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A new approach to understanding the twin paradox, based on the conventionality of simultaneity, is
presented and illustrated. The canonical version of the twin paradox is discussed with reference to
its historical origins and the standard explanations given for the differential aging of the twins. It is
shown that these are merely specific examples of an infinite class of possible accounts, none of
which is privileged. The bounds of this class are given a novel geometrical interpretation.
Nonstandard versions of the twin paradox are discussed, and the conventionality of the simultaneity
approach is generalized. The role of accelerated reference frames in explaining the twins’ aging is
also critically examined. The application of the conventionality of simultaneity to the twin paradox
hopefully provides a way to settle the often discussed issue of the twins’ differential aging. © 1996

American Association of Physics Teachers.

1. INTRODUCTION

The “twin paradox’ has been the subject of a great deal of
interest and discussion since the introduction of special rela-
tivity by Einstein in 1905. Henri Arzelies has pointed out that
while Einstein had suggested the kernel of the paradox it
was Paul Langevin in 1911 who ﬁrst posed the problem in its
current more or less standard form.! Descrrbmg much of the
subsequent scholarly discourse concerning the paradox, Ar-
zelies complains that-“‘the same arguments are always ad-
vanced, and the same replies given.”> A review of recent
work dealing with the twins in special relativity seems to
bear this out. This paper attempts to prov1de an approach to
the twin paradox, suggested by one of us,’ which will make
superfluous much of the standard discussion that Arzelies
finds so exasperating.

In Langevin’s 1911 paper on space and time he discussed
at length the implications of special relativity and presented
what came to be called the twin paradox as an ‘“exemple
concret,” of its implications.* Langevin described a scenario
in which a traveler leaves the Earth for a distant star at a
speed close to the speed of light and returns in the same
manner having aged only 2 years, while on Earth 2 centuries
have elapsed. This is essentially the standard account of the
paradox to which is often added the idea that the traveler has
a twin who stays on the Earth, so that at the end of the trip
the twins will have aged differently.

Langevm did not include his calculations, but the differ-
ential aging can be demonstrated by calculating the proper
time, 7, along the two paths through Minkowski space-time,
as shown in Fig. 1, where the outward and inward coordinate
speeds are the same. These are labeled as path 1, from the
origin of the Earth’s frame to time t=2T along the vertical
axis and path 2, from the same origin to the turning point e
and back again, and they. correspond to the earthbound and
the traveling twin, respectively. To obtain proper times one
can integrate along each path using the fact that, for constant
speeds,

dr=vy 1 dt, ' S (1)
where
y=1/(1-v*c®)" )
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t is time measured in the inertial frame of the Earth, v is the
speed of departing and returning, and c is the speed of light.
Equating this calculation of proper time with the time mea-
sured by ideal physical clocks is what has been referred to as
the “clock hypothesis.”> We will assume that this hypothesis
holds, although there is some dlscussron as to when clocks
do actually measure proper time.® Since y ! is always less
than or equal to 1, the proper time measured along path 2
will always be less than that along path 1. That is to say,

7=2T>7,=9"1(27T). , 3)

The differential aging suggested by Langevin comes directly
from the fact that proper time is a path dependent quantity in
special relativity.

From these straightforward calculations it is not clear
where there is a “paradox” in the story of the twins. One
way to make the twin paradox seem paradoxical or at least
unexpected would be to note that the Lorentz transformation
predicts reciprocal dilatation of moving clocks, according to
which each clock is calculated to move slower than the other,
and to contrast this to the nonrecrprocal dilatation predicted
for the round-trip journey.’ Wesley Salmon refers to this
symmetrical time dilatation as the “clock paradox” as op-
posed to the a 8ymmetrical dilatation which takes place in the
twin paradox.” Perhaps confusingly “clock paradox™ can
also refer to the attempt “To avoid -+ the [biological] issue
of whether a traveler s aging is in accord with the standard
clock that he carries.” Because proper times are path depen-
dent quantities, the time dilatation which produces the
“clock paradox” fails to produce a truly paradoxical version
of the tw1ns story With notable exceptions including Her-
bert Dingle,'® most commentators agree that the proper times
on the two paths of the twin paradox are unambiguously
different, and that as such there is formally speaking no para-
dox. Instead, most of the significant discussion of the twins
has focused on the asymmetry between the two paths and on
trying to explain where and when the differential aging ac-
tually occurs. It is these sorts of arguments which we will
address.

