
Measuring the Perceived Difficulty of a Lecture
Using Automatic Facial Expression Recognition

MPLab TR 2008-1

Jacob Whitehill, Marian Bartlett, and Javier Movellan

Machine Perception Laboratory
University of California, San Diego

La Jolla, CA 92093, USA

Abstract. We present results from a pilot study on the utility of au-
tomatic facial expression recognition for inferring important state about
the individual student. In particular, we show how facial expression can
be effectively used to estimate the level of difficulty, as perceived by an
individual student, of a delivered lecture. We also show how facial ex-
pression data can be used to predict the individual student’s preferred
rate of curriculum presentation at each moment in time. On a recorded
video lecture viewing task, training on less than two minutes of recorded
facial expression data (half the total lecture length), our system pre-
dicted the subjects’ self-reported difficulty scores with mean accuracy
of 42% (Pearson correlation) and the subjects’ preferred viewing speed
with mean accuracy of 29%. Our techniques are fully automatic and have
potential applications both for intelligent computer teaching aids as well
as for teaching by humans in standard classroom environments.

1 Introduction

One of the fundamental challenges faced by teachers - whether human, com-
puterized, or robot - is determining how well his/her students are receiving a
lecture at any given moment. Each individual student may be content, confused,
bored, or excited by the lesson at a particular point in time, and one student’s
perception of the lecture may not necessarily be shared by his/her peers. While
explicit feedback signals to the teacher such as a question or a request to repeat
a sentence are useful, they are limited in their effectiveness for several reasons:
If a student is confused, he may feel embarrassment in asking a question. If the
student is bored, it may be inappropriate to ask the teacher to speed up the
rate of presentation. Some research has also shown that students are not always
aware of when they need help [1]. Finally, even when students do ask questions,
this feedback may, in a sense, come too late - the student may already have
missed an important point, and the teacher must spend lesson time to clear up
the misunderstanding.

If, instead, the student could provide feedback at an earlier time, perhaps
even subconsciously, then moments of frustration, confusion, and even boredom



could potentially be avoided. In a computerized setting such as a recorded video
lecture or an interactive tutoring system, the viewing speed of the instruction
could be adjusted to increase speed when the student’s understanding is solid
and to slow down during an unfamiliar topic.

In this paper we explore one such kind of feedback signal based on automatic
recognition of a student’s facial expression. Recent advances in the fields of
pattern recognition, computer vision, and machine learning have made automatic
facial expression recognition in real-time a viable resource for intelligent tutoring
systems (ITS). The field of ITS has already begun to make use of this technology,
especially for the task of predicting the student’s affective state (e.g., [2, 3]). This
paper investigates the potential usefulness of automatic expression recognition
for two different tasks: (1) measuring the difficulty as perceived by students
of a delivered lecture, and (2) determining the preferred speed at which lesson
material should be presented. To this end, we conducted a pilot experiment in
which subjects viewed a video lecture at an adjustable speed while their facial
expressions were recognized automatically and recorded. Using the “difficulty”
scores that the subjects report, the correlations between facial expression and
difficulty, and between facial expression and preferred viewing speed, can be
assessed.

The rest of this paper is organized as follows: In Section 2, we briefly describe
the field of automatic facial expression and the particular automatic expression
recognition system that we will employ in our study. Section 3 describes the
experiment we perform on human subjects, and Section 4 presents the results.
We finally make concluding remarks and suggest other applications of expression
recognition to ITS.

2 Facial Expression Recognition

Facial expression is one of the most powerful and immediate means for humans
to communicate their emotions, cognitive states, intentions, and opinions to
each other [4, 5]. In recent years, researchers have made considerable progress in
developing automatic expressions classifiers [6–8]. Some expression recognition
systems classify the face into the set of “prototypical” emotions such as happy,
sad, angry, etc. [9]. Others attempt to recognize the individual muscle movements
that the face can produce [11] in order to provide an objective description of the
face. The best known psychological framework for describing nearly the entirety
of facial movements is the Facial Action Coding System (FACS) [10].

2.1 FACS

FACS was developed by Ekman and Friesen as a comprehensive method to
objectively code facial expressions [10]. Trained FACS coders decompose facial
expressions in terms of the apparent intensity of 46 component movements, which
roughly correspond to individual facial muscles. These elementary movements
are called action units (AU) and can be regarded as the “phonemes” of facial



expressions. Figure 1 illustrates the FACS coding of a facial expression. The
numbers identify the action unit, which approximately corresponds to one facial
muscle; the letter identifies the level of activation.

Fig. 1. Example of comprehensive FACS coding of a facial expression. The numbers
identify the action unit, which approximately corresponds to one facial muscle; the
letter identifies the level of activation. Permission to reproduce pending.

