The block is now pulled down and held while in its new position, as shown in Fig. 2.
The teacher asks the class to predict what will happen in this real situation when the block is released, and to give a rea-

son supporting and prediction.

Which of the following gives the best prediction and supporting reason?

(A) The block will move down because the gravitational force on the block will be greater at this lower level.
(B) The block will remain stationary because there will be no resultant force on the block.

(C) The block will move up and return to its original position because this will conserve potential energy.
(D) The block will move up and return to its original position because that was its equilibrium position.

Question D: The bouncing ball problem

A steel ball of mass m is dropped on to a steel-topped table from a height of 1 m. The ball is in contact with the table for
0.01 s and rebounds with only a very small loss of kinetic energy.
Which of the following statements best describes the average force exerted on the ball by the table during the collision?

(A) It equals the normal reaction force mg.

(B) It is slightly less than mg because the collision is not quite elastic.

(C) It is greater than mg.

(D) It is greater than the force exerted by the ball on the table, in order to make the ball rebound.
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Special relativity demands a locality principle (no instantaneous action at a distance); locality
implies Bell’s theorem; quantum mechanics violates Bell’s inequality, therefore, quantum
mechanics contradicts relativity! Or so it would seem. It is shown, however, that the locality
principle needed for Bell’s theorem is stronger than the simple locality that is needed to satisfy the
demands of relativity and that quantum mechanics satisfies the latter. The stronger locality
principle is equivalent to the conjunction of simple locality and predictive completeness, and it is
the latter principle that fails. The notion of predictive completeness is weaker than, and is implied
by, the completeness criterion of Einstein, Podolsky, and Rosen. But the quantum mechanical
state description is not only incomplete but incompletable, for any local complete state
description would satisfy Bell’s inequality and disagree with experiment.

L. INTRODUCTION

It is common knowledge that special relativity forbids
instantaneous action at a distance and, more generally, that
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it forbids the propagation of energy or information at
speeds exceeding the speed of light. This assertion has occa-
sionally been subject to controversy, but after reviewing the
relevant analysis in Sec. 11, we shall conclude that in this
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case “common knowledge” is correct. We shall refer to this
prohibition of nonlocal causality as the principle of relativ-
istic locality.

An apparently similar locality principle is used to derive
Bell’s theorem,' which is an inequality restricting correla-
tions between the results of causally independent measure-
ments on separated systems that may be correlated only
because of their past history. The profound surprise is that
certain quantum mechanical correlations violate Bell’s in-
equality, revealing a previously unsuspected contradiction
between quantum mechanics and the locality principle that
is used to derive Bell’s theorem. Hence, the question in our
title, “Does quantum mechanics contradict relativity?”

Such a contradiction, if indeed one exists, between two
fundamental and exceedingly well-verified theories would
constitute a major crisis in theoretical physics.> We shall
argue in this article that, in fact, Bell’s theorem does not
establish a contradiction between special relativity and
quantum mechanics. This is the case because the proof of
Bell’s theorem requires a stronger form of locality (which
we call strong locality) than the simple locality principle
entailed by special relativity. We shall show that the princi-
ple of strong locality is logically equivalent to the conjunc-
tion of simple locality and a form of predictive complete-
ness of the state description. It is the failure of this
completeness condition, rather than any failure of simple
locality, that is responsible for the violation of Bell’s in-
equality by quantum mechanics. Finally, we discuss the
relation of our conclusions to those of Einstein, Podolsky,
and Rosen.

II. LOCALITY IN SPECIAL RELATIVITY

Consider two space-time points (or events) whose co-
ordinates are (r,,#,) and (r,,2,), and whose space-time sep-
arationis (r,t) = (r, — r,, 2, — ;). The quantity o = (ct)?

— 17 is invariant under Lorentz transformations, which
means that it has the same value in all uniformly moving
frames of reference. The separation between events 1 and 2
is described as timelike, lightlike, or spacelike according to
whether o is positive, zero, or negative. A signal passing
from point 1 to point 2 will travel at a speed less than, equal
to, or greater than the speed of light ¢ in these three cases.

In the case of a timelike separation (o > 0), one can find
a frame of reference such that the spatial separation » van-
ishes. This is the rest frame of a particle moving uniformly
from point 1 to point 2. In the case of a spacelike separation
(0 <0) it is possible to find a frame of reference in which
the two events are simultaneous (¢, — ¢, = 0). Thus a pro-
hibition of instantaneous action at a distance in all frames
of reference is equivalent to a prohibition of signal propaga-
tion at any speed greater than c.