I1. ASYMMETRIES

Langevin himself was the first to emphasize the funda-
mental lack of symmetry between the path through space-
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Fig. 1. The standard version of the twin paradox on Minkowski space-time.
The labeled arrows designate the paths of the two twins.

time of his traveler and that of a stationary observer on the
Earth."! In his 1911 paper, he called attention to two asym-
metries that have been the basis for many if not most of the
standard explanations of the differential aging advanced
since then. The first of these is in the difference between the
experience of the traveler and that of the Earth observer if
they try to keep track of each other’s progress using radio
signals. The second fact that Langevin used to support the
“dissymetrie” between the two paths was that of the accel-
eration that the traveler must undergo in order to return to
Earth. Many arguments have been advanced since Langev-
in’s paper up through the 1990s which have followed the
lines suggested by these two asymmetries. These arguments
can be grouped into those that focus on the effect of different
standards of simultaneity in different frames and those that
designate the acceleration as the main reason for the differ-
ential aging.

The family of explanations of how the twins age differen-
tially based on the relativity of simultaneity effectively in-
cludes several different but related approaches. Among these
explanations are the radio signal approach first suggested by
Langevin and Lord Halsbury’s “three brothers” approach.
These both explicitly or implicitly remove from consider-
ation the role of the acceleration. Each then tells a story
about how during the course of the journey the proper times
measured by earthbound and traveling clocks change with
respect to one another.

David Bohm gives a detailed version of the radio’ signal
approach. The different experiences he describes of traveler
and earthbound observer while maintaining radio contact fol-
lows Langevin’s qualitative discussion closely (see Fig. 2).
From the relativistic Doppler shift equations, Bohm notes
that from the point of view of the earthbound observer he or
she will receive “first of all a set of slower 2pulses and later
[after time gq], another set of faster ones,”'” where ¢=T(1
+v/c) is the time that the first’ 51gnal is received after the
traveling twin turns around.

Conversely Bohm concludes that “If the rocket observer
were watching the fixed observer he would then see the life
of the latter slowed down at first and later speeded up.”!?
The change between slow and fast would in this case occur
at the time p=7(1— v/c) when a signal from Earth reaches
the traveler at the turnaround point e (see.Fig. 3). Bohm
concludes that for the traveling twin “the effect of the speed-
ing up more than balanced that of the slowing down. He
would not therefore be surprised to find on meeting with his
twin that the latter had experienced more of life than he
had 14 Bohm’ s account of the relative lapse of proper time
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Fig. 2. The dashed lines represent radio signals sent at constant intervals
from the frame of the traveling twin, path 2, back to Earth. The point ¢
represents the moment that the signal sent at the turning point, e is received
by the earthbound twin on path 1.

for each observer does not give the acceleration any special
treatment and describes a situation where each observer sees
the other going more slowly than him or herself at first and
going faster after a certain moment in time, p or gq.

The radio communication solution exemplified by Bohm
is similar to the “three brothers” approach' suggested by
Lord Halsbury. This is a situation where instead of turning
the corner at e the traveling twin’s clock is synchronized
with a third clock carried by a third sibling already moving at
the opposite velocity toward the Earth; the time measured by
both - clocks w111 together give us the proper time along the
whole of path 2.'° This is intended to remove any question of
the effect of acceleration on the motion.'® The difference in
measurements -of proper times on the two paths, according to
those who have adopted this approach is (as in Bohm’s dis-
cussion) based on the relativity of simultaneity. Each inertial
frame, stationary, departing, and returning, has lines of si-
multaneity, horizontal, and parallel to the lines re and se
respectively defined by the Einstein convention, as shown in
Fig. 4. Therefore, on outgoing and returnlng legs both trav-
eling and stationary clocks seem to be going faster than each
other, but the change of inertial frames at e constitutes a
change of lines of simultaneity which results in a jump ahead
between the times r and s as measured on the moving clocks
with respect to the stationary clocks. The ‘“‘missing time”
between r and s becomes then the reason for the differential

aging.
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Fig. 3. The dashed lines represent radio signals sent at constant intervals
from the frame of the earthbound twin, path 1, to the traveling twin. The
point p represents the moment of transmission of the signal from the Earth
to the turning point e on path 2.
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Fig. 4. The dotted lines represent lines of simultaneity from the point of
view of a traveler on path 2.

In addition to those who have used simultaneity consider-

ations to account for the twins age difference, some have
taken Langevin’s second asymmetry, the role of the
direction-reversing acceleration, as essential to a complete
explanation of the paradox. Many seem to feel that the intro-
duction of general relativity and a gravitational field at the
point of acceleration is the best way to explain this second
asymmetry. Bohm expresses this view and notes that “two
clocks running at places of different gravitational potential
will have different rates.”!’ However, since we are dealing
with flat space-time, we regard the reference to general rela-
tivity in this context as decidedly misleading.'® We shall re-
turn to the issue of acceleration in Sec. VI below.