2.2 Automatic Facial Expression Recognition

We use the automatic facial expression recognition system presented in [11] for
our experiments. This machine learning-based system analyzes each video frame
independently. It first finds the face, including the location of the eyes, mouth,
and nose for registration, and then employs support vector machines and Gabor
energy filters for expression recognition. The system recognizes AUs 1 (inner
brow raiser), 2 (outer brow raiser), 4 (brow lowerer), 5 (upper eye lid raiser), 9
(nose wrinkler), 10 (upper lip raiser), 12 (lip corner puller), 14 (dimpler), 15 (lip
corner depressor), 17 (chin raiser), 20 (lip stretcher), and 45 (blink), as well as
Smile.

3 Experiment

The goal of our experiment was to assess whether there exist significant corre-
lations between certain AUs and the perceived difficulty as well as the preferred
viewing speed of a video lecture. To this end, we composed a short composite
“lecture” video consisting of seven individual movie clips about a disparate range
of topics. The individual clips were excerpts taken from public-domain videos
from the Internet. In order, they were:



1. An introductory university physics lecture (46 seconds).
2. A university lecture on Sigmund Freud (36 seconds).
3. A soundless tutorial on Vedic mathematics (46 seconds).
4. A university lecture on philosophy (20 seconds).
5. A barely audible sound clip (with a static picture backdrop) of Sigmund

Freud (16 seconds).
6. A teenage girl speaking quickly while telling a humorous story (21 seconds).
7. Another excerpt on physics taken from the same source as the first clip (15

seconds).

Representative video frames of all 7 video clips are shown in Figure 2.

Fig. 2. Representative video frames from each of the 7 video clips contained in our
“lecture” movie.

3.1 Procedure

Each subject performed the following tasks in order:

1. Watch the video lecture. The playback speed could be adjusted contin-
uously by the subject. Facial expression data were recorded.

2. Take the quiz. The quiz consisted of 6 questions about specific details of
the lecture.

3. Self-report on the difficulty. The video lecture was re-played at a fixed
speed of 1.0.

For watching the lecture at an adjustable speed we created a special viewing
program in which the user can press Up to increase the speed, Down to decrease
the speed, and Left to rewind by two seconds. Rewinding the video also set the
speed back to the default rate (1.0). Subjects practiced using the speed controls
on a separate demo video prior to beginning the actual study. Subjects then
reported the perceived difficulty of the lecture on an integral scale of 0 to 10 on
a frame-by-frame basis by pressing the A (harder) and Z (easier) keys. In this
study, each subject performed the speed-tuning during their first viewing of the



lecture, and they labeled the difficulty during their second viewing. During the
first viewing, the subject’s facial expressions were also recorded. For automatic
face detection and expression recognition we used the system described in [11].

In order to encourage subjects to use their time efficiently and thus to avail
themselves of the speed control, we informed them prior to the first viewing
that they would take a quiz afterwards, and that their performance on the quiz
would be penalized by the amount of time they needed to watch the video. We
also started a visible, automatic “shut-off” timer when they started watching
the lecture to give the impression of additional time pressure. In actuality, the
timer provided enough time to watch the whole lecture at normal speed, and the
quiz was never graded - these props were meant only to encourage the subjects
to modulate the viewing speed efficiently.

After watching the video and taking the quiz, subjects were then informed
that they would watch the lecture for a second time. During the second viewing,
subjects could not change the speed (it was fixed at 1.0), but they instead rated
how difficult they found the movie to be at each moment in time. This method of
audience response labeling was originally developed for consumer research [12].
Subjects were told to consider both acoustic as well as conceptual difficulty when
assessing the difficulty of the lecture material. Facial expression information was
not collected during the second viewing.

In our experimental design, the fact that subjects adjusted the viewing speed
of the lecture video while viewing it may have affected their perception of how
difficult the lecture was to understand. Our reason for designing the experiment
in this way was to capture both speed control and difficulty information from
all subjects. However, we believe that the ability to adjust the speed of the
lecture would, if anything, cause the self-reported Difficulty values to be more
“flat,” thus increasing the difficulty of the prediction task (predict Difficulty
from Expression).

3.2 Human Subjects

Eight subjects (five female, three male) participated in our pilot experiment.
Subjects ranged in age from early 20’s to mid 30’s and were either undergraduate
students, graduate students, or administrative or technical staff at our university.
Five were native English speakers (American), and three were non-native (one
was Northern European, one was Southern European, and one was East Asian).
Each subject was paid $15 for his/her participation, which required about 20
minutes in total.