Lorentz invariance by itself does not rule out the possi-
bility of objects (called tachyons) that move faster than
light, but there are other difficulties with this notion. Sup-
pose events 1 and 2 are‘the emission and absorption of a
tachyon. Because the separation is spacelike there exist
frames of reference in which z,> ¢, and others in which
t, < t,, thus the principle that cause must preceed effect is
violated. Even more serious is the possibility of using a
tachyon relay to send a message to one’s own past. This
leads to very strange consequences: one could arrange to
kill one’s mother before one was born, and thus have a
situation in which the tachyon message is sent if and only if
itis not sent. For reasons such as these, it is now agreed that
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the possibility of traveling or signaling at superluminal
speeds is strictly incompatible with special relativity.?
Since the prohibition of superluminal communication is
equivalent to the prohibition of instantaneous nonlocal ac-
tion, we shall refer to it as the principle of relativistic local-

ity.

III. LOCALITY IN SPIN CORRELATION
EXPERIMENTS

The practical tests of Bell’s theorem involve the mea-
surement of a spin component on each of two correlated
particles. (If the particles are photons the analog of a spin
component is polarization.) In this section we analyze the
implications of relativistic locality for such an experiment.

Since Bell’s theorem does not presuppose quantum me-
chanics, we shall need a notation that is more general than
the notation of quantum states and observables. We use the
labels “L ” and “R ” to refer to the left-hand member and
right-hand member of the pair of particles, and of the pair
of measuring devices. Let d, and d; be unit vectors that
define the component of spin measured by the L device and
R device, respectively. Let x; and x; denote the results of
such measurements. (We shall have x = + 1 in most
cases.) The probability* of obtaining the particular results
x; and xp is of the form P(x,,xg |d,,dg,S,,Sg,4). Here
S; and Si denote the premeasurement states of the L de-
vice and R device. [Strictly speaking, S; is a set of param-
eters that includes d; (i = L,R), but the vectors d; are so
important that we write them explicitly.] The state of the
two-particle system is denoted by A, and it may be very
general. Here A may be a quantum state, a quantum state
plus arbitrary hidden variables, or some nonquantum-me-
chanical form of state description. It need not separate into
parts that describe the two particles individually.

Wedenote by O, (x, |d,, S;,S5%,4) the probability that
the L device obtains the result x, while the R device per-
forms no measurement (represented by the R-device state
8§%),and Qg (xg |dg, Sk, S ,A) issimilarly the probability
that the R device obtains the result x; while the L device
does no measurement.

We now suppose that the measurements on particle L
and particle R can be carried out at spacelike separation
from each other and we assert that the necessary and suffi-
cient condition for the spin-correlation measurement to
obey the relativistic locality principle is that the following
conditions be obeyed:

QL (xL [dL’SL’S%’/l) = z P(xL’xR ldL’dR ’SL’SR)l)y
' (1a)

Qr (xg |dR’SR;S(I)_/1) = EP(xLJ‘R ‘dL,dR’SL,SR»/l)-
’ (1b)

We shall call these conditions simple locality. Note that
these conditions imply that the value of (1a) must be inde-
pendent of the direction of d; and the value of (1b) must
be independent of the direction of d; .

Simple locality asserts that the probability of obtaining
the result x; by means of a joint measurement of x,; and xp
in which the xz value is ignored [right-hand side of (1a)]
is the same as the probability of obtaining x, when the R
device is not operating [left-hand side of (1a)]. Locality
requires that the probability for the outcome x; of a mea-
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surement of particle L be determined only by the two-parti-
cle state A and the state of the L device. It does not exclude
the possibility of obtaining information about particle L by
performing a measurement on the distant particle R. That
sort of information will be contained in A if the two parti-
cles are correlated (presumably because of some interac-
tion in the past). But it does exclude the possibility that the
preparation of the distant R device in some state (Sg,d, )
can exert a causal influence on the probabilities for the
possible outcomes of the L measurement.

