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Abstract We propose a simpler  model in order to 
facilitate calculations of the Feynman  paradox concern- 
ing the angular momentum of a static electromagnetic 
field. When  an angular  momentum is attached to the 
static electromagnetic field the  paradox disappears. The 
storage of the angular  momentum in the field during 
the assembling  process is also analysed, 

1. Introduction 
It is well known  that,  for  systems of particles  satis- 
fying  Newton’s  second  and  third laws, the  time 
derivatives of the  total  linear  and  angular  momenta 
are  equal,  respectively,  to  the  net  external  force 
and  torque.  For  isolated  systems we conclude  that 
the  total  linear  and  angular  momenta  are  con- 
served.  However,  these  conservation laws can  be 
considered  as  independent  principles  for  isolated 
systems,  owing  to  their  relationship with the  sym- 
metries of the  system. 

If the  internal  forces of the  systems  are of an 
electromagnetic  nature,  Newton’s  third law no 
longer  holds,  and, if the  conservation  principles of 
linear  and  angular  momenta  (and  energy)  must 
remain  valid,  these  magnitudes  must  be  assigned  to 
the  interaction field,  giving rise  to  the  Poynting 
theorems in electrodynamics  and  to  the  formalism 
of the  energy-momentum  tensor  (Mbller  1972). 

However, in the  static  electromagnetic  case, it 
seems ‘intuitively’ difficult to assign linear  and  an- 
gular  momenta  to fields that  do  not  change with 
time.  It will be  helpful  for  pedagogical  reasons  to 
analyse  some  examples in order  to  show  the  coher- 
ence of the  general  theory.  Some of them  have 
been given by Romer  (1966,  1967),  Pugh  and  Pugh 
(1967)  and  Corinaldesi  (1980).  The  recent  experi- 
ments of Graham  and  Lahoz  (1980)  have  revital- 
ised the  subject. 

In this  article we make  a  detailed  study of a 
simplified model of the  Feynman  paradox  (Feyn- 
man  1964). 

The  paradox is presented in 32. In 33 the  elec- 
tromagnetic  angular  momentum is computed;  the 
fact  that  this  momentum is transferred  to  the  disc 

Laburpena Eremu elektromagnetiko estatikoen 
momentu angeluarrari buruzko  Feynman-en paradoxa- 
ren  kalkuluak errazteko, eredu sinplifikatu  bat aurkez- 
ten da. Horrelako eremuei momentu angeluarra egokit- 
zen bazaie, era kuantitatiboan ikusten  da paradoxa de- 
sagertu egiten dela. Dispositiboaren eratze-prozesuan 
zehar, momentu angeluarra eremuan nola  metatzen  den 
ere aztertzen da. 

when  the  current falls off is easily checked.  Finally, 
$4 is devoted  to  a discussion emphasising  that  the 
electromagnetic  angular  momentum  does  not 
satisfy the  superposition  principle. 

2. Feynman  paradox:  simplified  version 
Let us consider  a  thin  circular  plastic  disc of radius 
a lying  on  the XY plane of a  reference  frame,  such 
that its only  allowed  motion is rotation  about  the 
OZ symmetry  axis.  At  the  centre of the  disc is a 
small  hole in which a  small  circular  ring is placed 
centrally so that it is free  to  move with respect  to  the 
disc. 

Let us assume  that  the  ring is made of a  super- 
conducting  material  and  that  a  constant  current of 
intensity Z is flowing in it, giving  rise to  a  magnetic 
moment m = mk, k being  the  unit  vector  along  the 
0 Z  axis. The  ring is to  be  assumed small enough  to 
be  considered  point-like. 

A  charge q is located  at  the  point  with  coordi- 
nates (a, 0,0)  on  the  edge of the disc. This system is 
initially  static:  the fields do  not  depend  on  time, 
and  there  are  no  forces  on  the  charge  or  the  ring. 

