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Superselection Rules for Philosophers

John Earman

Abstract The overaraching goal of this paper is to elucidate the nature of
superselection rules in a manner that is accessible to philosophers of science
and that brings out the connections between superselection and some of the
most fundamental interpretational issues in quantum physics. The formalism
of von Neumann algebras is used to characterize three different senses of
superselection rules (dubbed, weak, strong, and very strong) and to provide
useful necessary and sufficient conditions for each sense. It is then shown how
the Haag-Kastler algebraic approach to quantum physics holds the promise
of a uniform and comprehensive account of the origin of superselection rules.
Some of the challenges that must be met before this promise can be kept are
discussed. The focus then turns to the role of superselection rules in solutions
to the measurement problem and the emergence of classical properties. It
is claimed that the role for “hard” superselection rules is limited, but “soft”
(a.k.a. environmental) superselection rules or N. P. Landsman’s situational
superselection rules may have a major role to play. Finally, an assessment is
given of the recently revived attempts to deconstruct superselection rules.

1 Introduction

At the 1951 International Conference on Nuclear Physics and the Physics
of Fundamental Particles, Eugene Wigner broached the idea that quantum
mechanics (QM) must recognize situations in which the matrix elements of
any observable taken between two states that belong to what would later be
called different superselection sectors are zero. According to Arthur Wight-
man’s recollection (Wightman 1995, p. 753), some members of the audience
were “shocked,” presumably because Wigner’s proposal contradicts (as will
be seen below) von Neumann’s (1932) assumption—an assumption that had
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become accepted by the physics community—that every self-adjoint opera-
tor corresponds to an observable. But not everyone attending the session
understood the implications of Wigner’s idea well enough to be shocked, an
impression that is buttressed by the session summary contained in the con-
ference Proceedings. Wigner’s idea, it was reported, led to new “conservation
laws”:

But, it was asked, don’t these conservation laws have physical
content?

J. R. Oppenheimer: I think that this is a matter of semantics.
It depends on whether you think that you are discovering or de-
scribing something. (Orear et al. 1951, p. 110)

Evidently Edward Teller did not think much of substance was at issue, as
indicated by the use of ‘apropos’ in the summary of Teller’s remarks:

Requiem was read by E. Teller who cited the apropos anecdote of
a candidate for a doctor’s in philosophy who made a statement
presumed to be true. Upon being asked by a professor on the
examining board, “In which universe?”, he responded, “Which
which?” (Orear et al. 1951, p. 110)

One member of the audience, Gian Carlo Wick, not only understood the
implications of Wigner’s idea but was so enthusiastic that he urged Wigner to
publish his arguments and also volunteered to write the first draft (Wightman
1995, p. 753). The following year under the title of “The Intrinsic Parity
of Elementary Particles,” Wick, Wightman, and Wigner (1952) published
the first formal description of superselection rules, together with a proof of
a superselection rule for integer and half-integer angular momentum (later
dubbed the univalence superselection rule or the fermion superselection rule)
and the conjecture of a superselection rule for charge. The ideas, however,
were not entirely novel. For example, David Bohm’s 1951 text Quantum
Theory contains an argument against the coherent superposition of states
with integer and half-integer angular momentum (Bohm 1951, p. 389),!

'Bohm concludes that “a sensible theory could be made for orbital angular momenta, if
the angular momenta were either all integral, or half-integral, but not if both were present
together” (p. 390). The Preface of Bohm’s book states that “Numerous discussions with
students and faculty at Princeton University were helpful in clarifying the presentation”



but this point was not related to a limitation on observables. I suspect
that a careful examination of the literature of the period will reveal many
other precursors for the idea of superselection, but that is another project.
But whatever this project reveals it is worth noting that in the early 1930s
Wigner was already two-thirds of the way to the univalence selection rule.
He had recognized that the time reversal operator R is anti-unitary and that
R? = +1, with +1 for integer and angular momentum states and —1 for
half-integer states (see Wigner 1931, Ch. 20). It is then only a short proof
to show, as was done in the W? paper, that the supposition of a coherent
superposition integer and half-integer states leads to an absurdity.?

Skepticism about particular superselection rules, as well as superselection
rules in general, was expressed in the physics literature as late as 1970.> On
the whole, however, the physics community seems to have quickly accepted
superselection rules as facts of quantum life. But for the most part superse-
lection rules were treated as curious inconveniences—certainly worth noting,
but once noted to be shoved aside to let quantum life proceed per usual. The
rise of the algebraic approach to relativistic quantum field theory (QFT) put
an entirely different complexion on superselection rules: they were not to
be viewed as curious inconveniences but as part of the marrow of quantum
fields. They are, for example, an essential part of the Doplicher-Haag-Roberts
reconstruction of quantum fields from the algebra of observables.*

In the present paper I will not be concerned with such sophisticated mat-
ters. Nor will I comment on such recent developments such as the extension
of the original notion of superselection rules to Bohm-Bell theories (see Colin
et al. 2006) or the implications of superselection rules for quantum informa-

(p. v). Bohm was a colleague of Wightman and Wigner during the years 1947-1950 when
he was an assistant professor at Princeton. It is interesting that Bohm’s argument is
from single-valuedness and that Wightman dubbed the superselection rule at issue the
univalence rule.

2When it was realized that time reversal invariance might not be universally valid, a
different proof using spatial rotations was given; see Hegerfeldt, Kraus, and Wigner (1968)
and Section 12 below. Once again, all of the relevant considerations had been developed
by Wigner in the 1930s.

3See Aharonov and Susskind (1967a, 1967b), Rohlnick (1967), and Mirman (1969,
1970), and Lubkin (1970). A defense of the validity of the superselection rule for charge
was given by Wick, Wightman, and Wigner (1970). The recent revival of the attacks on
superselection rules will be discussed in Section 12.

*See Doplicher et al. (1971, 1974). For an overview of the DHR program, see Halvorson
(2007).



tion theory where it seems that the degree of entanglement is constrained
by superselection rules (see Bartlett and Wiseman 2003) and that the stan-
dard notion of quantum nonlocality has to be modified when superselection
rules are present (see Verstraete and Cirac 2003). My aim is to tackle the
more modest and basic task of elucidating the nature of superselection rules
in a form that does not compromise rigor (at least not fatally) but is ac-
cessible to philosophers of science who are familiar with the basics of QM.
The connections between superselection and some of the most fundamental
interpretational issues is quantum physics are emphasized.

The basic expository device used here is the nomenclature of von Neu-
mann algebras. This apparatus reveals that the use of the term ‘superselec-
tion rule’ in the physics literature is ambiguous among three main senses.
Section 2 exploits von Neumann algebras to state five formulations of su-
perselection rules—SSRI-SSRV—which are provably equivalent and together
constitute what I dub the weak sense of superselection rules. Pains are taken
to clarify the often puzzling statements to the effect that (weak) superselec-
tion rules constitute a limitation on the superposition principle. Section 3
reviews an illuminating necessary and sufficient condition for the existence of
a weak superselection rule—namely, the existence of what Jauch and Misra
dub a supersymmetry. Section 4 distinguishes two further senses of superse-
lection rules—SSRVI-SSRVII—dubbed strong and very strong rules because
very strong = strong = weak, with the arrows not being reversible in gen-
eral. The differences between the three grades of superselection rules are
characterized in various ways. Very strong superselection rules are shown
to be very strong indeed since they imply that the von Neumann algebra of
observables is quite tame—it is simply a direct sum of the Type I factors al-
gebras used in ordinary QM. In Section 5 a necessary and sufficient condition
for the existence of very strong superselection rules is posed in terms of the
hypothesis of commutativity of supersymmetries. An example of how this
condition might fail is given. The issue is both delicate and pregnant with
interpretational significance since it is related to the existence of paraparti-
cles. The connection between superselection rules and gauge symmetries is
sketched in Section 6.

Thus far the focus has been on the task of characterizing the different
senses of superselection rules, without any attempt to explain the origin of
superselection. Section 7 introduces the two main candidates for providing
a systematic derivation of superselection rules, the group theoretic approach
to quantization and the algebraic approach. The remainder of the paper
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concentrates on the latter approach, which is described in some detail in
Sections 8-10. The story is well-known to the mathematical physicists and
philosophers of physics who work with the algebraic formalism, but it only
rarely finds its way in to main line physics texts or the philosophy of science
literature. While generally approving, the version of the story told here also
brings out challenges that have to be met before the algebraic approach can
be said to offer a satisfying explanation of the origin of superselection rules.

Sections 11 and 12 turn to two controversial interpretational issues. The
first concerns attempts to solve the measurement problem and to explain
the emergence of classical properties by appeal to superselection rules. Ex-
tant attempts using “hard” superselection rules are found wanting, while
alternative attempts using “soft” (or environmentally-induced) superselec-
tion rules or else Landsman’s situational superselection rules are found to be
more promising. The second issue concerns the recent revival of attempts to
deconstruct superselection rules. My conviction is that superselection rules
remain unscathed, but there are respectable arguments to the contrary.

Conclusions are presented in Section 13. The list of references represents
only a small fraction of the literature, but it is intended to be representative
enough that the interested reader can locate entry points to the relevant
literature on major subtopics.

The reader is cautioned not to succumb to the illusion that the application
of some high powered mathematics to the topic of superselection means that
the topic itself is under rigorous control; in particular, it is important that the
technical apparatus not be allowed to mask contingent physical assumptions.
The situation was well summarized by Glance and Wightman (1989):

The theoretical results currently available fall into two categories:
rigorous results on approximate models and approximate results
on realistic models (p. 204) ... If there is a moral to the story
it is that the development of physics is often much untidier than
would appear from the philosophy of science books (p. 205).°

Some of the untidiness that goes unrecounted in both physics and philosophy
of science texts will be revealed in Sections 11 and 12.

2 Weak Superselection Rules

T am grateful to a Referee for bringing these quotations to my attention.



The basic mathematical entity to be used here in elucidating the different
senses of superselection rules is a von Neumann algebra 91, a concrete C*-
algebra® of bounded linear operators acting on a Hilbert space’ H that is
closed in the weak topology® or, equivalently,’ that has the property that
(') == M” = M, where “” denotes the commutant.'® When the discussion
turns to the origin of superselection rules (Sections 7-10) is argued that it is
best to view the relevant von Neumann algebra as a representation-dependent
object that arises from a choice of state on a C*-algebra. For present pur-
poses the von Neumann algebra of observables may be thought of as being
generated by the set O of (not necessarily bounded) self-adjoint operators
on ‘H that correspond to genuine physical observables in the intended sense
of quantities that can, in principle, be measured. In more detail, MM(O) =
O", where it is understood that a bounded B commutes with an unbounded
self-adjoint A € O just in case B commutes with every projector in the spec-
tral resolution of A. Defining the algebra of observables generated by O in
terms of the weak closure is physically reasonable since it guarantees that the
desirable condition that any bounded function f(O) of a self-adjoint O € O
is also in the algebra. Of course, the question of whether O is a proper subset
of the self-adjoint operators and, if so, which proper subset is precisely the
issue raised by superselection rules. This question is not being begged; rather
an apparatus is being developed to characterize superselection rules and to
derive necessary and sufficient conditions for the existence of such rules, the
satisfaction of which will entail that O is a proper subset of the self-adjoint
operators.

According to Strocchi and Wightman (1974), a superselection rule in
the broadest sense for a quantum mechanical theory “can be defined as any

6A x-algebra is an algebra closed with respect to an involution A > A — A* € A
satisfying: (A*)* = A, (A+ B)* = A* 4+ B*, (cA)* = ¢A* and (AB)* = B*A* for all
A,B € A and all complex ¢ (where the overbar denotes the complex conjugate). A C*-
algebra is a x-algebra equipped with a norm, satisfying |A*A|| = ||A|® and ||AB]| <
IA]| | B]| for all A, B € A, and is complete in the topology induced by that norm.

"It will be assumed that the Hilbert space is separable. This assumption is used ex-
plicitly or implicitly in some of the key theorems used below.

