses m; of the particles j = 1,2 and their veloc-
ities v; and v; before and after collision, respectively. How-
ever, even for the simplest case of an elastic central collin-
ear (“head-on”) collision the well-known relation"?
between final and initial velocities

2m, m; —m

r
v =

v, i#), (1)
m; + m;

m; + m;
appears by no means trivial.

Of course, formula (1) is necessary for calculations. Yet,
for a conceptual grasp of the situation, this expression is
already too complicated. Therefore, introductory texts'~
commonly take recourse to discussing special cases like
equal masses (/m, = m,), or one particle at rest (v, =0),
or one particle much more massive than the other
(m, €m,), all of which simplify Eq. (1). On an advanced
level, simplification is achieved through transformations to
the laboratory frame (where v, = Q) or to the center-of-
mass frame.*” Naturally, the situation becomes consider-
ably more complicated when the collision is inelastic.

On the other hand, formulation of a collision is easy in
terms of dynamic variables because of conservation of mo-
mentum

P +P=pi +D; (2)
and conservation of energy

2 2 2 2
P1+P2=P1+P2+AU (3)
2m;, 2m, 2m; 2m,

inherent in the process. Here p; and p; denote the particles’
momenta just before and after the collision, respectively.
The change of internal energy of the system is given by AU,
which is zero for an elastic collision and maximum, AU,
for a completely inelastic collision.
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Even with the elegant formulation of a collision process
through conservation laws, some conceptual difficulties re-
main arising from the fact that the dynamic variables, mo-
mentum and energy, are composed rather than directly
measurable quantities. In this note we present a diagram
which shows, by intersections of two parabolas, (1) both
conservation laws simultaneously, (2) the dynamical vari-
ables, i.e., initial and final momenta and the energy distri-
bution, (3) the directly observable quantities, i.e., particle
masses and (initial and final) velocities, and (4) the colli-
sion impulse for elastic as well as inelastic head-on colli-
sions.

In the collision diagram (Fig. 1) we draw the vector
p, = m,v, with its tail beneath the origin O, of the bottom

1) ¥
nh

e

e

Fig. 1. Diagram for head-on colli-
sions representing momenta and en-
ergies before the collision (B), after
an elastic collision (A4), and after a
completely inelastic collision (C).
Particle masses are shown by the pa-
rabolas’ radii of curvature and veloc-
B ities by slopes at 4, B, C. Here the
mass ratio is m,/m, = 2 and the ini-

tial velocites are v, = — v,.
.
D ———————— |
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