Let us assume  that  the  magnetic  moment  starts 
decreasing slowly at  the small rate m =dm/dt, 
owing  to,  for  instance,  a  small  increase of tempera- 
ture;  this gives rise  to  the  appearance of a  non-zero 
resistivity in the  ring.  We  shall  accept  that  this 
process is slow enough  to  neglect  radiation  and 
relativistic  and  retarded  effects. 

The  electric field induced by the  changing 
magnetic field acts  on  the  charge,  causing  the  disc 
to  rotate.  The  vector  potential A created by the 
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ring  at a point r is, according  to  Panofsky  and 
Phillips  (1975), 

169 

When m changes,  the  induced  electric field E = 
-aA/at has a tangential  component,  at  the  point 
where  the  charge is, given by 

The  torque  exerted by the  electric  force  along  the 
0 2  axis is 

such  that  the  angular  momentum of the  disc  when 
the  magnetic  moment  has  fallen  to  zero is Lzk, 
where 

But, if ‘initially’ the  angular  momentum of the 
system is zero  and  must  be  conserved,  the  disc  must 
remain  static.  This is in brief the  essence of the 
paradox  proposed by Feynman. 

3. Explanation of the paradox 
It  can  be  argued  that  at  the  beginning  the  angular 
momentum  associated  with  the  charge  carriers of 
the  superconducting  ring  must  be  taken  into  ac- 
count.  Stedman  (1981)  has  remarked  that  this is the 
case in some  actual  experiments,  such  as  that of 
Graham  and  Lahoz  (1980).  However, in our  model 
this is not  relevant,  since it has  to  be  compensated 
by  an  external  torque  on  the  ring in order  to  leave 
the  ring  at  rest.  There is another  basis  on which to  
reject  this  interpretation:  we  can, in fact,  change 
the sign of the  charge  and  reverse  the velocity of 
the  charge  carriers  without  modifying (4), but 
changing  the  angular  momentum of the  carriers. 
Similarly, in more  general  terms,  we  can  change  the 
charge-mass ratio of the  carriers.  Thus, in princi- 
ple,  we  neglect  the  angular  momentum  contribution 
of the  charge  carriers in order  to give  an explana- 
tion of the  paradox. 

The principle of angular  momentum  conservation 
can still hold if the  electromagnetic field in vacuum 
has  an  associated  angular  momentum with respect 
to  the  origin given by 

where S = (l/po)E x B is the  Poynting  vector  and c 
is the  speed of light in vacuum.  At  the  end of the 
process,  when m = 0, L,, is also  null,  since  the  only 
remaining fields are  those  created  by  the  moving 
charge  whose  evolution is governed  by  the  Lorentz 
equation, which excludes  the  self-terms of the 

Poynting  vector  (and  also  the  remaining  self-terms 
of the  energy-momentum  tensor); in order  to  take 
these  into  account,  use  has  to  be  made of the 
Lorentz-Dirac  equation. 

Because B = V  X A, (5) can  be  rewritten  as 

r x [ E x ( V x A ) ] d V .  
/R (6) 

Using  the  vector  identities 
C x ( V x D ) + D x ( V x C ) = ( V . C ) D + ( V . D ) C  

+ V * T  (7) 
r x V * T = V . R  (8) 

where 

T,, =(C.D)S , , - (C ,D ,+C,D, )  

and 
R ,  = EF‘x~T,, 

Eikl being  the Levi-Civita completely  antisymmetric 
tensor,  and  using  Gauss’s  theorem in differential 
form,  (6)  can  be  expressed  as 

L,,= jR3 ( r x p A ) d V + E O   [ ( V * A ) r x E ] d V  
/R 

+cOJR3 V - Q d V .  