III. THE CONVENTIONALITY OF SIMULTANEITY

The result of both simultaneity based and acceleration
based explanations of the twin paradox has been a situation
in which discussion centers on trying to say at what event the
traveler loses time against the Earth. However, there is an-
other approach to the differential aging problem that prom-
ises to lay all of this discussion aside. One of us has recently
suggested the application of the conventionality of simulta-
neity, introduced by Reichenbach and Grunbaum, to the
twins problem.19 This approach to simultaneity denies that
there is a fact of the matter in designating one standard of
simultaneity within the bounds of the light cone, even rela-
tive to a given reference frame. Applied to the twins, this
undermines much of the discussion of their specific relative
aging.

As philosopher Michael Friedman puts it, the convention-
ality of simultaneity implies that only proper time has “ob-
jective status in special relativity.”?° More specifically, this
approach refers to Grunbaum’s concept of “topological
simultaneity.?! This is simply the assertion that in using light
signals to synchronize two spatially separated clocks, at
points a and b shown in Fig. 5, one need not divide the
difference of transmission, #;, and reception, ¢, of a signal
by two as originally described by Einstein. Doing so gives
Einstein’s convention of simultaneity, represented by t,g,
which is equivalent to assuming the constancy of the one-
way speed of light. Instead, one could choose any time, ,,
measured at position a between ¢, and 5 to be simultaneous
with the time of reception of the signal at position b. Another
way of saying this is that the interval from ¢; to #; is topo-
logically simultaneous with the time of reception recorded at
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Fig. 5. Establishing synchrony between spatially separated points. The
dashed lines represent radio or light signals. The dotted line represents the
line of simultaneity associated with the Einstein convention. The mixed
dashed and dotted lines represent other possible lines of simultaneity.

b. John Winnie has investigated some consequences of this
approach to establishing simultaneity, using Reichenbach’s
notation:

t,=t+e(t3—ty), 4)

such that 0<e<<1l. When e=1/2, this is equivalent to the
Einstein convention. Winnie points out that any simultaneity
criterion, such that 0<<e<(1, may in fact be applied without
affecting the differential aging in what is equivalent to a
Halsbury type phrasing of the twin paradox. This is what one
would expect if the choice of € is truly one of convention.
However, Winnie also concludes that the standard time dila-
tation in special relativity described by the phrase “moving
clocks run slow” is in some ways an artifact of the Einstein
convention. Winnie calculates specific criteria, i.e., values of
€, according to which clocks can be seen to run synchro-
nously in rest and moving frames. To do this and remove any
one-way time dilatation, he shows that one must choose dif-
ferent values of e for when the clocks being synchronized are
receding, €,, or approaching, €,, with respect to the rest
frame, and that these values are additive inverses of each
other, such that

€ +e,=1. ®)

What Winnie’s work suggests for the twin paradox is that
while round-trip differential aging is not dependent on con-
vention, the one-way description of relative clock rates is.
This is exactly the position the authors support, that any
choice of simultaneity criterion, €, will give the overall dif-
ference in age for the twins, but that each different choice
will represent an equally acceptable story about the relative
rates of clocks along each portion of the journey. If this is the
case then any of the discussions of where or when during his
or her journey the traveler gains on the earthbound twin be-
come equally conventional and thus entirely uninteresting.
The conventionality thesis and the concomitant issue of
whether it is possible, in a noncircular fashion, to make a
factual measurement of the one-way speed of light, has at-
tracted considerable discussion in both the philosophical and
physics literature. For a spirited defence of the thesis refer-
ence may be made to the work of Salmon®® and of
Erlichson.>* Objections to the conventionality thesis take
three main forms. First, the loss of simplicity arising from
the anisotropic effects associated with using nonstandard
synchrony. Thus Robert Brehme writes, “It can be done, but

T. A. Debs and M. L. G. Redhead 386



it is so artificial as to jar our sense of fitness.”> But, the
conventionality thesis is an issue, not about simplicity, but
about what is factual and what is conventional in the foun-
dations of special relativity.

A more promising criticism is to introduce methods of
establishing distant synchrony which do not depend on a
prior choice of the € parameter. Much discussed in this con-
nection is the method of slow clock transport due to
Bridgman.?® Introducing a notion of self-measured velocity,
(i.e., what is now usually referred to as proper velocity)
Bridgman showed that in the limit as the self-measured ve-
locity tended to zero, slow clock transport agrees with the
Einstein convention, without presupposing it. A similar line
of argument has been developed by Brehme,”” who uses
clocks moving in opposite directions with the same proper
speed to establish distant synchrony in agreement with the
Einstein convention.