8 A sequence of bounded operators Oy, Oy, ... converges in the weak topology to O just
in case (¢, Oj1,) converges to (¢, 0v,) for all ¢,,19, € H.

9The equivalence of these conditions is known as von Neumann’s double commutant
theorem.

10That is, if X C B(H) (the algebra of bounded linear operators on H), then the elements
of X’ consists of all of those elements of B(H) that commute with every element of X.



restriction on what is observable in the theory” (p. 2198). In terms of the
above apparatus, this means that 21(Q) is a proper subalgebra of B(H) (the
algebra of all bounded operators on H) and, thus, 9t(O) acts reducibly on
H, i.e. M(O) leaves invariant a non-null proper subspace of H (for future
reference label this notion SSRI).!! By Schur’s lemma SSRI is equivalent to
the condition that 91(Q)’ is non-trivial in that does not consist of multiples
of the identity operator (SSRII). If H; is a subspace of H invariant under
M(O) then Hy := Hi is also invariant under M (O). Thus, H has the direct
sum decomposition H; @ Ha, and each element A € M(O) decomposes into
a direct sum A; @ As. Of course, H; and Hs may be further decomposable,
but in order to avoid technical complications, I will only consider discrete
superselection rules under which ‘H decomposes into H = @&, ‘H; where j is a
discrete index.!?

A third notion of superselection rule (SSRIII) is usually stated in terms of
a limitation on the superposition principle. Here is a sampling of attempted
formulations of the limitation:

A superselection rule acts by “effectively forbidding the superpo-
sition of states” (Bub 1997, p. 212); a superselection rule “exists
whenever there are limitations to the superposition principle ...
that is, whenever certain superpositions cannot be physically re-
alizable (Cizneros et al. 1998, p. 238); a superselection rule
implies that “some linear combination of states ... can never be
physically realized” (d’Espagnat 1976, pp. 56-57); in the pres-
ence of a superselection rule “a vector of Hilbert space which has
components in different [superselection sectors| cannot represent
a physical state” (Roman 1965, p. 32); “Any statement that sin-
gles out certain rays [in Hilbert space] as not physically realizable
is a superselection rule” (Streater and Wightman 1964, p. 5).

The uninitiated reader can be forgiven if she does not know quite what to
make of these assertions. What the authors intend to say can be made clear
with the help a bit of additional apparatus.

!'Reducibility is taken as the criterion of the existence of superselection rules by Emch
and Piron (1963), although they work in terms of a lattice of propositions rather than an
algebra of observables.

12Djirect integral decompositions will be briefly discussed below.



A state w on a von Neumann algebra 9i—or more generally on a C*-
algebra—is a normed positive linear functional w : M — C.1* A normal state
on I is one that is countably additive on families of mutually orthogonal
projection operators in 9.'* A wector state w on M is a state such that
there is a ¢ € H, [|¢|] = 1, with w(A) = (¢, AY) for all A € M. All vector
states are normal, but generally the converse is false. A mized state w is a
state such that there are distinct states wy and wy with w = Aw; + (1 — X)wa,

0 < A < 1. A pure state is a state that is not mixed.

The familiar version of ordinary QM without superselection rules is straight-

forward:

(i) the von Neumann algebra of observables 90t is B(H);
(ii) (a) the pure states on 9 are identical with the vector states; and

(b) the mixed states correspond to non-trivial density operators p (p* # p)
according to the trace prescription w,(A) := tr(Ap) for all A € M;

(iii) the superposition principle holds in following form:

(a) if wy, and w,, are vector states corresponding respectively to 9,1, €
H, then for any oy, € C with |a;| + |as| = 1, there is a vector state
Waieh, +azy, corresponding to a1y + aathy;

(b) if the vector states wy, and wy, are pure states, then so is Wa,y, +asw,}
and

(c) since by (ii)(a) the antecedent of (ii)(b) always holds, wa,y,+asu, 15 &
pure state.

In the typology of von Neumann algebras, the von Neumann algebra of
observables in ordinary QM, B(H), is a Type I factor.’® Outside of ordi-
nary QM more exotic types of von Neumann algebras are encountered. For
example, in relativistic QFT the algebra of observables associated with local
regions of spacetime are generically Type IIL!'® Since the commutant 9 of
a von Neumann algebra 91 is the same type as 9 itself, the commutant of

13That w is positive means that for all A € M, w(A*A) = 0 implies that A = 0.

“E € 9M is a projector just in case it is self-adjoint and idempotent, i.e. E? = E.
Two such projectors E and F' are said to be orthogonal just in case they project onto
orthogonal subspaces of H, in which case EF = FE = 0.

15A factorial von Neumann algebra %R has a center Z(R) :=RN MR’ that consists of
multiples of the identity. A factorial f is of Type I iff it contains minimal projectors. For
a non-factorial R the definition of a Type I is a bit more complicated; namely, R contains
an abelian projector whose central carrier is the identity I. That the projector £ € R is
abelian means that E RE is an abelian algebra. The central carrier C'4 of A € R is the
meet of all projectors F' € R such that FFE = F.

16The distinguishing feature of Type III algebras is that they contain properly infinite
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a Type III algebra is non-trivial, giving a SSRI. But Type III algebras have
features that are inimical to the ordinary talk about superselection rules. For
condition (ii)(a) fails utterly for Type III algebras since there are no normal
pure states on such an algebra and, thus, no vector state on such an algebra
is pure. Condition (iii)(a) continues to hold since it holds for all von Neu-
mann algebras. Condition (iii)(b) is rendered vacuous for Type III algebras
because its antecedent is never fulfilled, and by the same token (iii)(c) is
rendered moot. In sum, Type III algebras entail not just a limitation on the
superposition principle but a complete subversion of it.!”

Typical discussions of superselection rules presuppose additional restric-
tions on the von Neumann algebra of observables that rule out such exotic
cases and, thus, produce stronger senses of superselection rules that will be
examined in subsequent sections. In particular, it is usually assumed that
while (ii)(a) fails, it does not fail utterly since some vector states are pure and
some are not; and more particularly, it is typically assumed that the super-
selection sectors are “coherent subspaces” in that the familiar superposition
principle from ordinary QM holds within each sector. (We will see in Section
4 that this assumption can be proved for very strong superselection rules.)
Under this assumption, a vector state corresponding to a vector belonging
to one of the superselection sectors H; of H = @&, H, is pure state while a
vector state corresponding to linear combinations of vectors from different
sectors is mixed; so (iii)(b) and (iii)(c) sometime hold and sometime fail.!®
The failure of (iii)(b) can be expressed as follows. For any v,, € H,, and
Y, € Hp, m #n, with ||¢,,|| = ||¥,|] = 1, and any «, 8 € C with |a|?+ |5]?
1, set 9 = avy, + B, Then (5, Ap) = [aX(,,, Avs,) + |B(,, Av,)
for all A € M(O) and, thus, the vector state w,, is identical with the mixed
state |a|?wy, + 8wy .

projectors and no finite projectors. For some of the implications for foundations issues,
see Earman and Ruetsche (2007).

1"For a general discussion of the superposition principle in the algebraic formulation of
QM, see Horuzhy (1975).

18The habit, developed from working in ordinary QM, of identifying pure states with
vector states is not easily broken. Witness the exposition of one of the discoverers of super-
selection rules: A superselection rule “means that there exist pure states [sic] described by
a wave function ¥ = a9y +anthy with [o1]? + |azf? = 1, [[iy || = [[¢o]| = 1, and |(1y, ,))
= 0 such that the relative phase of «; and s is unobservable” (Glancre and Wightman
1989, p. 202). I have changed the notation to correct an obvious misprint. Wightman
and Glance go on to say correctly that ¥ may also be defined by a density matrix that
describes a mixed state.



We are now in a position to assess the above quoted claims to the effect
that in the presence of a superselection rule various Hilbert space vectors,
or the rays they determine, are not “physically realizable.” Streater and
Wightman (1964, pp. 4-5) are quite clear what they mean: if ¢ is a non-trivial
linear combination of vectors belonging to different superselection sectors,
then the ray determined by such a 1 is physically unrealizable precisely in
the sense that the projector onto that ray is not an an observable, i.e. is not
an element of 1. This is, of course, correct; but left unqualified it tends to
suggest the unwarranted conclusion that the state w, determined by 1, or
by any other vector in the ray corresponding to 1), is physically impossible
or physically unrealizable. That conclusion could only be correct to the
extent that no mixed state is physically possible or physically realizable.
As for superselection principles “forbidding the superposition of states,” it
is not that taking a linear combination of certain vectors to get another
vector is not a legitimate operation or does not produce a possible state; it
is simply that in the presence of a superselection rule, some vector states
are pure states while convex linear combinations of them are not and, thus,
these linear combinations do not have the properties we expect of genuine
superpositions.'?

Yet a fourth notion of superselection rule—SSRIV—explains the origin of
the term. A conserved quantity in ordinary QM—say, energy for an isolated
system—is said to induce a selection rule in that spontaneous transitions be-
tween states corresponding to different eigenvalues of energy are forbidden.
But, of course, external perturbations acting on the system can engender
transitions between selection sectors. A superselection rule is so-called be-
cause it absolutely forbids transitions between different superselection sec-
tors H; in the following sense: for any A € M(O) and any v, € H,, and
W, € Hy, m #n, , (¥,,, A,,) = (¥,,, AY,,) = 0. If the dynamics of the sys-
tem is a Hamiltonian dynamics and if the (time independent) Hamiltonian
H for a system is a self-adjoint observable, then Schrodinger evolution will
never evolve the state vector from one superselection sector to another and
will always evolve a pure state to a pure state. For if H € O then all of
the projectors in the spectral resolution of H belong to 9M(O) and, thus,
M(O) > V; = e ™ for all t. So (¢,,, Vih,) = 0 for any 1, € H,, and

190ne of the few clear statements in the philosophical literature of the limitation imposed
by superselection rules on the superposition principle comes from van Fraassen (1991, p.
186): “[T]the principle of superposition is curtailed: what looks mathematically like a
superposition of pure states may actually represent a mixed state.”
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Y, € Hy,, m # n. However, if H fails to be an observable, then Schrédinger
evolution can cross superselection sectors and can evolve a pure state into a
mixture. This fact is sometimes exploited in an attempt to solve the mea-
surement problem (see Section 11). The prior issue concerns the assumption
that the dynamics is Hamiltonian. For the case of very strong superselection
rules this assumption can be given a convincing justification (see Section 11).

A fifth notion of superselection rule—SSRV-—says that the relative phases
of superpositions of vectors belonging to different superselection sectors of

@®;H; are unobservable: for ¢, € H,, and v,, € H,, define ¢\ := %(@Um +
e™,,); then if m # n, for all A € M(O) and any i, A € R, (Y57, AYi) =
(W, A,

It is an easy exercise to show that all five notions of superselection rule—
SSRI-SSRV—are equivalent, and the exercise is left to the reader. Individu-
ally and collectively they constitute what I will call the weak sense of super-
selection rule to contrast it with stronger senses to be discussed in Section
4.

It is natural to wonder whether the presence of superselection rules ne-
cessitates a change in Gleason’s theorem which, for ordinary QM, shows that
probability measures are generated by density operators (when dim(H) > 2).
The answer is negative, for if Gleason’s theorem is generalized in the appro-
priate way it holds for practically any von Neumann algebra. A von Neumann
algebra O is determined by its projectors P(M) (i.e. P(IM)" = M). Take a
quantum probability measure for 9 to be a map p : P(IM) — [0, 1] that is
o-additive on mutually orthogonal families of projectors.

Generalized Gleason’s theorem. Let 9 be a von Neumann algebra
acting on a separable H, and let u be a quantum probability
measure on 1. If M does not contain any summands of Type I,
there is a unique normal state w on 9 such that w(E) = u(F)
for all E € P(91).2°

The connection to the usual trace prescription follows from

Lemma 1 (Bratelli and Robinson 1979, Theorem 2.4.21) Let w
be a state on a von Neumann algebra 9 acting on ‘H. Then w is

20See Hamhalter (2003, Ch. 5) for a proof. A von Neumann algebra is of Type I,, if the
unit element can be written as the sum of n abelian projectors.
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a normal state iff there is a density operator p acting on H such
that w(A) = Tr(pA) for all A € M.