We now prove our assertion that a violation of condi-
tions (1) would provide, at least in principle, the means for
superluminal signal transmission.’ Let us suppose, without
loss of generality, that (1a) is violated; i.e., we assume

or (x, |dL’SL’S?(/1)7SZ P(stxR |dL:dR’SL;SR A)
) (1a)

for some specified 4, x, .d,,S;,dg,Sz, and S%. Suppose
further that an ensemble of pairs of particles is prepared in
the state® 1 and let E; (Eg ) be an experimenter prepared
to perform measurements on the L{R) particles of the en-
semble in space-time region I'; (I'g ), where the separa-
tion between the two regions I'; and I'y, is spacelike.

Let it be arranged between E; and E; in advance that
(i) E will measure the d; component of the spin of each
of the L particles by preparing his ensemble of L devices in
state S, and (ii) E; may choose either to measure the d,
component of the spin of each of the R particles by prepar-
ing hisensemble of R devicesin the state Sy orby preparing
his R devices in state S %, to perform no measurements at
all on the R particles.” Moreover, E; is to delay his deci-
sion until the decision “event” lies in ' .

In accordance with (la’), the statistics E, compiles
from his measurement outcomes will depend on Ej’s
choice. In this way, by using sufficiently large ensembles,
E¢ caninform E, ofhis decision within an arbitrarily short
time interval, with probability approaching unity.® By suit-
ably correlating messages of interest with decisions to per-
form or not to perform measurements, violations of (1)
can thus be exploited, at least in principle, for superluminal
communication.” (It should be noted here that the human
experimenters are not essential in this scheme. A switching
mechanism of some sort, playing the role of £, could just
as well make the “choice” which, via the results of the
automated measurements in I'j, triggers some corre-
sponding physical response at the distant site.)

Finally, we demonstrate that quantum mechanics satis-
fies the locality conditions (1). Let p,; be the statistical
operator for the two-particle state. Let |x, ) bean eigenvec-
tor of o, «d; and |xy ) be an eigenvector of o;*d;, where
o, and o are the spin operators of particles L and R. The
probability that the pair of measurements will yield the pair
of results x; and xz is (omitting the conditional state pa-
rameters for notational simplicity)

P(xpxg) =Tr(|x,xg }{X Xz |Prr )
= <-xL »XR |PLR |xL:xR >’

where the vector |x, ,xz ) is the tensor product |x, ) |xz ).
The probability that a single measurement on particle L
will yield the result x, is

Qp (x.) =Tr® (x, ) (x, lo) = (xploclxe ),
withp, = Tr'® p, . being the reduced statistical operator
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for particle L. Sincep, = 2, (xp|prr |xg),itisclear that
we have

QO (xp) =Y P(x;,xz),

and so (1a) is satisfied. Similarly, we can show that (1b) is
satisfied.

IV. STRONG LOCALITY AND BELL’S THEOREM

We have seen in Sec. III that quantum mechanics obeys
locality, in the sense that correlation measurements do not
permit communication at superluminal speeds. How then
does quantum mechanics violate Bell’s inequality, which is
also derived from a locality condition? The answer is that
the derivation of Bell’s theorem uses a stronger form of
locality postulate than (1). This postulate, which we call
strong locality, takes the following form for a spin correla-
tion experiment:

P(xpxg|d,,dg,Sp,SpA) = Qp (x, IdL’SL:S(I){/l)

X Qg (g |dg,S,S 2 A).
(2)

Several comments on this condition are in order. First, it
is obvious that Eq. (2) implies Egs. (1) but (1) does not
imply (2), hence strong locality is indeed a strengthened
version of locality, as the names suggest. Second, it is clear
that (2) does not hold if the two-particle state A is taken to
be merely the quantum state, for that would contradict the
possibility of correlations between the values of the two
spins x; and xg . One must think of A as some more general
(perhaps uncontrollable or unmeasurable) kind of state
parameter. The observed distribution of x; and x, would
then be of the form

Py (5 ) = f 0, (x.d0.5.,S%A)

X Qr (X5 |dr,Sk,S 2, A)p(A)dA,  (3)

where p(A) is the probability distribution for A. The inter-
esting content of Bell’s theorem is that although state de-
scriptions more detailed than those of quantum mechanics
are easy to imagine (and possible to construct), there is no
conceivable state description that obeys strong locality (2)
and reproduces the quantum mechanical predictions
through Eq. (3).