Third, a more sophisticated line of argument can be traced
back to the work of Robb.? The essential idea here is to note
that standard Einstein synchrony is equivalent to Minkowski
orthogonality to the time axis of the reference frame, and
then to demonstrate that Minkowski orthogonality is defin-
able from the causal structure of Minkowski space-time, i.e.,
the light cone structure, without any assumptions about the
one-way speed of light. Nevertheless, the conventionality
thesis can still be defended on the grounds that any method
that establishes standard synchrony in a moving frame will
automatically define nonstandard synchrony in a stationary
frame, so the conventional element is restored in specifying
simultaneity in the stationary frame, viz., the choice of
whether to import into that frame the standard synchrony
defined in any of the moving frames.

In this paper, we shall proceed on the assumption that the
conventionality thesis is correct, and refer the reader for a
comprehensive review of this issue to the work cited in
Ref. 3.

IV. CONVENTIONALITY OF SIMULTANEITY AND
THE TWINS’ AGING

In order to apply the conventionality of simultaneity to the
problem of relative rates of clocks in the twin paradox, we
consider a situation in which the traveling twin continuously
sends and receives signals from the Earth and uses these to
set upper, u, and lower, I, bounds on possible values of his or
her clock that may be judged simultaneous with a given
reading of the clock of the earthbound twin (see Fig. 6).” We
subsequently plot the proper time along each path against
one another which produces a parallelogram, as shown in
Fig. 7, the upper and lower boundaries of which are the
bounds on possible times measured by the traveler for a
given instant on the earthbound clock. That is to say that for
each instant of proper time measured along path 1, 7, there
exists a range of proper time values along path 2, 7,, which
would all be equally good choices to be considered simulta-
neous with that particular value of 7. It is important to note
that the diagonal of the parallelogram lies below the line of
slope 1 such that the differential aging by the end of the
journey is undisputed. This parallelogram, OPQR, also al-
lows one to see that it would be possible for either clock to
run more quickly than the other over any particular interval
within its bounds. The essence of the conventionality of si-
multaneity approach to the twin paradox can be made appar-
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Fig. 6. The dashed lines represent radio or light signals. The bounds on
possible simultaneous points are given by the proper times measured on path
2 at each point of transmission, /, for the lower bound, and reception, u, for
the upper bound.

ent by remarking that any nondecreasing curve inside the
parallelogram would be equally acceptable as a way of de-
scribing the relative rates of the two clocks.

With this approach to the twin paradox, it is easy to see
that any discussion about where during the journey the dif-
ferential aging takes place is unnecessary. In fact, many of
the standard explanations can be plotted onto the parallelo-
gram. Two of those already discussed involve the use of the
Einstein convention from the point of view of the traveler.””
In the first, one could simply halve the difference between
the traveler’s sending and receiving times over the whole
journey to establish the progress of the twins’ clocks relative
to one another. Graphically this would mean taking the av-
erage between the upper and lower boundaries of the paral-
lelogram, as depicted by the dashed line segments in Fig. 7.
Adopting this method, the traveler’s clock seems to run more
quickly than the Earth’s up to 7,=7(1 —v/c), the time in the
Earth’s frame that the first signal reaches the turnaround
point. Then the traveler’s clock seems to lose ground against
the Earth’s until 7,=7T(1+ v/c), the time that the Earth re-
ceives its first signal after the turnaround. Thereafter, the
traveler again ages more quickly, but the overall effect is
such that his or her total age is less than that recorded on
Earth.

The Halsbury “three brothers” approach to explaining of
the differential aging can also be represented as a curve in-
side the parallelogram, shown by the dashed line segments in
Fig. 8. To get this curve, the Einstein convention for simul-
taneity for a frame receding with velocity, v, is used until the
traveler reaches his or her halfway point, half of 27*, im-

=1 .
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Fig. 7. A parallelogram of possibly simultaneous points. The dashed line
represents a possible convention of simultaneity. T*=Tv"!, The mixed
dashed and dotted line represents the line of slope=1 on which 7,=7,.
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Fig. 8. The dashed line segments represent a possible choice of simultaneity
conventions corresponding to the Halsbury “three brothers” approach to the
twin paradox.

plying that the traveler is aging more quickly. On the second
half of 2T*, the same convention for an approaching frame
is used, and the traveler ages more quickly again. The overall
youth of the traveler is due then to the “missing time” from
the traveler’s journey which is represented by the horizontal
section in which the Earth ages instantaneously from his or
her point of view. Conversely, from the Earth, the traveling
twin’s clock seems to stand still during this period.