Thus, regardless of whether superselection rules are present, the familiar
representation of probability measures by density operators is valid.

3 A Criterion for the Existence of Weak Superselection Rules

As defined by Jauch and Misra (1961), a supersymmetry is a unitary
operator U that is not a multiple of the identity and that commutes with
the set O of all observables. The existence of a supersymmetry provides a
criterion for the existence of weak superselection rules.

Theorem 1. (Jauch and Misra 1961) 9t(O) acts reducibly if and
only if there is supersymmetry U for O.

The proof is straightforward. To show that the existence of a supersymme-
try is sufficient for the reducibility of 9(QO), assume that there is a non-
trivial unitary U € O'. Now the commutant of a set of self-adjoint operators
(bounded or unbounded) is a von Neumann algebra. Hence O’ is a von Neu-
mann algebra. So O = 0" = M(O)’ and, therefore, U € M(O)". This
shows that 9(O)’ is non-trivial and, thus, that 9(O) acts reducibly. The
existence of a supersymmetry is a necessary condition for reducibility since
a von Neumann algebra is generated by its unitary elements (Kadison and
Ringrose 1991, Theorem 4.1.7) and, thus, if 9(O)" is non-trivial it must
contain a non-trivial unitary operator.

To connect the existence of a supersymmetry more directly to the original
meaning of a weak superselection rule—a prohibition on transitions between
superselection sectors—suppose in line with our focus on discrete superse-
lection rules that the supersymmetry U has a pure point spectrum, and for
ease of discussion suppose also that there are exactly two distinct eigenval-
ues. Since the eigenvalues of a unitary operator are complex numbers of
modulus 1, U = ¢/ E, + ¢'2E, where the Ey, are the projectors onto the
corresponding eigenspaces. From the fact that U is a supersymmetry we have
that for all 1,1, € Hand all A € M(O), (¢, Apy) = (U, (UAU*)U,) =
(U, AUY,). Now choose 1, and 1, from the two eigenspaces of U. Then
(Y1, Ahy) = (1y, Ahy)e’P2=#1)  which implies that (i, A,) = 0, ie. a
dichotomous SSRIV holds.
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It may have occurred to the reader to ask why the Jauch-Misra definition
of supersymmetry excludes the possibility that a supersymmetry can be an
anti-unitary operator. A symmetry in QM is often defined as a mapping
rays of H onto rays that preserves transition probabilities. According to a
theorem of Wigner, every such ray mapping can be replaced by a vector
mapping U that is either unitary or anti-unitary.?! Jauch and Misra exclude
the possibility of an anti-unitary supersymmetry with a simple argument that
uses the fact that in non-relativistic QM and relativistic QFT alike, the time
reversal transformation R is always anti-unitary. If U were an anti-unitary
supersymmetry, then RU would also be a time reversal transformation, which
is impossible because the product of two anti-unitary operators is a unitary
operator (Jauch and Misra 1961, pp. 701-702).

In Section 6 it will be argued that a supersymmetry can justifiably be
dubbed a gauge symmetry.

4 Strong and Very Strong Superselection Rules

In Section 2 we saw that SSRI-SSRV are all equivalent to the condition that
the commutant 9" of the von Neumann algebra 91 of observables is non-
trivial. This is compatible with a situation where none of the elements of the
superselection algebra 91U are elements of the algebra 9t of observables or,
to introduce some additional useful terminology, the center of 9, Z(M) :=
M NN, is trivial in that it consists of multiples of the identity operator.
The strong sense of superselection rule—SSRVI—asserts that this possibility
does not obtain and Z(9N) is non-trivial.?> Any Type III factor algebra
provides an example that satisfies the conditions for a weak but not a strong
superselection rule, while a Type III non-factor provides an example of a
strong superselection rule. However, most writers would not cite the latter
an as illustration of a superselection rule, which indicates that what they
have in mind is a still stronger sense of superselection.

21For a rigorous proof, see Bargmann (1964). An anti-unitary U is anti-linear transfor-
mation, i.e. for all ,9y € H and all oy, a2 € C, U(a19); + aotpy) = ajU¢; + a5Uths,
such that (¢q,%,) = (Uty,Utpy). A unitary U is linear, i.e. U1y + agthy) =
a1 Uy + aaUty, and (¢1,9,) = (Uthy, Uhy).

22Sometimes a non-trivial center is taken as the definition of superselection rules; see,
for example, Piron (1976). Speaking of the lattice of propositions Piron says: the system is
classical if the center is whole lattice. “In the pure quantum case [ordinary QM] the center
contains only 0 and /. In physics there exist a large number of intermediate cases where
the center is strictly smaller than the whole lattice but contains nontrivial propositions.
We shall then say that the system possesses superselection rules” (p. 29).
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The very strong sense of superselection rules—SSRVII—requires not only
that Z(901) is non-trivial but also that the superselection algebra is a subal-
gebra of observables, i.e. 9V C 9 and, thus, that Z(M) = M. Note that
requiring 9" C 9 is equivalent to requiring that MV is abelian since abelian-
ness holds just in case M C (M) = M” = M. The abelianness of M’ is
sometimes referred to as the hypothesis of the commutativity of superselec-
tion rules (see Wightman 1959 and 1995). From the point of view of weak
and strong superselection rules, this is indeed an hypothesis in that it is an
additional assumption that does not follow from SSRI-SSRVI. However, from
the point of view of very strong superselection rules it is not an hypothesis
but simply part of the defining condition of the very strong sense.?? As will
be seen below the commutativity of superselection rules implies that the von
Neumann algebra of observables is rather tame—it is a Type I non-factor.?*

Jauch and Misra have provided a necessary and sufficient condition for
the commutativity of superselection rules.

Theorem 2. (Jauch 1960; Jauch and Misra 1961) Let 9t be a von
Neumann algebra acting on H. Then 9 is abelian if and only if
9 contains an abelian algebra subalgebra maximal in B(H).

The sufficiency of the condition is immediate: Suppose that there is a sub-
algebra A C M that is abelian (A C A’) and maximal (A’ C 2A). Then infer
that 9 C A" = A C M. The proof of the converse starts from the obser-
vation that the abelian subalgebras of 91 are partially ordered by inclusion
and then uses Zorn’s lemma to conclude that there is an abelian subalgebra
2 that is maximal abelian in 907, i.e. A’ NM = 2A. That A C I implies
M C A so that Z(M) =MNMCMNA = A But the fact that I
is abelian means that Z(9) = 9 which leads to 9 C A. Consequently,
A CM" =M so that A=MNA =2l

Beltrametti and Cassinelli (1987, Sec. 5.2) take the existence of a com-
plete set of commuting observables to be a sine qua non for QM. And the

Z3For examples where “superselection rule” is taken to mean what is called here a very
strong rule, see Bogolubov et al. (1975) and Wan (1980). Indeed, most texts simply
assume that superselection rules are of the very strong variety.

24There is a direct and easy way to see this. If 9% is abelian then the identity I is
an abelian projector whose central carrier is I and, thus, 9" is Type 1. But for any von
Neumann algebra 9%, It and I’ are the same type. The proof given below leads eventually
to the same conclusion while showing some other useful things along the way.
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existence of such a set they take to be equivalent to the existence of a maximal
abelian von Neumann algebra of observables. Thus, for them the difference
between strong and very strong superselection rules collapses. The opposing
viewpoint is that the validity of the commutativity of superselection rules
is a matter to be decided by nature and not by a prior: reasoning. Later
we will encounter examples where the commutativity of superselection rules
might fail.

The differences between weak, strong, and very strong superselection rules
can be characterized using what Jauch and Misra (1961) call the core €(9)
of the algebra of observables 9: €(M) is defined as the intersection of all
of the maximal abelian algebras contained in 991. In the presence of very
strong superselection rules they show that €(9) = Z(9M) = M’. For weak
superselection rules that are not strong rules, €(9t) = Z(M), but trivially
so since both the core and the center are trivial. For strong superselection
rules that are not very strong, €(9M) # Z(IM) since €(IM) is trivial while
Z(9M) is not.

Another way to characterize the differences between the different strengths
of superselection rules comes from the theory of central decompositions of
von Neumann algebras. For any von Neumann algebra 9 acting on a sepa-
rable Hilbert space H, its center Z(90) determines essentially unique direct
integral decompositions of H and 9 respectively, H = [H(§)du(§) and

&

M = [IM(E)du(€), where p is a central measure.”> We are concerned with
&

the case of discrete superselection rules, so it is fair to assume that the mea-
sure p has discrete support, in which case the direct integral decompositions
become direct sum decompositions H = @©;H; and 9 = @;9M;, where the
range of j may be finite or infinite. The discussion of superselection rules
typically assumes that superselection sectors are “coherent subspaces” of the
Hilbert space, indicating that the form of the superposition principle famil-
iar from ordinary QM holds within the superselection sectors. Under this
assumption the 9M; act irreducibly on their respective selection spaces, i.e.
M; = B(H,) for all j. To see how this assumption fits with the different
strengths of superselection rule, we can appeal to a basic result about central
decompositions:

Theorem 3. (Kadison and Ringrose 1991, Theorem 14.2.4) When

25 “Essentially unique” means unique up to measure zero.
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the central decompositions of ‘H and 91 are discrete, the 9, are
B(H;) iff Z(IM) is maximal abelian in M’ i.e. Z(M)' NI =
Z(IMm).

In the presence of very strong superselection rules, Z(91) is maximal abelian
in MM since Z(M) = M’. Hence, by Theorem 3, M = &;B(H;). The von
Neumann algebra of observables is Type I but non-factorial, which is not very
exotic at least as compared with Type III algebras. All of the projectors E;
from H to the sectors H,; belong to Z(9M), making it possible to define
superselection operators in the sense of self-adjoint operators of the form

T = > r;E;, r; € R. When there are only a finite number of superselection
(all) 5
sectors, T is bounded and 7' € Z(9M). When there are a countably infinite

number of superselection sectors 1" may fail to be bounded, in which case
T ¢ Z(M); but one can still say that T is affiliated with Z(91) in the sense
that all of its spectral projectors belong to Z(9t). Finally, it is worth noting
that when 9 = &,;B(H;), Lemma 1 can be strengthened. In general, every
normal state on a von Neumann algebra is generated by a density operator.
But when 91 is of the form required by very strong superselection rules, then
for any normal state w on 9 there is a unique density operator p that is
reduced by all the H; such that w(A) = tr(pA) for all A € M.

In the case of a weak but not strong superselection rule Z(90) is trivial
and obviously not maximal abelian in 9V and, thus, 9 # &,;B(H;). M is a
proper subalgebra of &, (H;) that fails to contain any of the projectors E;
from H to H; (since any E; it contained would be in Z(9), contradicting
the triviality of Z(9)) and, thus, there is no non-trivial superselection op-
erator affiliated with Z(9t). An example of how this situation might arise is
discussed below in Section 9.

In the case of a strong but not very strong superselection rule, Z(901)
is non-trivial but is properly contained in 9. This does not permit us to
infer in the abstract whether or not Z(91) is maximal abelian in 9t. But
for the desired decomposition of 91 we can reason as follows. Suppose for
reductio that Z(9) is maximal abelian in M and, thus, that MM = &, B(H;).
Then 901 contains a maximal abelian algebra. To form such an algebra, note
that 91 contains the projectors from H onto each of the H;, plus the one-
dimensional projectors that project onto an orthonormal basis for each H;.
The abelian algebra generated by these projections is maximal abelian. Thus,
by Theorem 2, 9 is abelian and a very strong superselection rule obtains,
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contrary to assumption. The upshot is that in the presence of a strong but
not very strong superselection rule 9 # &,;B(H,). As with the previous
case of a weak but not strong superselection rule, 91 is a proper subalgebra
of &;B(H,;). But the case of a strong but not very strong superselection
rule is differentiated from the previous case in that 9t contains some but not
all of the projectors E; from H to H;. There are truncated superselection

operators T'= > r;E; (where the range of j is now restricted to those
(not all) j

E; that lie in ) affiliated with Z(9t). This situation seems rather artificial,
leading one to wonder whether such cases can arise in a physically natural
way and, indeed, whether as a matter of fact or a matter of principle all
(discrete) superselection rules are of the very strong variety, giving rise to the
preferred structure H = @,;H; and M = @;B(H,). A possible example where
a superselection rule is not a very strong rule is provided in the following
section.