None of the subjects was aware of the purpose of the study or that facial
expression data would be captured. Prior to starting the experiment, subjects
were informed only that they would be watching a video at a controllable speed
and that they would be quizzed afterward. They were not informed of rating the
difficulty of the experiment or of watching the video at second time until after
the quiz. Due to the need to manually adjust the viewing angle of the camera for
facial expression recording, it is possible that subjects inferred that their facial
behavior would be analyzed.



3.3 Data Collection and Processing

While the subjects watched the video, their faces were analyzed in real-time using
the expression recognition system presented in [11]. The output of 12 action unit
detectors (AUs 1, 2, 4, 5, 9, 10, 12, 14, 15, 17, 20, 45) as well as the smile detector
were time-stamped and saved to disk. Speed adjustment events (Up, Down, and
Rewind) were used to compute an overall Speed data series. A Difficulty data
series was likewise computed using the difficulty adjustment keyboard events (A
and Z). Since all Expression, Difficulty, and Speed events were timestamped, and
since the video player itself timestamped the display time of each video frame, we
were able to time-align pairwise the Expression and Difficulty, and Expression
and Speed time series, and then analzye them for correlations.

4 Results

We performed correlation analyses between individual AUs and both the Diffi-
culty and Speed time series. Local quadratic regression was employed to smooth
the AU values. The smoothing width for each subject was taken as the average
length of time for which the user left the Difficulty value unchanged during the
second viewing of the video.

For each subject there were a number of AUs that were significantly cor-
related (we required p < 0.05) with perceived difficulty, and also a number of
AUs correlated with viewing speed. For each subject we report the 3 AUs with
the highest correlation magnitude for each prediction task (Difficulty, Viewing
Speed). Results are shown in Tables 1 and 2.

Correlations between AUs and Self-reported Difficulty

Subject 3 AUs Most Correlated with Reconstruction
Self-Reported Difficulty Correlation (r)

1 4 (+.42), 9 (-.40), 2 (-.35) 0.84
2 5 (-.34), 15 (-.30), 17 (-.25) 0.73
3 20 (+.66), 5 (+.45), 45 (-.42) 0.76
4 20 (-.51), 5 (-.47), 9 (-.47) 0.85
5 10 (-.31), 12 (-.28), 2 (-.25) 0.60
6 5 (-.65), 4 (-.55), 15 (-.49) 0.88
7 17 (-.53), 1 (-.47), 14 (-.43) 0.74
8 17 (-.22), 5 (+.19), 45 (+.18) 0.56

Avg 0.75

Table 1. Middle column: The three significant correlations with the highest magnitude
between difficulty and AU value for each subject. There was substantial inter-subject
variability on which AUs correlated with perceived difficulty. No AU was correlated
(with the same +/- sign) over all subjects. Right column: the overall correlation between
reconstructed and self-reported Difficulty value, when using linear regression over the
whole set of AUs.



Correlations between AUs and Viewing Speed

Subject AUs Correlated with
Viewing Speed

1 9 (+.29), 45 (+.26), 4 (-.24)
2 17 (+.21), 2 (-.16), Smile (+.16)
3 14 (-.46), 2 (-.44), 1 (-.42)
4 20 (+.42), 2 (-.37), 17 (-.36)
5 1 (-.21), 20 (-.20), 15 (-.19)
6 9 (-.48), 4 (+.40), 15 (+.39)
7 17 (+.35), 14 (+.34), Smile (+.32)
8 15 (-.53), 17 (-.47), 12 (-.46)

Table 2. The three significant correlations with the highest magnitude between pre-
ferred viewing speed and AU value for each subject.

These results indicate substantial inter-subject variability on which AUs cor-
related with perceived difficulty, and on which AUs correlated with viewing
speed. The only AU which showed both a significant and consistent correla-
tion (though not necessarily in the top 3) with difficulty was AU 45 (blink) - for
6 out of 8 subjects their difficulty labels were negatively correlated with blink,
meaning these subjects blinked less during the more difficult sections of video.
This finding is consistent with evidence from experimental psychology that blink
rate decreases when interest or mental load is high [13, 14]. To our surprise, AU
4 (brow lowerer), which is associated with concentration and consternation, was
not consistently positively correlated with difficulty.

4.1 Reconstructing Difficulty from Expression Data

To assess how much overall signal is available in the AU outputs for predicting
self-reported difficulty values, we performed linear regression over all AUs and
targeted Difficulty labels as the dependent variable. The correlations between
the reconstructed difficulty values and the self-reported values are shown in right
column of Table 1. A graphical representation of the reconstruction for Subject
6 is shown in Figure 3. The average correlation between reconstructed difficulty
values and self-reported values of 0.75 suggests that AU outputs are a valuable
signal for predicting a student’s perception of difficulty. In Section 4.2 of this
paper, we extend this analysis to the case where a Difficulty model is learned
from a training set separate from the validation data.