Infinitely many other stories may also be told which fit
into the bounds of convention set by the parallelogram. As
we have seen, the simultaneity criterion, €, can be chosen so
as to eliminate one-way time dilatation if e=e, , for receding
clocks, or ¢, , for approaching ones. The result of choosing
these criteria is represented by the dashed line segments in
Fig. 9. During the first half of the traveling twin’s journey his
or her clock runs in synchrony with the clock on earth, the
dashed line segment runs along the line of slope one. These
lines are also parallel during the second half of the twin’s
journey where the clocks run at the same rates again. The
overall differential aging is caused by the horizontal dashed
segment over which, from the Earth, the traveler’s clock
stands still. Interestingly, the additive inverse relationship of
Eq. (5) can be seen readily on the parallelogram. Modifying
Reichenbach’s notation in Eq. (4),

e=(t;—t1)/(t3—11). (©)

From the traveler’s point of view, ¢; and ¢, are given by the
adjacent sides of the upper and lower boundary of the paral-
lelogram, respectively, while ¢, is the chosen simultaneous
moment represented by the dashed line segments. This im-
plies that on the first part of the traveler’s journey

e, =B/(A+B), (7)
5 s
(83 .
s 9
ey
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Fig. 9. The dashed line segments represent a possible choice of simultaneity
conventions.

388 Am. J. Phys., Vol. 64, No. 4, April 1996

where A and B are the magnitudes labeled on Fig. 9. On the
last part of the journey,

e,=A/(A+B). (8)
This gives the result that
€,+e,=(A+B)/(A+B)=1, (9)

as expected.

The boundaries of the parallelogram can also be seen to
represent the approach to explaining the twin paradox, exem-
plified above in Bohm’s discussion, which uses Doppler
shifted radio signals. Looking more closely at the boundaries
of the parallelogram, we can see that the lower boundary has
the slope [(1—w/c)/(1+v/c)]" and the upper boundary
has the slope [(1+ v/c)/(1— v/c)]"? where v is taken to be
the outgoing velocity of the traveler and — v the returning
velocity. This is not surprising as these slopes are the relative
rates of the measurement of proper times in frames moving
with respect to one another. This relationship can be seen in
the relativistic Doppler shift equation according to which

' =[(1+v/c)/(1-v/c)]¥*r, (10)

where 7' is the period of radiation received in a frame mov-
ing with velocity v and 7 is the period of the radiation in the
rest frame, in the situation where the radiation is propagating
in the same direction as v. Noting that ,=37" and ;=27
over their respective paths, and that the Doppler shift equa-
tion describes the periods of radiation on the upper bound,
and the multiplicative inverse describes the lower bound, the
slopes of the sides of the parallelogram can be easily con-
firmed.

Looking to the story Bohm tells of the twins’ relative
progress, we can see that he is actually describing the two
boundaries of the parallelogram which come directly from
the Doppler shifted signals he sets out to discuss. Bohm first
discusses the appearance of signals coming from the traveler
as seen on the Earth. Looking at the parallelogram, we can
see Bohm’s explanation3 ! by looking at the lower boundary
ORQ in Fig. 9. Taking this approach, the Earth observer sees
the traveling twin aging more slowly up to the time p=T(1
+v/c), represented by segment OR of the parallelogram.
Subsequently, he or she sees the traveler aging more quickly
than earthbound clocks, segment RQ.

From the other point of view, Bohm expects that the mov-
ing twin will see the Earth’s clock running slower than the
moving clock up until the time g=7(1—v/c), and subse-
quently he or she will see the Earth’s clock running more
quickly than the moving clock.’ This is exactly the story
that is represented by the upper boundary, OPQ, of the par-
allelogram in Fig. 9. Bohm explains the differential aging by
pointing out that the speeding up of the Earth’s clock wit-
nessed by the traveler after time ¢ “more than balanced” the
slower relative rate prior to ¢.>> The use of the parallelogram
makes it obvious that the Doppler shifted signal approach to
the paradox is concerned with the outer bounds of an infinite
number of acceptable stories about the twins relative rates of

aging.