Different derivations of Bell-type inequalities employ
and justify Eqs. (2) and (3), or their equivalents, in var-
ious ways. If an underlying determinism is assumed, '® that
is if the specification of A is assumed to determine the actual
result of a measurement, then the *“probability”
P(x;,xz|d;,85,S;,Sx,A) is equal to 1 for one particular
pair of values (x, ,xz ) and is equal to O for all other values.
The sums in Egs. (1a) and (1b) will contain at most one
nonvanishing term, and (1) will be equivalent to (2) in this
case. Thus if determinism holds, there is no distinction to
be made between simple locality and strong locality. The
violation of Bell’s inequality by quantum mechanics and,
apparently,'! by nature, may therefore be taken as evidence
against the existence of a deterministic substratum.’?

The derivations of Bell-type inequalities without the as-
sumption of determinism are not much more complicated
mathematically, but the arguments by which they justify
the use of Egs. (2) and (3), or their equivalents,'> may be
more subtle. The reader should be warned that some
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writers give the impression that Egs. (2) and (3) are mere-
ly the embodiment of relativistic locality for these experi-
ments, a view that we regard as mistaken. Our own inter-
pretation of the meaning and significance of strong locality
is the subject of Sec. V.

V. PREDICTIVE COMPLETENESS

A state description is said to be predictively complete
with respect to a measurement (or set of measurements) M
if the results of measurements other than M provide no
information relevant to predicting the result of M that is
not already contained in that state description. The infor-
mation provided by non-M measurements is either irrele-
vant or redundant.

A deterministic state description is always complete be-
cause it prescribes the results of all possible measurements,
M and non-M, and so the information provided by any
particular measurement will be redundant. However, de-
terminism is not necessary for completeness. In particular,
this definition does not by itself rule out the possibility of
quantum mechanics being “complete.” For example, sup-
pose a spin one-half particle is prepared in the spin-up state
by means of a suitable apparatus. Let M be the set of possi-
ble subsequent spin-component measurements. For one
such measurement along a direction at an angle © from the
vertical, the state description predicts a positive result with
probability [cos(6©/2)]°. According to quantum theory,
the results of any spin measurements that were performed
before the operation of state preparation (non-M measure-
ments) are irrelevant for predicting the result of M. Thus
the quantum state description is predictively complete with
respect to the set M of post-preparation measurements.
(This property of rendering previous information irrele-
vant could well be regarded as part of the definition of a
state preparation.) Neither of these examples is directly
relevant to Bell’s theorem, and they are mentioned only to
illustrate the concept of predictive completeness. -

To apply this concept to the spin correlation experiment,
we take M to be a spin-component measurement on one of
the particles. The class of non-M measurements includes
all spin measurements on the other particle at a spacelike
separation from the M measurement. (The non-M class
may be larger than this, but we shall not need to consider
any other members.) In order for predictive completeness
to hold, the following condition is necessary:

P(xpxg|dy dgSLSrA)

= z P(xp xg|d;,dg,S.,SkA)

xR

XY P(xpxgld,,dg,SL.SeA). 4)

xL

This states that, after specification of the state parameters
(d, ,d,,S; Sk A) for the apparatuses and the two-particle
system, the R-measurement result x; gives no further in-
formation about x, and vice versa. The factoring of the
joint probability distribution for (x, ,x ) into a product of
a function of x; and a function of x is the mathematical
expression of the absence of predictively relevant informa-
tion. It may indeed be possible that the outcome x5 of an
R-measurement may enable one to make inferences about

the properties of particle L. But this information is already
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contained in the state description if it is predictively com-
plete."* ,

Notice the difference between strong locality (2) and
predictive completeness (4). If one were to ignore the con-
ditional state parameters, then both equations would mere-
ly assert that the joint distribution p(x.,Xx ) is equal to the
product of the marginal distributions of x; and x; sepa-
rately. But the conditional parameters are essential. The
right-hand side of (2) possesses a locality property: one
factor depends upon d, but not dg, while the other factor
depends upon d, but not dg . But in Eq. (4) each factor
may depend upon both d; and dg ; the orientation ofthe R
device is allowed to influence the probability of a particular
outcome of an L measurement. So predictive completeness,
as embodied in Eq. (4), does not imply either strong local-
ity or simple locality.