4.2 Learning to Predict

Given the high inter-subject variability in which AUs correlated with difficulty
and with viewing speed, it seems likely that subject-specific models will need to
be trained in order for facial expression recognition to be useful for predicting
difficulty and viewing speed. We thus trained a linear regression model to pre-
dict both Difficulty and Viewing Speed scores for each subject. In our model we
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Fig. 3. The self-reported difficulty values, and the reconstructed difficulty values com-
puted using linear regression over all AUs, for Subject 6. All data were used for training
the regression model.

regressed over both the AU outputs themselves and their temporal first deriva-
tives. The derivatives might be useful since it is conceivable that sudden changes
in expression could be predictive of changes in difficulty and viewing speed. We
also performed a variable amount of smoothing, and we introduced a variable
amount of time lag into the entire set of captured AU values to account for a
possible delay between watching the video and reacting to it with facial expres-
sion. The smoothing and lag parameters were optimized using the training data,
as explained later in this section.

For assessing the model’s ability to learn, we divided the time-aligned AU
and Difficulty data into disjoint training and validation sets. These sets consisted
of alternating “bands” of time, as illustrated in Figure 4.

Each band was taken as 1
16 th the total video viewing time for each subject.

One can argue that the data near the interface of neighboring training and
validation bands are not independent. In addition, the temporal smoothing we
employed, since it may draw from information in a neighboring validation band,
does not completely respect the separation of training and validation data. Given
the very limited amount of data available to our system (< 4 minutes for both
training and validation), however, we considered this method a reasonable first
approach to assessing the ability of AUs to predict Difficulty values.

Given the set of training data (AUs, their derivatives, and Difficulty val-
ues over all training bands), linear regression was performed to reconstruct the
Difficulty values in the training set. A grid search over the lag and smoothing
parameters was performed to minimize the training error. Given the trained
regression model and optimized parameters, the validation performance on the
validation bands was then computed. This procedure was conducted separately
for each subject.
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Fig. 4. An illustration of the interleaved training and validation time bands. The x-axis
labels in the graph are approximate - the actual width of each band was 1
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viewing time of the subject.

Results are shown in Tables 3 and 4. For all subjects except Subject 2, the
model was able to predict both the validation Difficulty and Viewing Speed
scores with a correlation significantly (p < 0.05) above 0. Upon inspecting the
AU available for Subject 2, we noticed that the face detection component of the
expression recognition system could not find the face for a large stretches of time
(the subject may have moved his head slightly out of the camera’s view); this
effectively decreases the amount of expression data for training and makes the
learning task more difficult.

The average validation correlation across all subjects between the model’s
difficulty output and the self-reported difficulty scores was 0.42. This result is
significantly above 0 (Wilcoxon sign rank test, p < 0.05), which would be the
expected correlation if the expression data contained no useful signal for dif-
ficulty prediction. The average validation correlation for predicting preferred
viewing speed was 0.29, which was likewise significantly above 0 (Wilcoxon sign
rank test, p < 0.05). While these results show room for improvement, they are
nonetheless an encouraging indicator of the utility of facial expression for diffi-
culty prediction, preferred speed estimation, and other important tasks in the
ITS domain.

Learning to Predict Difficulty: Validation Accuracy

Subject

1 2 3 4 5 6 7 8 Avg

Correlation r 0.41 0.28 0.44 0.85 0.27 0.56 0.32 0.24 0.42
Table 3. Validation accuracy (correlation) of predicted to self-reported difficulty
scores.



Learning to Predict Viewing Speed: Validation Accuracy

Subject

1 2 3 4 5 6 7 8 Avg

Correlation r 0.23 0.04 0.32 0.11 0.44 0.28 0.19 0.68 0.29
Table 4. Validation accuracy (correlation) of predicted to actual viewing speeds.

5 Conclusion

Our empirical results indicate that facial expression is a valuable input signal for
two concrete tasks important to intelligent tutoring systems: estimating how dif-
ficult the student finds a lesson to be, and estimating how fast or slow the student
would prefer to watch a lecture. Currently available automatic expression recog-
nition systems can already be used to improve the quality of interactive tutoring
programs. As facial expression recognition technology improves in accuracy, the
range of its application will grow, both in ITS and beyond. One particular ap-
plication we are currently developing is a “smart video player” which modulates
the video speed in real-time based on the user’s facial expression so that the rate
of lesson presentation is optimal for the current user.
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