5 A Criterion for Very Strong Superselection Rules

The set U of non-trivial unitary elements of (0’ is the set of supersymmetries.
The hypothesis of commutativity of supersymmetries says that U is abelian,
ie. U CU.

Theorem 4. If U is not empty then a very strong superselection
rule obtains if and only if the hypothesis of commutativity of
supersymmetries holds.

Suppose that U is not empty. Then by Theorem 1 a weak superselection
rule obtains and 9(O)" is non-trivial. We have seen that O = Q" =
M(O)’ (see Theorem 1) and, therefore, U comprises the non-trivial unitaries
in M(O)". From U C U’ infer that U” C U'. Furthermore, M = U" since
a von Neumann algebra is generated by its unitaries. Thus, 9" C U’ and
consequently U” C I, i.e. M’ C M and a strong superselection rule obtains.
The argument can be reversed using the fact that the commutant of a set
of unitary operators is a von Neumann algebra and, hence, U’ = U"’, which
follows from the more general fact that if F is a set of bounded operators
acting on a Hilbert space, then F’ is weakly closed.

A possible case where the hypothesis of commutativity of supersymme-
tries is violated is discussed by van Fraassen (1991, Ch. 11). The group
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of permutations of N particles is represented by a group of unitary oper-
ators. In one of its formulations, the postulate of Permutation Invariance
asserts, in effect, that each such permutation operator is a supersymmetry
(van Fraassen 1991, p. 397). But these operators do not commute for N > 3.
However, the case is not straightforward as it may seem. In the following
section a justification will be given for counting supersymmetries as gauge
symmetries. In the present case these gauge symmetries form a group. If it
is not demanded that this gauge group has an action on the Hilbert space,
there is a physically equivalent way of reformulating the problem in which
the commutativity of superselection rules is preserved (see Hartle and Taylor
1969 and Giulini 2003). The details are too technical to review here, but
they hold more than a little physical interest since they are crucial in decid-
ing whether there can be paraparticles which do not obey either Fermi or
bosonic statistics.?

6 Superselection Rules and Gauge Symmetries

Suppose that a supersymmetry (as defined in Section 3) can be labeled a
gauge symmetry. Then Theorem 1 says that weak superselection rules cor-
respond to gauge symmetries, and Theorem 4 says that very strong supers-
election rules hold just in case the gauge symmetries are commutative. The
application of the rubric of gauge is justified if it is agreed that the basic
notion of gauge freedom is rooted in the redundancy of the descriptive ap-
paratus of a theory; that is, a theory displays gauge freedom when the state
descriptions correspond many-one to the same physical state, in which case
the gauge transformations shuttle between the equivalent descriptions (see
Henneaux and Teitelboim 1992). In the present context, this can be made
precise as follows.

In ordinary QM the vectors ¢ and e*®1) are gauge equivalent in that they
correspond to the same physical state in the sense of an expectation value
functional w on B(H). In standard texts on ordinary QM this gauge freedom
is acknowledged by the dictum that physical states correspond to rays in 4.7
In the presence of a superselection rule there is an extra gauge freedom. A
supersymmetry /gauge operator has the form U = 3 y ¢'% E;, where per usual

267f it is demanded that the gauge group have an action on the Hilbert space, then
commutativity of superselection rules fails and parastatistics are precluded; see Galindo
et al. (1962).

2TQOr in more sophisticated language, by the dictum that the state space is the projective
Hilbert space.
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the E; are the projectors onto the superselection sectors of H = @&,H;. Any
two rays generated by the state vectors 1) = Zj ¢, with ¢, € Hj;, and Uy
are gauge equivalent in the sense that they correspond to the same physical
state on the algebra of observables I C @,;B(H;); namely, the mixed state
expectation value functional w = wy = wiry = > |¢j[*wy,;-

Does gauge invariance provide the basis for a general explanation of su-
perselection rules? A potential explanatory scheme would run as follows.
Find that U = ) i e'% E;, where the E; are the projectors onto the H; of
H = &,;H,;, is a supersymmetry/gauge transformation. On the grounds that
a genuine observable must be a gauge invariant quantity, conclude that the
algebra of observables 9 must satisfy UMU ! = 9 and, therefore, that
M C @,;B(H;). The hitch is in the first step: without knowing what the
observables are, how do we “find that” some U is a supersymmetry/gauge
transformation? There may be persuasive considerations that some particu-
lar U (say, spatial rotation by 27) must be a supersymmetry/gauge transfor-
mation, but there is no obvious method that can decide the issue for arbitrary
U without first getting an antecedent grip on what 9 is.

In classical theories one is forced to recognize gauge freedom in order to
avoid indeterminism. For instance, the initial value problem for Maxwell’s
equations for classical electromagnetism does not have a unique solution if
the equations are written in terms of the electromagnetic potentials and if
these quantities are regarded as genuine physical magnitudes. The standard
reaction is to restore determinism by demoting the potentials from genuine
magnitudes to gauge dependent quantities that correspond many-one to the
genuine magnitudes, the electric and magnetic field vectors, for which there
is a well-posed initial value problem. Similarly, in general relativity theory
one is forced to treat diffeomorphism invariance as a gauge symmetry if the
initial value problem for Einstein’s field equations is to have a unique solu-
tion even locally in time. It might seem that the cudgel of determinism is
not available for quantum theories. For if the Hamiltonian for the system is
(essentially) self-adjoint then the time evolute of every vector in the Hilbert
space—regardless of whether or not it has components in different superse-
lection sectors—is uniquely defined for all time; and if the Hamiltonian is not
(essentially) self-adjoint there is no quantum dynamics—unless the bound-
ary conditions for the problem pick out a particular self-adjoint extension,
reverting to the previous case. In fact, however, in the presence of a very
strong superselection rule there is gauge freedom in the definition of the time
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evolution operator. This operator has the form V; = Z e “Hit E; where H; is

J
the Hamiltonian for the sector H;. The H; are defined only up to an additive
real constant ¢; so that V; = Z e #ite'it [); is an equally valid evolution
J

operator. Needless to say, V; and V, evolve vectors corresponding to the same
physical state (expectation value functional) to vectors also corresponding to
the same physical state.

7 The Origins of Superselection

The above discussion was based on the notion of the von Neumann algebra
9N of observables generated by the set O of self-adjoint operators on ‘H that
correspond to genuine physical observables. No attempt was made to say
directly what O and 9t(O) are; rather O was taken as given, () was con-
structed as @”, and then superselection rules of various strengths were char-
acterized in terms of features of M (O). In the absence of a systematic method
for getting a fix on O and M(O), superselection rules can be established ei-
ther by appeal to empirical considerations or by group-theoretic/symmetry
considerations. As an example of the former, in the early days of superselec-
tion rules it was noted that no one has ever succeeded in forming a coherent
superposition of states of different charges. While such failure provides some
evidence for a superselection rule for charge, it can never be definitive—
perhaps the failure to form a coherent superposition is due to our lack of
ingenuity or the crudeness of our experimental techniques. As an exam-
ple of the latter, the superselection rule for integer and half-integer angular
momentum was initially established using symmetry arguments concerning
time reversal invariance (Wick et al. 1951). The argument uses SSRIII and
proceeds via a reductio strategy. Suppose that a state v; of integer angular
momentum could be coherently superposed with a state ¢, of half-integer
angular momentum. Then, assuming that time reversal R is a valid symme-
try, R is an anti-unitary operator and the application of R? to the superpo-
sition of ¢ and 1/, should produce the same physical state. But it doesn’t
because the relative phases of ¢; and 7, are changed since R?* = +1 for
states of integer angular momentum and —1 for states of half-integer angular
momentum. When it was realized that time reversal might not be a valid
symmetry, the univalence superselection rule was reestablished on the basis
of rotational invariance (see Section 12).

Symmetry considerations can be definitive in a way that brute empirical
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considerations can never be, but it is not clear a prior: that they capture all
superselection rules. A guarantee that symmetry considerations do capture
all superselection rules would flow from the doctrine, originally due to Her-
mann Weyl, that quantization is to be pursued by choosing an appropriate
symmetry group and then determining the unitary representations of that
group. This doctrine has been pursued by G. W. Mackey with some success,
but it has never been brought to fruition (see Mackey 1998 for an overview).
For cases that do fall under the doctrine, the derivation of the superselection
rules associated with the relevant symmetry group is discussed Divakaran
(1994).28

The other approach to quantum theory that promises to provide a uni-
form and comprehensive account of superselection rule—and the one that
will the followed here—is due to Haag and Kastler (1964). In this approach
the basic object is neither a symmetry group nor a concrete von Neumann
algebra of operators acting on a Hilbert space H but an abstract C*-algebra
A of operators whose definition does not use or mention Hilbert space. Con-
tact with the Hilbert space apparatus is made by taking a representation
of A, i.e. a *-homomorphism 7 : A — B(H) for some Hilbert space H.
The von Neumann algebra associated with 7 is then m(A)”. Thus, from
the point of view of the Haag-Kastler approach, von Neumann algebras are
representation-dependent objects. How the choices of A and 7 are made will
be discussed below. But first I want to indicate how the algebraic approach
can illuminate superselection rules, especially those of the very strong variety.

8 The Algebraic Approach?

28 An accessible introduction can be found in Giulini (2003). What makes the analysis
complicated is that for many of the symmetry groups encountered in physics, the faithful
unitary representations are projective (a.k.a. ray representations or representations up
to a phase factor). In a projective unitary representation of a group G, U(g1)U(g2) =
v(91,92)U(g1,92), 91,92 € G, where the U(g) are unitary operators and v : G x G —
U(1) (the complex numbers of unit modulus). The multipliers v must satisfy the cocycle
condition ¥(g1,92)7(9192,93) = Y(91,9293)7(92,93). The multipliers y and " are said
to be similar just in case there is an f : G — U(1) such that f(e) = 1 (e being the
identity element of G) and v/(g1,92) = (g1, 92)f(9192) f(g1) " f(g2)~* for all g1,92 € G.
The classification of non-similar multipliers is one of the keys to the superselection rule
associated with G.

290nly rudimentary aspects of the algebraic approach to superselection rules are treated
here. For more advanced information, see Roberts and Roepstroff (1969), Kastler (1990),
and Landsman (1991).
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For ease of presentation I concentrate on the case of dichotomous supers-
election rules. According to the algebraic approach all of the information
about the structure of observables of the system of interest is encoded in a
C*-algebra A, and so all relevant representations will be representations of
the relevant A. A state w on A is said to be normal with respect to a repre-
sentation 7, H, of A if there is a density operator p acting on H, such that
w(A) = Tr(pr(A)) for all A € A. Two representations 7; and 7y are said
to be disjoint just in case the set of mi-normal states is disjoint from the set
of mo-normal states. Coherent superpositions of two states that are normal
with respect to disjoint representations are precluded in the following sense.
Let w;, © = 1,2, be any m;-normal states on A, and let 7 be any representa-
tion of A. If there are vectors ¢, ¢, € H, such that w;(A) = (¢;, 7(A)g;)
for all A € A, then the vector state wg corresponding to the superposition
He > ® = apy + By, |af* +|6]* = 1, is the mixed state |a|*w,, + 3wy,
The converse is also true: if coherent superpositions of a mi-normal state
and a my-normal state is precluded, then 7, and 7 are disjoint.? Together
these two results point to disjointness of representations as the source of the
limitation on the superposition principle.