V. THE TWINS ON NONSTANDARD PATHS: THE
CONVENTIONALITY APPROACH
GENERALIZED

Another approach to explaining the differential aging of
the twins without reference to the point of acceleration has
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Fig. 10. A one-dimensional “Hafele, Keating™ scenario. The labeled arrows
designate the paths of the two twins. Symmetrical paths do not take into
account the Earth’s rotation, there is no differential aging. The dashed lines
represent radio or light signals. The point ¢ represents the moment that the
signal sent at the turning point on path 2 is received by the twin on path 1.
The point p represents the moment of transmission of the signal from the
twin on path 1 to the turning point on path 2.

been to put the two paths onto cylindrical space-time. By
cylindrical space-time, we mean here a two-dimensional uni-
verse in the shape of an infinitely long cylinder with time
running “up” the cylinder and space running “around” it. In
this way the stationary twin is considered to travel up the
cylinder, the time axis parallel to the axis of rotation of the
cylinder, and the traveling twin to depart and return by sim-
ply going around the cylinder at a constant velocity. The
calculation of the proper times on the cylinder has been done
recently by more than one individual >* At first it might seem
that one might be able to get a real paradox out of this situ-
ation without the obvious asymmetry in the two paths, that
is, the asymmetry provided by the acceleration and change in
direction on the traveler’s path. This turns out not to be pos-
sible because of the structure of simultaneity relations in cy-
lindrical space-time.35 This should not be surprising as some
asymmetry must exist between the two paths in order to
calculate different proper times. This scenario has also been
examined by Redhead,’® who has shown how the parallelo-
gram construction can be adapted to spell out the conven-
tionality limits on synchronizing distant clocks in cylindrical
space-time.

One place to observe the requirement of an asymmetry to
get differential aging is in the Hafele—Keating experiment. In
this experiment, differential aging was observed on two
atomic clocks traveling on jets at the same speed around the
Earth in opposite directions.®” The rotation of the Earth pro-
vided the asymmetry that was necessary to produce the dif-
ference in proper times. These two paths without the rotation
of the Earth can be compared schematically to the two paths
going around in opposite directions on cylindrical space-
time. The addition of the rotation gives us a scenario which
looks roughly like the twin paradox in cylindrical space-
time.

Using flat noncylindrical coordinates, we can set up an
idealized one-dimensional Hafele, Keating situation with two
symmetrical paths for each twin corresponding to the case
when the Earth’s rotation is not considered (see Fig. 10). It
turns out that using the Einstein convention of simultaneity
implies a specific story about the relative rates of clocks even
when there is no overall differential aging. Taking the same
approach as above, we can consider that the twin on path 2
checks the progress of the other by sending and receiving
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Fig. 11. A symmetrical hexagon of possibly simultaneous points. The
dashed line represents a possible convention of simultaneity: T* =Ty .

signals. With this information, the twin on path 2 again sets
upper and lower bounds for acceptable values of its own
proper time, 7,, for each given value of the other twin’s
proper time, 7;. The resuit this time is a symmetrical hexa-
gon with its diagonal along the line of slope 1, so that there
is no overall differential aging (see Fig. 11). The slopes of
the sides of the hexagon can once again be explained using
the Doppler shift equation, Eq. (10), according to which, as
previously stated, the lower boundary has the slope
[(1=v,/¢)/(1+v,c)]Y? and the upper boundary has the
slope [(1+v,/c)/(1—v,/c)]"?, where this time v, is the
relative velocity between the twins each moving with veloc-
ity v. Using relativistic velocity addition,

v,=2v/(1+v%/c?), (11)

from 7,=0 to p, where p=[T—-T(2v/c)/(1+v/c)]y},
which corresponds to segments OP and OT in Fig. 11. Plug-
ging into the Doppler shift equation gives slopes for these
segments of (14 v/c)/(1—v/c) and (1—v/c)/(1+v/c), re-
spectively. The relative velocity, v, , is zero from 7,=p to q,
where g=[T+T(2v/c)/(1+v/c)]y"!, which implies that
segments PQ and TS are both of slope 1. The other bound-
aries are similarly calculated and should be apparent from
symmetry.

The dashed line segments inside the hexagon represent the
story given if the Einstein convention is used in the sense
that the average of the upper and lower bounds is taken ev-
erywhere. As we can see, use of this convention implies that
the clocks on different paths are seen to move faster or
slower than each other at different moments during the jour-
ney even when there is no overall differential aging. In fact,
no single simultaneity criterion, €, will pick out the diagonal
which seems to make the most sense as a description of the
clocks in this situation. The arbitrary nature of the implica-
tions of any single criterion supports the conventionality ap-
proach of setting the boundaries and not discussing paths
within them.