Strong locality is logically equivalent to the conjunction
of simple locality and predictive completeness. It is ob-
vious, by substituting Eq. (2) into (1) and then (2) into
(4), that strong locality implies both simple locality and
predictive completeness in the context of our spin correla-
tion experiment. Conversely, if we postulate (1), it is ob-
vious that (4) can be rewritten as (2), hence simple local-
ity plus predictive completeness implies strong locality.

Since simple locality (1) is a requirement of special rela-
tivity, which is supported by an impressive body of experi-
mental evidence, it is natural to infer that the violation of
Bell-type inequalities (by quantum mechanics and in actu-
al experiments) is due to the failure of predictive complete-
ness. :

VI. EINSTEIN, PODOLSKY, AND ROSEN

Anyone familiar with the famous paper, “Can Quan-
tum-Mechanical Description of Physical Reality Be Con-
sidered Complete?,” by Einstein, Podolsky, and Rosen,
(EPR),'® cannot fail to notice a similarity between our
conclusion (relativistic locality holds but predictive com-
pleteness fails) and theirs [locality implies that the quan-
tum mechanical (QM) state description is incomplete].
However, one must look beyond the mere words ““locality”
and “completeness” in order to assess the relationship
between their conclusion and ours, since the definitions of
those terms may be different in different contexts.

EPR propose a necessary condition for a theory to be
complete:

“every element of the physical reality must have a coun-

terpart in the physical theory.”

They give a sufficient condition for identifying an element
of reality:

“If, without in any way disturbing a system, we can pre-

dict with certainty (i.e., with probability equal to unity)

the value of a physical quantity, then there exists an ele-
ment of physical reality corresponding to this physical
quantity.”

Then by applying a form of the locality principle to a
correlated two-particle system, they deduce that there are
elements of reality corresponding to both of two noncom-
muting observables. Since no quantum state can describe
exact values for noncommuting observables, their argu-
ment demonstrates a contradiction between locality and
completeness. Believing that their locality condition was
unassailable, EPR concluded that the quantum mechani-
cal description of physical reality is not complete.

Because Bell’s theorem has cast doubt on locality (more
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precisely, oh strong locality), the EPR argument loses
much of its force. To save it requires, at the very least, an
analysis of their form of the locality principle, in order to
determine whether it is equivalent to strong locality, rela-
tivistic locality, or perhaps neither.

We shall not undertake such an analysis here. Instead we
shall show, independently from the EPR argument, that
their conclusion is valid: QM is not complete in the sense
defined by EPR. To do this we shall show that in the con-
text of the spin-correlation experiments the EPR complete-
ness condition implies the weaker condition of predictive
completeness. Since the latter has been shown to fail, so
must the former.

To show that EPR completeness implies predictive com-
pleteness, we apply the EPR definitions to our spin-corre-
lation experiment. Let the pair of spin one-half particles be
in the singlet state of zero total spin. If the orientations of
the measuring devices are the same, d; = dy, then the two
spins will exhibit perfect anticorrelation.'® If we measure
oz*dr tobe + 1, for example, we may predict with prob-
ability unity that o, -d; must have the value — 1. But this
prediction was made without in any way disturbing parti-
cle L, sincethe R deviceis at a spacelike separation from it,
therefore o, «d, is an element of reality according to the
EPR criterion. Since we could just as well have chosen a
different orientation, d;, for the R device, we infer that
o, +d; is an element of reality for all orientations of d, . By
interchanging the roles of L and R, we deduce similarly
that oz+d; is an element of reality for all orientations of
dy . A state description that was EPR complete would have
to predict a value for each of these elements of reality, i.e.,
for every spin component of particles L and R. Because
these are all of the measurable variables of our system, such
a state description would be deterministic.'” We have al-
ready noted that a deterministic state description necessar-
ily possesses predictive completeness, therefore, we have
shown that EPR completeness implies predictive com-
pleteness for our experiment. It is also apparent that pre-
dictive completeness is a much weaker condition than EPR
completeness, since Eq. (4) may hold for a purely probabi-
listic state description which does not prescribe definite
values for any elements of reality.

We have thus vindicated the conclusion of EPR that the
QM state description is not complete by showing that it
fails to satisfy the weaker and more general property of
predictive completeness. However, whereas EPR believed
that a complete state description was possible, the implica-
tion of Bell’s theorem and the analysis in this paper is just
the opposite. For we have shown that any conceivable state
description (denoted by A in the preceding sections) that
satisfies simple locality and predictive completeness will
obey Bell-type inequalities which are violated by both QM
and experimental results. Thus the “incompleteness” is, in
some sense, a property of nature.