Respecting the fact that coherent supposition of states on disjoint repre-
sentations (71, H1) and (ma, Ha) of the algebra A are not possible, the von
Neumann algebras 7;(.A)" and 75(A)" affiliated with the representations can
be combined in a direct sum 7;(A)" @ 75(A)” acting on H; @ Hy. Alterna-
tively, the relevant von Neumann algebra can be taken to be ng(A)" where
T1e = w1 @ e is the direct sum representation acting on 'H = H; & Ho.
For arbitrary representations 7wy and s it is always the case that 7T12(A)" -
m1(A)" @ 13 (A)”. In general, however, the inclusion is proper; in particular,
m12(A)" contains the projectors E; from H to H,;, j = 1,2, but it is not
guaranteed that mi5(A)" contains the E;. But for disjoint representations
the inclusion is in fact identity:

Theorem 5. (Kadison and Ringrose 1991, Theorem 10.3.5) The
following conditions are equivalent:

(i) m12(A)" = m1(A)" @ ma(A)"

(ii) the representations 7, and 7y are disjoint.
These conditions hold if and only if E; € m5(A)" and, thus,
Ej € mia(A)" Nmia(A) = Z(m1a(A)").

These results come from a slight extension of Theorem 6.1 of Araki (1999).

30
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For very strong superselection rules we also want the superselection sec-
tors to be coherent subspaces and, thus, m; and w5 should be irreducible.
For irreducible representations 7, and ms, disjointness of representations co-
incides with wunitary inequivalence: there is no unitary map U : ' H; — Hs
such that mo(A) = Uny(A)U~! for all A € A.3! Thus, from the point of view
of the algebraic approach, very strong superselection rules arise from irre-
ducible but unitarily inequivalent representations of the relevant C*-algebra.
Of course, for this dictum to be illuminating it must be accompanied by an
account of how the physically relevant representations arise. This issue will
be taken up in the following section. In the remainder of this section I will
comment on the prior issue of how the relevant C*-algebras are obtained,
and will take up a challenge to the algebraic explanation of the origin of
superselection rules.

There is no extant general account of how to characterize the physically
relevant C*-algebras much less how to explicitly construct them. But there
is a large body of detailed work on the characterization and/or construction
of the algebras for particular cases. And all that can be said without going
into details, which would be inappropriate here, is that in all of the cases
of which I am aware the physical motivations underlying the constructions
are convincing. For an accessible example from QFT, the reader may wish
to consider the construction of the algebra of symplectically smeared fields
for the case of a Klein-Gordon field in Wald (1994). Here I will confine
my remarks to the humbler case of non-relativistic QM where the algebraic
approach might seem to run into problems in accounting for superselection
rules.

The relevant algebra for this humble case would seem to be the canonical
commutation relation (CCR) algebra. Because the CCR cannot be satisfied
by bounded operators, in order to construct a C*-algebra that encodes the
CCR it is necessary to use the Weyl version of the CCR which exponentiates
the momentum P and position () operators to form one-parameter unitary
groups S(s) := e'f’* and T(t) := €@ s, € R. The CCR are then encoded
in the commutation condition S(s)T'(t) = e"'T(¢)S(s).** This concrete form
of Weyl CCR algebra can be replaced by an abstract CCR C*-algebra.??

31 An equivalent characterization of disjoint representations can be given using this con-
cept; namely, two representations are disjoint just in case they do not share any unitarily
equivalent subrepresentations.

32The Weyl CCR entail the familiar CCR but not vice versa.

330n the advantages of the C*-algebra approach is that it is supposed to be representa-
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The Stone-von Neumann theorem shows that all irreducible strongly contin-
uous representations of a finite dimensional Weyl CCR algebra are unitarily
equivalent—in particular, they are all unitarily equivalent to the familiar
Schrédinger representation (see Reed and Simon 1980, Theorem VIII.14).34
It would seem then that all of the physically acceptable irreducible repre-
sentations are unitarily equivalent and, thus, from the point of view of the
algebraic approach, there can be no very strong superselection rules in non-
relativistic QM—which might seem to constitute a reductio of the algebraic
approach to superselection since there are plausible candidates for very strong
superselection rules in non-relativistic QM, the superselection rule for integer
and half-integer angular momentum being one.?

The obvious response comes in parts. First, for a system consisting of a fi-
nite number of spinless point particles a finite dimensional Weyl CCR algebra
is the appropriate C*-algebra, and since there are no unitarily inequivalent
irreducible representations in the offing for this algebra there can be no (very
strong) superselection rules—which seems correct. Second, if additional de-
grees of freedom are added, the relevant algebra will be not be the Weyl
CCR algebra but some other algebra which may admit unitarily inequiva-
lent representations. And contrary to folklore, neither an infinite number
of particles nor an infinite number of degrees of freedom is necessary for the
existence of unitarily inequivalent representations. For example, consider the
mystery algebra 7-algebra generated from the elements A,, A,, A, satisfying
the commutation relations [A,, A, = ihA,, [A,, A.] = ihA,, [A., A,] = ihA,
and the self-adjointness conditions A} = A,, etc. A consequence of these
conditions is that A* := A2 + A2 + A2 = h?a(a + 1), where a may take on
integer and half-integer values. To make a C*-algebra it is necessary to ex-
ponentiate the generators A,, A,, A, along the lines of the Weyl version of
the CCR algebra. For each value of a there are irreducible representations of

tion independent. It is somewhat embarrassing, therefore, that typical constructions of the
C*-algebra version of the concrete Weyl CCR algebra use Hilbert space representations.
However, the embarrassment is overcome by showing that the C'*-algebra is independent
of the representation used in the construction in the sense that unitarily equivalent repre-
sentations lead to the same C*-algebra. For a discussion of these matters, see Baez et al.
(1992, Ch. 5).

34The Stone-von Neumann theorem breaks down for an infinite number of degrees of
freedom—as encountered in QFT and quantum statistical mechanics—and unitarily in-
equivalent representations of the Weyl CCR exist in abundance.

35For an overview of superselection rules in non-relativistic QM, see Cisneros et al.
(1998).
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the (exponentiated) 7-algebra acting on a (2a+1)-dimensional Hilbert space,
and they are all unitarily equivalent. But for any two distinct values of a
these representations are unitarily inequivalent.

Alert readers will recognize that the natural interpretation for “?” in the
mystery algebra is angular momentum, with A,, A,, A, acting as the genera-
tors of spatial rotations. (So as not to make this too obvious I used A and a
rather than the more standard L and ¢.) In that case the physically relevant
C*-algebra will not be the angular momentum algebra per se but the combi-
nation of this algebra and the Weyl CCR algebra with P,, P,, P, interpreted
as the generators of spatial translations. Spatial translations and rotations
do not commute, and as a result there is no longer a superselection rule for
every pair of distinct a values since the spatial translations “mix up” repre-
sentations of the angular momentum algebra labeled by different a values.
However, a dichotomous superselection rule—the univalence rule—survives.
This is seen most easily from group theoretic considerations. The Weyl CCR
algebra has a group structure, and the exponentiations of the angular mo-
mentum operators produces the group of spatial rotations SO(3). Rotations
of 27 do, of course, commute with translations; and the representations of
21 rotations are inequivalent for integer and half-integer angular momentum
states (see Section 12).3¢ On the other hand, it should be emphasized that
it is not given a priori that 7 is angular momentum. A toy example where
A, A, A, are not interpreted as generators of spatial rotations and where
the 7-algebra is the total algebra of observables is given in exercise XIII.15
of Messiah (1962, pp. 579-580). In such a case there is a superselection rule
for each pair of distinct a values—or so the algebraic approach says.

The general challenge to the algebraic approach is to show in detail how
every known superselection rule can be reproduced and, it can be hoped, to
show how new superselection rules can be predicted without, it can again be
hoped, predicting “too many” such rules. I will return to this challenge in
Section 10.

9 More Representation Theory

For any state w on a C*-algebra A there is a representation (m,, H., (),)
called the GNS representation determined by w. €2, € ‘H,, is a cyclic vector,

36Tt is natural to wonder whether the univalence superselection rule survives when the
rotation and translation groups are imbedded in an even larger group—for example, the
Galilean or the Poincaré group. The answer is yes; see below.
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ie. {m,(A)YH,} is dense in H,, and w(A) = (2, 7,(A4)8,) forall A € A. 7,
is the unique, up to unitary equivalence, cyclic representation that preserves
expectation values of the state w. Since every representation of A is a direct
sum of cyclic representations, the GNS representations can be regarded as
the fundamental ones.

Recall our working assumption that the superselection sectors are coher-
ent subspaces. So in the case of dichotomous superselection rules we want
the representations m; and 7, that produce the von Neumann algebras of
observables acting on the selection sectors to be irreducible. A basic fact
about GNS representations is that m,, is irreducible iff w is a pure state. So
choose pure states w; and wy and set 71 = 7, and 75 = 7,,. And for a very
strong superselection rule we want 7, and m,, to be disjoint ( = unitarily
inequivalent since they are irreducible). Now consider the result of taking
the GNS representation of a mixture of disjoint pure states.

Theorem 6. Let w be the mixed state %(wl + ws) where w; and
wy are distinct pure states. Then the following are equivalent:

(i) the GNS representations 7, and 7, are disjoint ( = unitarily

inequivalent).
(ii) 770.)( ) - 7Tw1( ) ( )”7 H T w - Hﬂ-wl @ Hﬂ'w27 and the
projectors E;, j = 1,2 fom H.,., onto HMJ_ are in 7, (A)" N

Tw(A).

All of the ingredients of the proof are in contained in Kadison and Ringrose
(1991, Theorem 10.3.5) and Bratelli and Robinson (1971, Lemma 4.2.8).
Thus, if the relevant von Neumann algebra of observables is 7,,(.A)", where
w is a mixture of disjoint pure states, then there is a very strong superselection
rule.?” The following section will discuss whether this result can be used as
a basis for an explanation of the origin of superselection.

To drive home the point about the importance of unitarily inequivalent
representations, start with the case of ordinary QM where the von Neu-
mann algebra of observables is B(H). Choose vectors 1,1, € H such that
(11,%,) = 0. Construct the density operator o = 1Ey + +E,, where E ”
projects onto the ray spanned by ;. By the trace prescription ¢ determines

3THere the notion is disjointness is extended to states by saying that two states are
disjoint just in case they determine disjoint GNS representations.
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a state w, on B(H) given by w,(A) := tr(pA) for A € B(H); and, of course,
there are vector states wy ~corresponding to the ¢;. Take the GNS repre-
sentations 7y, , 7y,, and 7, of B(H) determined by these three states. my,
and my, are irreducible unitarily equivalent representations. 7, is a reducible
representation that is a subrepresentation of the direct sum representation
Ty, &y, and 7, (B(H))" C 7y, (B(H))" &7y, (B(H))” where the inclusion
is proper; in particular, the projectors from le ® Hr,, onto the selection

sectors are not in 7, (B(H))" N, (B(H))'. So by taking the GNS represen-
tation of a mixed state in ordinary QM we get an artificial example of a weak
superselection rule that is not a strong superselection rule—artificial because
Tw,(B(H))" is not the “correct” von Neumann algebra of observables. What
goes into picking the correct algebra is the topic of the next section.

10 An Explanation of the Origin of Superselection Rules?

The preceding two sections show how the representation theory for C*-
algebras can clarify the mathematical structure of superselection rules. But
does this representation theory offer a satisfying explanation of the origin
of superselection? Strocchi and Wightman (1974) opine that in the Haag-
Kastler algebraic approach, each quantum theory “predicts its own superse-
lection rules” (p. 2198). Here is one explication of what they mean.

Step 1. Choose the relevant C*-algebra A for the system of interest.

Step 2. Identify the class of physically admissible states S on A. Exam-
ples of proposed criteria of admissibility: (a) For a non-interacting scalar
quantum field it has been proposed that admissible states must satisfy the
Hadamard condition that guarantees that an expectation value for the renor-
malized stress-energy tensor of the field can be defined (see Wald 1994). (b)
For quantum fields in general it is widely assumed that an admissible state
satisfies the spectrum condition (energy-momentum operator has a spectrum
confined to the future light cone). (c) The Doplicher-Haag-Roberts selection
criterion requires that an admissible state differs from the vacuum only in a
bounded region of spacetime.