We can also create a one-dimensional Hafele—Keating ex-
periment in which there is differential aging by adding a
velocity in one direction (see Fig. 12). In this situation the
magnitude of the velocities on path 1 is less than that of the
velocities on path 2, and the overall aging of the twin on path
1 will be greater. A hexagon can also be drawn to incorporate
thg possible values of one proper time versus the other, as
shown in Fig. 13. The slopes of the sides, as in the previous
hexagon, can be given using the relativistic Doppler shift
equation, Eq. (10) and the relative velocities of the two twins
using relativistic addition of velocities. As one would expect,
substitution of the same velocity for paths 1 and 2 gives us
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Fig. 12. A one-dimensional ““Hafele, Keating™ scenario. The labeled arrows
designate the paths of the two twins. Nonsymmetrical paths correspond to
the case when the Earth’s rotation is considered, differential aging takes
place.

back the symmetric hexagon, and substitution of zero veloc-
ity for one of the paths gives us the parallelogram from the
standard twin paradox.

Some general features of this approach to depicting the
relative progress of clocks between two paths in Minkowski
space-time can be observed. First of all, it is possible to
construct a region of possibly simultaneous points for any
two paths. The Doppler shift equation relating periods of
signals can be used to sum over all periods to get the upper
and lower bounds on this region as long as relative velocity
along each path is constant over each individual period.
Much simpler methods can be used to calculate these bounds
if the paths are straight and accelerations are instantaneous.
In this situation, one can see from the examples done so far
that the number of vertices, V, on the boundary of the simul-
taneity region is given by

V=2(n+1), (12)

where n is the number of instantaneous points of acceleration
on the twins’ paths excluding the accelerations at separation
and return.

The conventionality of simultaneity approach to the twin
paradox also clarifies some implications of a method for es-
timating distance suggested by Clive Kilmister. Kilmister has
suggested that the traveler could keep track of his or her
distance from the origin of the rest frame using the same
signals used above to discuss simultaneity.*® By this method,
described as a “radar” method by Hermann Bondi, the trav-
eling twin could estimate distance from the Earth by estimat-
ing the time it takes for a signal to make the trip using the

o~ 4
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Fig. 13. A nonsymmetrical hexagon of possibly simultaneous points.
T**=Ty7! and T*=T7; !, where time is dilated by different amounts, ¥,
and v, on paths 1 and 2, respectively.
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Fig. 14. Distance estimate by the radar method vs proper time on path 1.
Estimate levels off at d,, .

Einstein convention and multiplying by the speed of light %
This is equivalent to saying that the distance, d, for a specific
value of 7, the proper time measured on path 1, is given by

d=c(t,—t)/2, (13)

where ¢, and ¢, are the upper and lower bounds on the value
of proper time on path 2, for that value of 7;. From the
parallelogram and hexagons, we have already constructed,
we can get an idea of how the quantity (¢,—¢,)/2 varies at
different proper times 7,. Multiplying by ¢, we can get the
distance estimate of Eq. (13). For the standard twin paradox
situation, the radar method implies that the distance between
twins is constant at a maximum distance, d,,, near the
change of direction (see Fig. 14). In the symmetrical one-
dimensional Hafele—Keating situation, the radar method also
gives an artificially low estimate of distance which implies
that the relative velocity between the twins is lessened near
the turning points. The distortion of these distance estimates
is a result of the use of the radar method, and the specific
simultaneity criterion it assumes, and these strange results
are artifacts of its adoption. This example demonstrates, this
time from the point of view of relative distance instead of
relative aging, the arbitrary results of choosing a single si-
multaneity criterion.

V1. THE ROLE OF ACCELERATION CRITICIZED

Finally, the conventionality approach to the twins’ differ-
ential aging can also be used to illustrate that discussions
which try to pin the age difference to the direction- reversmg
acceleration are misconceived. Recently Boughn®’ has
stressed this point by considering the case of two identically
accelerated twins who nevertheless age dlﬁerently as a result.

In a comment by Desloge and Philpott,*! they have de-
scribed in more detail the paths in Minkowski space-time
that Boughn’s scenario requires, if the journeys of the twins
are to start and finish in spatial coincidence. We shall now
apply our analysis to a version similar to that which they
describe, as illustrated in Fig. 15. In this case the twins are
separated symmetrically, given the same acceleration into a
new frame at a point e in time, and brought back together
symmetrically with respect to their new frame. At the end,
the twin on path 2 has a greater total elapsed proper time.

Using the conventionality of simultaneity approach on this
version of the twin paradox, one could, in principle, draw a
region of possible simultaneous points that would have 14
vertices according to our previous general observations [see
Eq. (12)]. Any path within this region would be an accept-
able account of the differential aging. One need not construct
the entire region to see that assigning the difference in age to
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Fig. 15. An “identically accelerated twins” version of the twin paradox. The
labeled arrows designate the paths of the two twins. The dashed lines rep-

resent radio or light signals. 7,,7,,7,, are points in proper time measured

on path 1 near the moment of acceleration.

the point of acceleration is only one of these accounts. We
can see this in a rough diagram of the shape of this region
around the point of acceleration (see Fig. 16). The dashed
line segments designate a story that allows the differential
aging to take place at the point of acceleration. However, it is
obvious that many other nondecreasing curves could fit
within the appropriate bounds.