VII. CONCLUSION

We have shown that strong locality, which is the form of
locality used to derive Bell’s theorem and its generaliza-
tions, is logically equivalent to the conjunction of simple
locality and predictive completeness of the state descrip-
tion. Simple locality is the condition that a spin correlation
measurement must obey in order to satisfy the relativistic
prohibition of superluminal communication. Quantum
mechanics obeys simple locality, so there is no contradic-
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tion between quantum mechanics and special relativity.
The violation of Bell-type inequalities by quantum me-
chanics is due to the failure of predictive completeness.

The notion of completeness introduced by Einstein, Po-
dolsky, and Rosen is stronger than predictive completeness
and implies it. Thus we have vindicated the EPR conclu-
sion that the quantum mechanical description of reality is
not complete, and have done so independently of the details
of their argument. But contrary to the belief of EPR, it is
not merely the quantum mechanical state description that
is “incomplete” (in their sense, and in our more general
sense). Rather it is the case that any state description that
yields agreement with the statistical predictions of QM, in
particular those that violate Bell’s inequalities, must be “in-
complete.” Since the violation of Bell’s inequalities has
been confirmed by experiment, this “incompleteness” is, in
some sense, a property of nature.

'J. S. Bell, Physics 1, 195 (1964).

*One may wonder why so few physicists are apparently concerned about
(or even aware of) such a crisis. It is certainly not because of any simple
or well-known resolution of the apparent contradiction. A more likely
explanation is to be found in the fact that Bell’s theorem was originally
presented as a contradiction between quantum mechanics and a certain
class of hidden-variable theories. Although more general derivations of
Bell’s theorem have freed it from any assumption of hidden-variable
models, the more profound significance of Bell’s theorem has not yet
become common knowledge.

3Some papers that argue this point in greater detail are W. B. Rolnick,
Phys. Rev. 183, 1105 (1969); G. A. Benford, D. L Book, and W. A.
Newcomb, Phys. Rev. D 2,263 (1970); D. J. Thouless, Nature 224, 506
(1971). A bibliography about tachyons is given by L. M. Feldman, Am.
J. Phys. 42, 179 (1974).

‘A referee has pointed out that the probability for the outcome of two
measurements can depend upon the order in which they are performed,
but our notation does not take this into account. This defect can be
remedied by regarding the device state S; as including the specification
of the time at which the L measurement takes place, and similarly for
Sz. (The L and R devices could be preprogrammed to automatically
operate at those times. If the L and R devices are far enough apart the
preprogramming of them could, in principle, be separated by a spacelike
interval.) Our argument then proceeds without modification.

5For a more detailed proof see J. P. Jarrett, Nous 18, 569 (1984), where
the converse of this theorem is also proved.

SHere and in what follows, while it is assumed that experimenters are able
to prepare systems in the desired states, the inability to do so in practice
does not undermine the result to be shown, which has to do with what
would be possible “in principle.”

"It might be emphasized here that E cannot perform measurements on
some of the R particles in the ensemble and decline to do so for the rest.
His choice is to perform a d, component spin measurement on all of the
R particles or to perform no measurements on any of them.

81f we were to require that E; be able to infer Ep s decision with absolute
certainty, then this argument would break down; but surely such a de-
mand is unreasonable. Either E performs his measurements or he does
not, and the probability for the given outcome of £, ’s measurement
depends on which of these is the case. That one might never have conclu-
sive experimental evidence (i.e., zero uncertainty) for the value of a
theoretical probability should not be taken as a challenge to the relativis-
tic basis of simple locality.

°One further qualification ought to be mentioned here. Since the back-
ward light cones of the relevant events do overlap, it is at least possible
that some unknown, but nevertheless perfectly “local,” mechanism pro-
duces precisely the same correlation between Ez’s decision and E,’s
measurement outcomes as would have occurred had there actually been
a superluminal physical disturbance. In the absence of any positive
grounds for taking such ‘“‘conspiratorial” possibilities seriously, how-
ever, we do not take them to compromise the argument given here in any
significant way. We do acknowledge, however, that because the viola-
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tion of (1) does not actually entail the superluminal transport of matter
energy, such a violation need not correspond to a violation of relativity
theory. In this case, however, it is not clear that the violation of simple
locality could be understood at all.