It is at the first two steps that the algebraic approach can join forces with
the group-theoretic/symmetry approach to superselection since the choice of
S and A may be influenced by symmetry considerations. And, of course,
many other considerations may influence the choice. But once Steps 1-2
are completed the superselection sectors are automatically fixed by the next
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three steps.®®

Step 3. The pure states among S determine the admissible irreducible rep-
resentations of A. Partition these representations into unitary equivalence
classes.

Step 4. For present purposes assume that there are a countable number of
unitary equivalence classes. Choose one representation 7;, j = 1,2, ..., from
each class, and form the direct sum representation @;7;.

Step 5. Posit that the relevant von Neumann algebra of observables is
(®,m;)" = @;mi(A)" = ®;B(H,,) acting on ®;H,,.*" Then, as follows
from the above discussion, there is a very strong superselection rule.

If the resulting superselection rule does not accord with intuitions, the alge-
bra of Step 1 or the admissibility requirements of Step 2 can be adjusted.
Such a move threatens circularity unless independent motivations can be
found for the adjustments. But there can be no objection to using a re-
flective equilibrium in making a joint judgment of what counts as a genuine
superselection rule and of how to implement Steps 1 and 2.

It is tempting to venture a justification for the Posit of Step 5:

Step 6. The justification/explanation of the Posit of Step 5 is illustrated for
the dichotomous case and can be generalized to the countable case. Let w;,
J = 1,2, be the disjoint pure states that give rise to the 7; of Step 4. Make
the further posit that the state w of the system is a mixed state obtained
from a convex linear combination of the w;. Then the von Neumann algebra
of observables is 7,(A)”, and by Theorem 6 this is algebra is m, (A)" @
Ty (A)" = B(Hn,, ) © B(H ). 10

This explanation has an as-if quality, and as-if explanations are not explana-
tions. The as-if quality arises from the fact that the best one can say for the
mixed state w is that it is as if the actual state of the system were w. For in
the first place, the choice of the w; in the mixture that defines w involves a

Two

38 “/'W]e will simply use the phrase physically admissible to indicate a state selected
according to some appropriate criteria. The important point is that, once the definition
of physically admissible has been fixed, the superselection sectors of a Haag-Kastler [lo-
cal quantum field theory| are given by the unitarily inequivalent physically admissible
representations of the quasilocal algebra” (Strocchi and Wightman 1974, p. 2198).

39Note that if m and # belong to the same unitary equivalence class, then 7(A)” and
7(A)” are x-isomorphic. Thus, the algebras of observables &,m;(A)” and &,;7,(A)" are
the same.

10GStrocchi and Wightman (1974) do not take Step 6.
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large degree of arbitrariness since different representatives 7; of the unitary
equivalence classes and the states w; that give rise to them could have been
chosen; the von Neumann algebra of observables would be unaffected but the
state @ would be different. And in the second place, even when a choice of
the w; is made, different convex linear combinations will give rise to the same
von Neumann algebra of observables. In addition, the most plausible inter-
pretation of the mixed state w is an ignorance interpretation—the weights of
the linear combination of pure states that defines w represent our ignorance
of which pure state actually obtains. Is it at all plausible that superselection
rules arise because of our ignorance of the actual state of the system? And
do the superselection rules cease to apply when our ignorance is cured?
Failing a convincing a prior: justification, the Posit of Step 5 is open to
various challenges. The first derives from the fact that it accommodates only
very strong superselection rules. This can be taken as a virtue since it is typi-
cally assumed that superselection rules are of the very strong variety. On the
other hand, traditional arguments for superselection often only demonstrate
weak superselection in the sense that some pure states cannot be coherently
superposed, and it is conceivable that this is as strong as superselection gets.
If conceivability is matched by genuine physical possibility, then the propo-
nent of the algebraic approach can backpedal to a weakened version of the
Posit that asserts only that the von Neumann algebra of observables for the
system in question is a subalgebra of @©;m;(A)" acting on @;H,,. But then
the promise of the algebraic approach to provide a uniform and comprehen-
sive account of the origin of superselection is compromised since additional
considerations would need to be brought in to explain which subalgebra of
@®,m;(A)" is appropriate to use. The more sanguine response would seek to
maintain the undiluted Posit. Here is a heuristic argument in support. The
algebra of observables would be a proper subalgebra of &;7;(.A)" if some of
the projectors E; from &;H,, onto the sectors H,, are not properly regarded
as genuine observables—or relatedly, if no self-adjoint operator of the form
T= 3% r;E; r; €R,is properly regarded as an observable—in which case

(all) j
there would either be a weak or a strong superselection rule but not a very

strong rule. But (the argument would go) if unitarily inequivalent repre-
sentations are going to contribute to a genuine superselection rule—even a
weak one—they must be distinguished by some feature that makes for a real
physical difference, and this difference can be expected to provide a basis
for regarding all of the E; as in-principle measurable and, thus, elements
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of the observable algebra. This heuristic argument has some force, but it
assumes what needs to be demonstrated; namely, in every case where extant
arguments establish only a weak superselection rule, there is a physically
motivated C*-algebra A whose admissible unitarily inequivalent representa-
tions ground (by the Posit) the very strong version of the established weak
superselection rule.

Even if all superselection rules are of the very strong variety, there is a sec-
ond challenge to the Posit which questions whether all physically admissible
unitarily inequivalent representations contribute to superselection rules. It
is known, for example, that non-interacting relativistic scalar fields of differ-
ent masses correspond to unitarily inequivalent representations of the Weyl
CCR algebra (see Reed and Simon 1975, Theorem X.46). Presumably all of
these representations are physically admissible, but there is no superselection
rule for mass in relativistic QFT—or at least the heuristic argument for a
superselection rule for mass in non-relativistic QM does not apply in the rela-
tivistic case. For a spinless particle obeying a Galilean invariant Schrodinger
equation, the argument for a mass superselection rule proceeds in reductio
fashion. Assume that there can be a linear superposition of states of differ-
ent masses. Perform a sequence of transformations consisting of a spatial
translation, a Galilean velocity boost, the opposite spatial translation and,
finally, the opposite velocity boost. The resulting state should be the same
as the starting state, but it is not because there has been a change in the
relative phases of the two mass states (see Kaempffer 1965, Appendix 7)."!
This argument no longer applies when the Klein-Gordon equation is substi-
tuted for the Schrodinger equation and Poincaré invariance is substituted for
Galilean invariance (see again Kaempffer 1965, Appendix 7).

One way of deflecting the potential counterexample to the Posit is to
claim that inequivalent representations of the Klein-Gordon field with dif-
ferent masses are representations of different systems, not representations of
different ways of being of the same system. But such a response does not
mesh well with the algebraic approach since different systems should im-
plicate different C*-algebras. Another way of deflecting the example is to
claim that it is not appropriate for testing the Posit; since mass can have a
continuum of values, a superselection rule for mass would have to be of the

41This argument has been labeled heuristic because to bring it into the formalism de-
scribed above would require the introduction of a mass operator for non-relativistic QM.
For how this can be done and the implications for the status of a superselection rule for
mass, see Giulini (1996).
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continuous variety, for which no apparatus has been provided.*? But perhaps
a better strategy for the advocate of the algebraic approach is not to be de-
fensive but to take the offensive and declare victory: declare that the unitary
inequivalence of representations with different mass values proves that there
1s a superselection rule for mass in the case of a Klein-Gordon field; and
more generally, claim that the superiority of the algebraic approach is man-
ifested in the fact that it is able to reveal superselection rules that are not
captured—at least not in any obvious way—by traditional methods which
emphasize group-theoretic/symmetry considerations.

In sum, one of the most attractive features of the algebraic approach
is that it offers a systematic method for deriving superselection rules. But
whether this method can succeed without supplementation of considerations
from outside the approach remains to be seen.

11 Superselection, the Measurement Problem, and Classicality

The father of superselection rules, Eugene Wigner, was not sanguine about
the ability of such rules to resolve the most troubling interpretational issues
of QM.

[T]he so-called superselection rules do limit the absolute gener-
ality of the rule of superposition—they limit it, however, just
enough to impair the mathematical beauty of the general, single
and uniform Hilbert space as a frame for the description of all
quantum mechanical states. They do not seem to alleviate sig-
nificantly the conceptual question raised. (Wigner 1973, p. 370)

The conceptual question referred to is how to interpret a linear combination
of classical states (e.g. “live cat” and “dead cat”). Other authors are more
sanguine; indeed, some see superselection rules as the key to a solution of
the measurement problem and, more generally, to an explanation of how the
classical world we perceive can be reconciled with quantum theory. It is easy
to understand the initial attraction of this idea since (very strong) superselec-
tion rules provide two essential necessary conditions for classical observables:
a self-adjoint operator in the center Z(9) of the von Neumann algebra 9t
of observables is an observable that commutes with all observables, and any
linear combination of vector states corresponding to different eigenvalues of

42Some remarks on the problem with extending the formalism to include continuous
superselection rules are given in Section 13.
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such an observable is equivalent to a mixture over these states. Moreover, in
the case of very strong superselection rules this mixed state lends itself to an
ignorance interpretation since the decomposition into disjoint pure states is
unique.?® (Some authors take these conditions to be jointly sufficient for clas-
sicality; see below). But how to guarantee that the classical observables we
care about are subject to superselection rules? Before turning to this issue,
a comment on the relationship between superselection rules and dynamics is
in order.

Given the assumption, common to all approaches to quantum theory, that
the dynamics is given by an automorphism of the algebra of observables,
superselection rules belong to the kinematic structure of observables; for
the assumption implies that superselection rules must be present ab initio
if they are to be present at all. In general, however, there is no guarantee
that a dynamical automorphism can unitarily implemented by the familiar
Hamiltonian dynamics. But such implementation is guaranteed for the case
of very strong superselection rules, as follows from

Lemma 2 (Emch 1972, p. 157) Let 9% be a von Neumann algebra
acting on H. If 9t has an abelian commutant (as is the care for
a very strong superselection rule) then every automorphism a of

N is unitarily implementable in the sense that there is a unitary
V : H — H such that a(A) = VAV ! for all A € M.

This result generalizes to the case where a; is a strongly continuous one-
parameter group of automorphisms of 9, in which case «; is implemented
by a strongly continuous unitary group V;. By Stone’s theorem, the generator
of the latter is a self-adjoint operator H, the Hamiltonian. Note, however,
that it does not follow that H is affiliated with 9t or that V; € 901, a possibility
that will be exploited below.

One way to guarantee that superselection rules are present in a form that
ensures classicality of macro-observables is the time honored method of theft
over honest toil. To illustrate, suppose that the Hilbert space for a compos-
ite system consisting of an object system (0) and a macroscopic measuring
apparatus (M) is the tensor product space H, ® Hys. The classical observ-
able we care about for M is the pointer observable P whose eigenvalues
Po, p1, ... correspond to the macroscopically distinct pointer positions on the

43The importance of the uniqueness is emphasized by Landsman (1995).
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dial of the apparatus. We can try to guarantee classicality by postulating
that Hy = @©,;H,; where the superselection sectors H; are the eigenspaces
of P. But this postulation does not mesh well with the usual story about
measurement, which has it that a measuring apparatus functions by inter-
acting with the object system so as to establish a correlation between the
target observable of the object system and the pointer positions of the ap-
paratus. For an ideal non-disturbing measurement this means that if ¢; and
), are respectively the eigenstates of the target observable** and the pointer
observable P, then the evolution of the composite system is such as to take
the initial state ¢; ® ¥y (o being the ready state corresponding to the null
pointer position pg) to ¢; ®1J; in a finite time. Thus, if the object-apparatus

system state vector is initially Zk arpr @ U, it evolves in a finite time to

Zk arpr @ V. By the postulated superselection structure, this latter state
has exactly the interpretation needed to resolve the measurement problem
since it is equivalent to a mixture over the correlated object-apparatus states
0, @V, with mixture weights |a;|?, and these mixture weights lend themselves
to an ignorance interpretation.