It remains true, of course, that without acceleration, then
in Minkowski space-time at any rate, it is impossible to have
twice intersecting trajectories so as to formulate the twin
paradox with the twins starting and finishing in spatial coin-
cidence. So, in this sense, acceleration is an essential ingre-
dient in understanding the twin paradox. It may be noted
however that even this role for acceleration can be elimi-
nated in formulations of the twin paradox in curved space-
time, where the twins can fall freely along space-time geo-
desics between successive meetings.

VII. CONCLUSIONS

Having discussed a new approach to looking at the twin
paradox with regard to where and when the differential aging
occurs, it is possible to conclude that the conventionality of
simultaneity and in particular the concept of topological si-
multaneity provides a means to put an end to this question.
One can conclude that any explanation of relative aging that
stays within the bounds set by the light cone is equally valid.
In addition, discussion based on the application of particular
simultaneity criteria, i.e. € values, either to establish simul-

N

Fig. 16. An approximate detail of the region of possibly simultaneous points
near the moment of acceleration. The dashed line segments represent a
possible choice of simultaneity convention.
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taneity or estimate distance is also uninteresting as it dis-
cusses only one of an infinite number of conventional ways
to approach the problem. Perhaps the method discussed in
this paper, the conventionality of simultaneity applied to de-
picting the relative progress of two travelers in Minkowski
space-time, will settle the issue of the twin paradox, one
which has been almost continuously discussed since Langev-
in’s 1911 paper.
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A simple derivation of all three so-called Kepler laws is presented in which the orbits, bound and
unbound, follow directly and immediately from conservation of energy and angular momentum. The
intent is to make this crowning achievement of Newtonian mechanics easily accessible to students
in introductory physics courses. The method is also extended to simplify the derivation of the
Rutherford scattering law. © 1996 American Association of Physics Teachers.

I. INTRODUCTION

~ The so-called Kepler laws of planetary motion have been

of central interest for Newtonian mechanics ever since the
appearance of Newton’s Principia.' They are discussed in
most introductory textbooks of physics> and continue to be
a subject of lively interest in the pages of the American Jour-
nal of Physics.* This interest is not surprising because the
understanding of planetary motion has been one of the oldest
challenges in many human cultures and continues to excite
the sense of wonder among young scientists today.

The purpose of the present article is to give a new elemen-
tary derivation of all three of the Kepler laws intended to
make their physics accessible to first year university students
taking introductory mechanics. I have used this derivation in
my own introductory classes for more than a decade and find
that it, and the many associated problems, are a highlight of
the introduction which I give to physics. In contrast, most
first-year textbooks give a description of Kepler’s laws but
apparently regard their derivation as too difficult. Perhaps the
derivation given here can then fill an important gap.

The elementary proof, given in the next section follows
directly, in a few easy steps, from conservation of energy and
angular momentum which, in turn, follow from F=ma and
the central nature of the universal gravitational force,
F=GmM/r?. These conservation laws, on which we build,
are usually covered thoroughly, and often even elegantly, in
first year textbooks.

In succeeding sections, beyond the proof, we provide fur-
ther discussion of bound elliptic orbits and extend the treat-
ment to the unbound Kepler orbits and to the Rutherford
scattering law.
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II. ELEMENTARY PROOF OF KEPLER’S LAWS

A. Kepler’s first law (the law of orbits): All planets move
in elliptical orbits having the Sun at one focus

For a planet of mass m in a bound orbit (negative total
energy E), around the Sun of mass M, we have the constant
total energy, E

E=mv?2—GM m/r, (1)

where r is the distance of the planet from the Sun and v its
velocity. (—E/m) is a positive constant of the motion. Be-
cause the force is central we also have conserved angular
momentum, /

@)

where h(=r sin ¢, with ¢ the angle between v and r) is the
perpendicular distance from the planet’s instantaneous veloc-
ity vector to the Sun (see Fig. 1). From the definition of / we
have h=<r. (I/m) is also a positive constant of the motion.
Using Eq. (2) in Eq. (1), we obtain
[(/m)*/2—E/m)] [GM/(—E/m)] _
h? r
The relationship (3) between r and h, both taken from a
common center of force defines an ellipse. In the next section

we show that for an ellipse of semimajor axis a and semimi-
nor axis b we have

I=muvh,

G)

b Za 1 (h=r) (4)
S = =r).
h
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