1The sense of the word “determinism” used here is that the state descrip-
tion at any instant of time should determine the results of all measure-
ments that may be performed at that time. This notion of a deterministic
state is distinct from the question of evolutionary determinism (the state
at one time determining the states at future times). Bell’s original paper
(Ref. 1) and the pedagogically simple derivations by N. D. Mermin,
Am. J. Phys. 49, 940 (1981); Phys. Today 38 (4), 38 (1985) in effect
assume underlying deterministic states.

"The most recent experiment is by A. Aspect, J. Dalibard, and G. Roger,
Phys. Rev. Lett. 49, 1804 (1982).

2Gtrictly speaking, there are two logical possibilities: (a) an underlying
determinism does not exist; (b) deterministic hidden variables exist and
violate relativistic locality, but we are unable to measure or manipulate
them and so cannot employ them to transmit superluminal signals. But
(b) is based on an unreasonably narrow interpretation of special relativ-
ity (SR). It is generally believed that SR governs nature itself and not
merely our (temporary and variable) knowledge of nature. For exam-
ple, speculations about the unobserved (and perhaps unmeasurable)
interactions between quarks invariably assume that SR applies to any
such interactions. One may question whether it is meaningful to suppose
the existence of something that is in principle unobservable, in which
case one is led back to (a).

*Some examples of papers using the equivalent of our strong locality
condition are J. S. Bell, in Foundations of Quantum Mechanics, Proceed-

ings of the International School of Physics ‘Enrico Ferm?’, edited by B.
d’Espagnat (Academic, New York, 1971), Course 49, p. 178, Eq. (4.2);
). F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974), Egs. (2)
and (2a). J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881
(1978) give careful discussions of several derivations of Bell’s theorem.
None of these references distinguish between strong locality and the
requirements of special relativity. However, a distinction between two
kinds of locality is made by H. P. Stapp, Found. Phys. 15, 973 (1985).

4 Although the derivation of Bell’s theorem and of the various results in
this paper do not require consideration of the time dependence, if any, of
the state parameter A, the interpretation of Eq. (4) and its intuitive
plausibility may require further elaboration if A is time dependent. Such
matters are discussed in detail by J. P. Jarrett, Ann. NY Acad. Sci. 480,
428 (1986).

15A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

1We are assuming here the correctness of the quantum theoretical predic-
tions of correlations that follow from conservation of angular momen-
tum.

"To forestall the resurrection of an old misinterpretation, we emphasize
that the EPR argument does not postulate determinism. It is only be-
cause of the simple character of our model that all of its measurable
variables are identifiable as EPR elements of reality. Thus an EPR com-
plete state description for this model must be deterministic, in the sense
that the state at time ¢ determines the results of any measurements that
may be performed at that time. Of course nothing is said about the
deterministic or indeterministic character of evolution (i.e., whether or
not the state at one time determines the states at future times).
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The maximum work obtainable from a finite heat source and finite heat sink, initially at respective
temperatures T, and 7 _, is determined as a function of the temperature ratio 7= T_/T, and
the heat capacities of the source and sink. The thermal efficiency with which this work is delivered
is found to be well approximated by 77* = 1 — 7'/2 for 7>0.1, independent of the source and sink
heat capacities. It is noted that #* occurs in other contexts for which work or power output is
optimized, and is a surprisingly “universal” efficiency. A reversible polycycle that delivers the
maximum work using an ideal gas working fluid is found to exist only if the heat capacity of the
heat sink exceeds that of the working fluid. An example of a finite source/sink combination from
which work can be generated is an enclosed gas, divided in half by a partition with a small,
controllable trap door operated by a Maxwell’s demon. If the demon opens and closes the door
selectively, so as to achieve a temperature difference across the partition, the analysis here enables
an estimate of the subsequent maximum work that can be generated and the efficiency of this
generation. Numerical estimates show that, as might be expected, such a demon is a rather

ineffective work producer.

I. INTRODUCTION

How much mechanical work is “available” for delivery
via the transfer of heat from a finite heat source and the
rejection of a portion of that heat to a sink at a lower tem-
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perature? This question has been addressed by a variety of
authors under the assumption that the sink is a heat reser-
voir with an infinite heat capacity.! Such studies help ex-
plain, among other things, why the available work in a
flame, which has finite heat capacity, is only a fraction of
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