Unfortunately, this story stumbles at the first step when the Hamiltonian
H is an observable, for then the state vector cannot evolve from one superse-
lection sector to another. Thus, an advocate of the superselection account of
measurement must exploit the loophole mentioned above that H ¢ O. This
is done explicitly by Wan (1980). The general sentiment in the philosophi-
cal community is that the price is too high (see Hughes 1989, Sec. 9.7 and
Thalos 1998).1°

The price might be worth paying if there were any plausible way to get
the macroscopic superselection rules via honest toil rather than theft. Ac-
cording to the algebraic approach the toil would take the form of showing
how the values of the superselected quantity corresponds to unitarily in-
equivalent representations of the appropriate C*-algebra of observables. An

44TFor sake of simplicity the object observable is assumed to have a pure discrete and
non-degenerate spectrum.

45There is also another worry. The superselection sectors for the measurement apparatus
are not just superselection sectors for pointer position but for all the other quantities that
are subject to (very strong) superselection rules. Thus, as the state vector moves from
a sector corresponding to the null pointer position py to a sector corresponding to, say,
pointer position pi5, the values of all of the other superselected quantities must change,
which is contrary to everything that is believed about superselection
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example of how this might happen for a literally infinite quantum system
was sketched by Bub (1988). In this example the measurement apparatus
is supposed to consist of a doubly infinite linear array of spin % particles.
The macro-observable of “pointer up (down),” corresponding to all but a
finite number of the particles having spin up (down), obeys a superselection
rule because the values “up” and “down” characterize unitarily inequivalent
irreducible representations of the infinite dimensional spin } algebra.’® Of
course, treating the apparatus as an infinite system involves an idealization,
and the macro-superselection rule that rests on this idealization could be dis-
missed as an artifact of the idealization. To the contrary, Bub (1988) takes
the idealization as essential in that the determinatness of maco-properties
requires it. I am against putting any ontological weight on the idealization
at issue for two reasons. First, the claim of essentiality is undermined by
other solutions to the measurement problem and other accounts of the emer-
gence of classical properties that do not rely on the idealization of infinite
systems. The many-worlds interpretation and the modal interpretation are
two such viable candidates, and a third involving superselection rules of quite
a different stripe will be discussed momentarily. Second, there is an obvious
distinction between harmless and pernicious idealizations that comes into
play in the present case. The distinction is purpose-relative, but that is as it
should be. For purposes of predicting with some stated accuracy the recoil
of a particle that hits a very massive wall, it can be useful but harmless to
idealize the wall as having an infinite mass if the calculation is simplified
by the idealization without compromising the required accuracy of predic-
tion. But for a problem that calls for a prediction of the presence/absence
of a dichotomous feature that is absent for all finite values of a parameter
and present only in the infinite limit, the infinite idealization is pernicious
since it yields a prediction that is contrary to the prediction for any actual
finite system. This is precisely the situation with the presence/absence of
the macro-superselection rule for “pointer up/down.”*

In addition, the idealization of an infinite number of particles makes the
problem of dynamics even more difficult. Bub designs a unitary dynamics
that establishes in a finite time a perfect correlation between the infinite

46Gee Sewell (2002, Sec. 2.3) and Landsman (2007, Sec. 6.4). Bub’s example does not
fit well with the assumptions made here; in particular, the Hilbert space is non-separable
and the commutant of the von Neumann algebra of observables is non-abelian.

47See Robinson (1990, 1994) for more about the status the idealization of infinite systems
as well as superselection solutions to the measurement problem.
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spin system pointer position and the object observable. But his dynamics
is not an automorphism of the algebra of observables, and in fact it maps
elements of the algebra outside the algebra (Landsman 1995, p. 54, note
16). Hepp’s (1972) dynamics for a similar model is an automorphism of the
algebra of observables, but in his model the pointer position registers only
in the infinite £ — oo limit. This idealization is also pernicious for reasons
that are similar to those that make the idealization of an infinite number of
particles pernicious (see Landsman 1995, pp. 55-57).

This is hardly the end of the story. We saw above that an infinite number
of degrees of freedom is not necessary for unitarily inequivalent representa-
tions. So perhaps superselection rules for macroscopic quantities need not
be based on illicit infinite idealizations. Or if an infinite number of degrees
of freedom are needed for such superselection rules, they can be had with-
out idealization in the case of relativistic QFT. But while the possibility
remains open, there is not a single extant, physically interesting example of
how “pointer up (down),” or “live (dead) cat,” etc. correspond to unitarily
inequivalent representations of the relevant C*-algebra of observables.*® This
may reflect our ignorance of how the macroscopic supervenes on the micro-
scopic, or it may indicate that the classicality of the world we observe is not
built into the structure of observables but is something that emerges under
appropriate circumstances.

The decoherence approach attempts to implement the latter option. The
goal is to show how, without assuming ab initio a superselection structure for
the pointer observable of the measurement apparatus, the coupling of object-
apparatus system to an environment induces “effective superselection rules”
(see Zurek 1982). When the environment is taken into account, the initial

object-apparatus-environment state vector Zk g @09 e, evolves in time

t to Zk arp ® U ® ex(t). Tracing out over the environmental degrees of
freedom produces a reduced density matrix for the object-apparatus system
that is approximately p°M (t) ~ Zk | [*E,,, & Eg,—approximately, because
the off-diagonal elements, which are proportional to |(,,(t),e,(t))|, are not
necessarily zero. In toy models |(g,,(t),e,(t))| is shown to rapidly approach
zero, which the advocates of decoherence program take to mean that p°M
“can be thought of as describing the apparatus in a definite [but unknown]

48 At least not if the C*-algebra is the total algebra of observables. But if the relevant
algebra is some subalgebra of the total algebra, the situation changes; see below.
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state” (Zurek 1982, p. 1863). Sometimes this claim seems to have a FAPP
interpretation while other times a literal reading seems to be intended.?’
Even when the environmental states €, (t) are exactly orthogonal, the literal
reading would require a semantics for value assignments that breaks the
eigenvalue-eigenvector link, which asserts that in a given state ¢» € H an
observable has a definite value if and only if ¢ is an eigenstate of the operator
corresponding to said observable. The value assignments provided by some
version of the so-called modal interpretation of QM (see Vermaas 1999) seems
tailor made to complete the decoherence approach. The modal interpretation
preserves the ‘if” part of the eigenvalue-eigenvector link but rejects the ‘only
if’ part. Leaving aside many nuances, the ‘only if’ part is replaced by the rule
that when a quantum (sub)system is described by a reduced density operator
p, the observables determinate on that (sub)system are those that commute
with all of the projectors onto an eigenbasis of p. The viability of such a
semantics is not our concern; rather, the issue before us is the justification
for speaking of an environmentally-induced superselection rule.

The decoherence program acknowledges that Zk app, @ Uy @ex(t) is a
coherent superposition and, thus, that there is no hard superselection rule for
pointer position. In the best case scenario where the environmental states
er(t) become exactly orthogonal at some finite ¢, the “monitoring” of the
object-apparatus system by the environment makes it as if there were a su-
perselection rule for pointer position in the sense that no measurement on
the object-apparatus subsystem alone will reveal interference effects between
the 9. While “environmentally-induced superselection rule” is not an abuse
of language, such a rule is a far cry from original sense of superselection
rule: the presence or absence of the former is relative to the state of the
(sub)system while the latter depends not on the state but only on the kine-
matic structure of the observables. Moreover, the modal semantics (or some
suitable substitute) does as much of the work in explaining classicality as
does the environmentally-induced superselection rule.

An alternative account that uses what might be termed situational super-
selection rules instead of soft environmentally-induced superselection rules
has been proposed by Landsman (1991, 1995). In this scheme, unlike the
decoherence approach, the modal semantics does no explanatory work. In-
deed, Landsman rejects the modal semantics in favor of the rule that all
and only those observables whose operators are self-adjoint and are super-

49FAPP is John Bell’s acronym for “for all practical purposes.”
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selected in the sense that they belong to the center of the von Neumann
algebra of observables have definite values.”® How does this superselection
semantics help to explain the classical world we perceive? If it were safe to
assume that the center Z (1) for the von Neumann algebra of observables 9
for the object-apparatus-environment contained the macroscopic observables
that we perceive as value-definite, the explanation would have a clear path to
success. But the above discussion shows that this assumption is both dubious
in itself and difficult to mesh with a plausible dynamics. Landsman’s insight
is to note that an embodied observer O is localized and, therefore, unable
to measure correlations with systems beyond some characteristic distance.
This means that the effective non Neumann algebra of observables 91, for
such an observer is a proper subalgebra of 91, and it is plausible, Landsman
argues, that Z(9p) contains observables such as pointer position.

This explanation needs to be examined in more detail. There are two op-
tions for applying the superselection semantics. One option is to give pride
of place to a particular algebra—presumably the full von Neumann algebra
of observables M for the object-apparatus-environment—in deciding value-
definiteness. Then, supposing that Z(91) does not contain the observable
for pointer position, the value-definiteness that a localized observer perceives
for this observable is a kind of illusion. I find this result not uncongenial,
but I would want the illusion to be well-founded and not a delusion. It
is hard to see how this can be the case on the chosen option. That the
center of localized Jane’s effective algebra 91, of observables contains the
observable for pointer position explains why she cannot measure anything
that reveals that the pointer does not have a definite position. But it does
not explain why she has the positive (mis)impression that the pointer does
have a definite position much less why she has the positive impression that
it is pointing (say) up when (by hypothesis) it in fact never has a definite
position. Explicitly including the Jane in the object-apparatus-environment
system only deepens the mystery. Supposing that the center Z(91) of the
full von Neumann algebra of observables does not contain the observable for
Jane’s-brain-registers-pointer-up (down), the first option for applying the su-
perselection semantics implies that this observable never has a definite value.
So to explain Jane’s perception that the pointer does have a definite position,
(say) up, requires either that her perception does not supervene on her brain

200r somewhat more liberally, a self-adjoint A can be deemed to have a definite value
if A is affiliated with the center of the algebra of observables.
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states or else that the supervenience does not work in any straightforward
way. The former seems to involve a return of Cartesian dualism while the
latter seems to threaten to make Jane’s perception a delusion.

The second option for applying the superselection semantics is to refuse
to give pride of place to any particular non Neumann algebra of observables
and instead relativize value-definiteness to an algebra. Thus, relative to one
algebra pointer position may enjoy value-definiteness but lack it relative to
another algebra. This relativism is no cause for alarm if the goal is to explain
why observers such as us perceive a classical world and if three conditions
can be established: (i) there is a definite procedure for associating with any
observer O such as us a von Neumann algebra of observables 9o, (ii) for all
O, Z(Mp) contains all of the macroscopic observables that are part of the
classical world picture, and (iii) for all O, 9, is abelian, guaranteeing that
a mixed state on My has a unique decomposition into disjoint pure states.
One worry about (i) is that more natural than an association of an algebra
with an observer is an association of an algebra with a spacetime region that
contains the measurement process used by the observer. That the observer is
a finite embodied creature who interacts with the system for a finite time can
be cashed in by the requirement that the associated spacetime region is an
open bounded set. But now (iii) comes under pressure for local relativistic
QFT since, as mentioned above, for such regions the associated algebra is
typically Type III, not a Type I non-factorial algebra as required by (iii).

Although there are problems to be resolved, Landsman’s approach is suf-
ficiently attractive as an alternative to the decoherence/modal approach that
it deserves more attention than it has received in the philosophical literature
(FAPP, none). There is no quick summary of this section, except to say that if
“superselection rule” is understood in its original sense, then Wigner’s down-
beat assessment of the ability of superselection rules to alleviate the concep-
tual problems of quantum theory seems justified. But environmentally-based
superselection rules—which are not superselection rules—or Landsman’s sit-
uational superselection rules—which are superselection rules for a suitable
subalgebra of the von Neumann algebra of observables—may well provide an
important ingredient in an effective alleviation.