Here p is the  charge  density  and 

The  vector  potential A given by (1) is di- 
vergenceless,  since it  satisfies the  Coulomb  gauge, 
and  the  second  term in (9) vanishes.  By’  Gauss’s 
theorem,  the  third  term in (9) appears as 

L 3  

V * Q d V =  lim d S - Q  (1 1) 
R-x [(R) 

where S(R) is the  sphere of radius R centred  at  the 
origin.  It is easy to  see  that  this  integral  vanishes 
because Q falls off as R-3  while d S  increases as R‘, 
when R goes  to infinity. 

In  our  problem p = q8‘3’(r - a ) ,  8(3)(r-a)  being 
Dirac’s  delta  function,  where a is the  charge  posi- 
tion  vector,  and  then 

L,,= L3 ( r x p A ) d V = q  
( r ~ A ) ~ ? ( ~ ) ( r - a ) d V  

= qa x A ( a )  (12) 
5R 3 

i.e. 

which coincides  with (4). 
In  the  quasi-static  limit,  the  linear  momentum 

associated  with  an  arbitrary  electromagnetic field 
can  be  written,  according  to  Calkin  (1966), in the 
form 
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.-=IR3 E O ( E X B ) d V = j R 3   p A d V  (14) 

which according to (12) could be interpreted as 
being PA, the linear momentum density in quasi- 
static  situations. But this interpretation is wrong as 
far as angular momentum is concerned, because the 
surface integral (11) does not in general vanish. In 
our particular case it has vanished because, when R 
goes to infinity, A  decreases as R-’. 

Furry (1969) has calculated the angular momen- 
tum of a system consisting of a small magnet of 
magnetic moment m, placed at  the origin, and a 
point-like  charge  q located at r = a. He makes use 
of an expansion in terms of Legendre polynomials, 
giving a result which reduces to (13) when m = mk 
and a = ai. To arrive  at (1 2)  from (9) we have made 
use of a way of reasoning like that of Panofsky 
(1975). 

In the preceding calculus, the ring has been 
considered strictly point-like because of the factor r 
in expression (5). Otherwise, in order  to compute 
the linear  momentum, the exact form of the fields 
in the neighbourhood of the ring must be taken 
into  account, as has been remarked by Furry 
(1969). 

4. Comments and discussion 
One could object that, if there were present only a 
charge or only a magnetic dipole, the angular 
momentum of the corresponding  electromagnetic 
field would be zero; and even if both parts were 
present, it would also be null because of the ‘super- 
position principle’. 

However, the superposition principle does not 
apply here, since Poynting’s vector and the elec- 
tromagnetic energy-momentum tensor are not 
linear in the  total  electromagnetic field, and thus 
this principle does not hold for the electromagnetic 
angular  momentum. Another intuitive way  of con- 
vincing oneself of this and of the result (4) is to 
follow the assembling process of the system, in a 
similar way to  that developed by Calkin (1966)  for 
the electromagnetic  linear  momentum. 

In fact,  let us assume we have initially the ring 
and charge infinitely far apart, so that no angular 
momentum exists, and we move the charge from 
infinity to the disc edge  at  a  constant  speed along 
the OX axis. The charge  creates  a magnetic field 

which is null on the OX axis, and in particular  at 
the point where the ring is, so that no torque is 
acting on it.  However,  the charge at the point x will 
be affected by a magnetic force according to 

It is interesting to observe that in the charge-ring 
interaction Newton’s third law does not hold. 

In order  to move the  charge  at  a  constant speed, 
some  external  force must be applied on it, F,,, = 
-Fm, and its torque with respect to the origin will 
be 

since r = xi. 
When the charge has reached the point ai, ac- 

cording to the principle that the external torque is 
equal to the time derivative of the  total angular 
momentum,  there is stored in the electromagnetic 
field  an angular momentum 

which coincides with (13). 
It should be  remarked  that (17) is independent of 

U, justifying the assumption that the charge stops 
when it arrives at  the disc. 

Finally, the result (17) is independent of the way 
of assembling the system, if radiation is neglected, 
as  can be shown by means of the formalism of 
conservation laws expressed in terms of the energy- 
momentum tensor. 
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