12 Deconstructing Superselection Rules: Reference Frames and
All That

Contrary to the impression that the reader may have gotten from the preced-
ing sections, questions about the existence of superselection rules in general
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and of particular superselection rules are not settled matters in physics. The
reason that the debate is ongoing (and is never likely to be definitively set-
tled) is that it implicates general methodological issues about the nature
of theorizing in physics as well as fundamental issues in the foundations of
physics. My positions on these issues place me on the pro-superselection
rules side of the debate. But equally respectable positions militate in favor
of the anti-superselection rules side. While not trying to hide my prejudices,
I will endeavor to present both sides. An even-handed treatment is hard to
achieve since the argumentation often takes the form of a burden-of-proof
dispute whose outcome is in the eye of the beholder.

The early critics of superselection rules claimed, for example, that the
proof of the superselection rule for integer and half-integer angular momen-
tum is valid only if rotation by 27 is rotation of the entire system, including
any measuring device that is used to probe the object system. But then (the
criticism goes) the proof is physically irrelevant since “any meaningful dis-
tinction between 27 rotations and other rotations must refer to the relative
rotation between one system and another” (Aharonov and Susskind 1967b,
p. 1237). And once the relative nature of the rotation is made clear then 27
rotations do have observable consequences (see Werner at al. 1975 and Klein
and Opat 1976).

This kind of criticism has been revived recently by two groups, one pursu-
ing the decoherence program and the other focusing on quantum information.
The former group finds congenial the conclusion of the early critics that there
are no absolute superselection rules, but it also accepts the challenge of show-
ing how effective superselection rules can emerge through a coupling of the
system to an environment or a measuring device (see Giulini et al. 1995).
The idea that all superselection rules are environmentally induced is an in-
teresting one, but I will have nothing further to say about it here, and I will
concentrate on the Aharonov-Susskind criticism of superselection rules and
the more nuanced version put forward by the quantum information group.

The Aharonov-Susskind criticism produces in philosophers of science a
sense of deja vu because it reawakens debates about whether meaningful
statements about physical systems must be couched in terms of relational
quantities. Without rehearsing this debate (which goes back at least as far
as the 17th century and the Newton-Leibniz dispute over absolute vs. re-
lational theories of space and time), one point of relevance here stands out;
namely, verifiability/falsifiability are not good criteria of physical meaning-
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fulness®!, so even if it granted that all experimentally verifiable/falsifiable
assertions must be formulated in terms of relational quantities (e.g. rotation
of a system relative to a measuring instrument), it does not follow that a the-
ory of the phenomena at issue must employ only relational quantities if it is
to be physically meaningful. To take the most obvious example, conservation
of linear momentum in Newtonian physics derives from spatial translation
invariance, where the translation is a translation of the entire system—not
a relative translation of the system with respect to a measuring instrument.
Naturally, the testing of conservation of linear momentum must use a mea-
suring instrument, and what is measured is a relative quantity that relates
the object system to the measuring instrument; but this does not imply that
the conservation law for linear momentum does not have an exact validity
or that such validity as it possesses must emerge from the interaction of the
system with an environment or a measuring device.

If it were correct, the Aharonov-Susskind critique would not only over-
turn superselection rules but it also threatens to undermine the standard
analysis of familiar symmetries in QM. To take a case in point, the unitary
representation of the rotation group SO(3) is a projective representation
where each element g € SO(3) is represented by an equivalence class U(g)
of unitary operators that differ by a phase factor. For a spinless particle
a “reduction of phase” can be performed by which a member U(g) can be
selected from each equivalence class so as to get a vector representation of
SU(2), the universal covering group of SO(3). SU(2) is a double covering,
leaving a choice of two values, +1 or —1, for U(27); the conventional choice
is +1, but this convention has no physical consequences. For a particle with
spin, the reduction of phase has to be performed differently for the subspace
of vectors corresponding to integer spin and the subspace corresponding to
half-integer spin (see Hegerfeldt and Kraus 1968 and Hegerfeldt, Kraus, and
Wigner 1968). The analysis shows that —1 must be selected for the latter,
resulting in U(27) = E, — E_ where FE, and E_ are respectively the projec-
tors onto the subspaces of integer spin and half-integer spin states.’> Thus,

°LOr at least this is the general consensus in the philosophy of science community. But
in the physics literature one occassionally sees falsifiability used as the touchstone of the
physically meaningful.

52From the discussion in Section 8 it follows that it is more accurate to say that the
univalence superselection rule results from invariance under the Euclidean group, the prod-
uct of spatial translations and spatial translations SO(3); for if SO(3) were the relevant
symmetry group, the superselection rules would be more fine grained. The univalence
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the standard analysis of symmetries in QM leads inevitably to a non-trivial
supersymmetry for particles with spin and, thus, a weak superselection rule.
On the grounds that the difference between integer and half-integer spin is
experimentally detectable, the projectors £, and E_ should count as observ-
ables, producing (at least) a strong superselection rule.

Since Aharonov and Susskind reject the univalence superselection rule
they must also reject the analysis of symmetry outlined above, which pre-
sumably they would do on the same grounds as before, viz. that although
the analysis of spatial rotation symmetry is formally correct it has no phys-
ical significance since rotation through an angle # is physically meaningful
only if # is the angle of relative rotation of two systems. That one of the
arguments for the superselection rule at issue can be deconstructed by de-
constructing the standard analysis of symmetry and invariance in quantum
theories is surely a fact, but the implications of this fact remain inscrutable
until the critics of superselection have spelled out their alternative account
of symmetry and invariance. A possible rejoinder would claim that in QM
the rotation group is given by SU(2) rather than SO(3). This objection
can perhaps be generalized to undermine any superselection rule based on a
symmetry argument, as will be discussed below.

What then is the relevance of the experimental demonstration of the
detectability of 27 rotations by Werner et al. (1975) and Klein and Opat
(1976)? In a word, none. These experiments do not measure the relative
phase of integer and half-integer states. What they show is that splitting
a beam of neutrons and subjecting the two parts of the beam to a relative
phase shift of an odd multiple of 27 results in a detectable Fresnel inter-
ference pattern when the beams are recombined. These are a beautiful ex-
periments, but they concern the dynamical development of a system whose
parts undergo relative rotations. The superselection rule for 27 rotations
concerns the kinematical behavior of observables under non-relative global
rotations. Weingard and Smith (1982) argue that the experimental results
can be understood by positing that the two parts of the neutron beam keep
track of their relative rotations by keeping track of their rotations with re-
spect to their local spaces. If this reading is correct it would undercut the
Aharonov-Susskind assumption that any meaningful notion of rotation must

superselection rule survives under relativization in the sense that it remains a valid su-
perselection rule when the relevant symmetry group is the Poincaré group; see Divakaran
(1994, Sec. 5.2).
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be understood in terms of the relative rotation of two physically embodied
systems; but needless to say, the Weingard-Smith reading is not the only
possible one.

The recent revival of the Aharonov-Susskind critique of superselection by
Bartlett et al. (2006, 2007) picks up on the notion of a “reference frame”
that is implicit in the work of Aharonov and Susskind (1967a, b) and that
is made more explicit in Mirman’s critique of superselection (Mirman 1969,
1970, 1979). Their main claim is that superselection rules apply only when
a reference frame is left unspecified because, they argue, by using an ap-
propriate reference frame any superselection rule can be made to disappear
(Bartlett et al. 2007, p. 575).”® There is an uninteresting sense in which this
claim is undoubtedly true. By Theorem 1 every superselection rule corre-
sponds to a supersymmetry/gauge symmetry. So the claim at issue amounts
to the assertion that the gauge freedom that expresses the a superselection
rule can be killed by the choice of an appropriate reference frame. This is
correct if a choice of a “reference frame” is identified with gauge fixing. Fix
a “gauge frame” by fixing the phase angles ¢, in the supersymmetry/gauge
transformation U = i e'®i E; that expresses the superselection rule and,
presto, projectors onto rays crossing (former!) superselection sectors become
“observables”. But the “observables” produced by gauge fixing are no more
genuine observables than those produced in classical electromagnetism by
imposing on the electromagnetic potentials (say) the Lorentz gauge condi-
tion or those produced in general relativity theory by imposing on coordinate
systems (say) the harmonic coordinate condition. If the essence of a super-
selection rule is a limitation on observables, then that essence has not been
compromised.

Presumably, the response of the critics of superselection rules would be
that what they have in mind is not gauge fixing in this trivial sense of choosing
a mathematical convention but rather gauge fixing in some more substantive
sense that involves the use of an actual or hypothetical physical system as a
reference frame. Again there is a sense in which it is undoubtedly true that
the use of such reference systems can kill any particular superselection rule.
The point can be most clearly illustrated using the algebraic account of the
origin of superselection rules. Start with a C*-algebra A that, by the lights of

53] have no quarrel with the analysis of Bartlett et al. (2006, 2007) of the debate about
the presence or absence of coherence in various experiments in quantum optics. But I am
skeptical that this analysis extends to showing that all superselection can be undermined
by introducing reference frames.
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the algebraic account, grounds a superselection rule because A admits irre-
ducible, unitarily inequivalent representations corresponding to the selection
sectors of said superselection rule. By adding enough additional observables,
the algebra can always be changed to an algebra A that does not admit irre-
ducible, unitarily inequivalent representations corresponding to the selection
sectors of said rule. So if the introduction of reference frames means, or at
least implicates, the unlimited introduction of additional observables, then
any superselection rule can always be undermined by the use of appropriate
frames. Of course, to guarantee that this trick will always work, the notion
of a reference frame must be given an elastic meaning that can be stretched
far beyond its standard meaning of an abstract or materially embodied con-
gruence of timelike curves (the worldlines of the points of the frame) with
respect to which physical processes can be spatiotemporally located. But
this is merely a terminological issue. The substantive issue is which of the
algebras—A vs. A—Ilends itself to the best account of the phenomena in the
domain under examination, and settling this issue is not a straightforward
empirical matter since presumably “best” is to be judged not only empirical
adequacy but theoretical fruitfulness, simplicity, etc. The advocates of a su-
perselection rule have to assume the initial burden of proof. Arguably, they
have discharged this burden in some cases, an example being the Stocchi
and Wightman (1974) proof of a charge superselection rule for QED. In such
cases the burden of proof shifts to the naysayers on superselection.

The above discussion proceeded on the basis of the assumption that a
“reference frame” can always be fully described within a quantum theory
of the domain under investigation. (Bartlett et al. 2006, 2007 accept this
assumption. It is unclear whether or not Aharonov and Susskind would follow
suit.) This assumption can be challenged by the Copenhagean notion that
the application of quantum theory requires the use of essentially classical
reference systems which cannot be treated internally in quantum theory.
I reject this notion, and I believe that everything that can be meaningfully
said about the world can be said within the quantum theory. Admittedly this
stance generates the still unsolved problem of explaining how the classical
world perceived by us is a reflection of the quantum world, a problem for
which superselection rules may or may not hold the key. But it is better to
squarely face problems than to treat them with soothing nostrums, such as
found in Bohr’s philosophy of quantum mechanics.?*

4 For a recent reappraisal of the Copenhagen interpretation of QM, see Landsman (2007,
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The Aharonov-Susskind criticism and its more recent descendants seek
to undermine superselection rules by inflating the algebra of observables. A
different way to undermine superselection rules proceeds by deflation rather
than by inflation. According to the algebraic approach, the superselection
algebra of observables @;7;(A)" acting on @;H, results from taking the
direct sum of the von Neumann algebras determined by (physically admissi-
ble) irreducible unitarily inequivalent representations m;(.A) of the relevant
C*-algebra A. Now we may be unaware of what the actual values of the
superselected quantities are, but known or not these values pick out one of
the von Neumann algebras ma(A)” = B(H,,). And assuming an ignorance
interpretation of a mixed state on @,;7;(A)", the actual state of the system
is a pure state corresponding to a ray in H,,. And rejecting the idea (exam-
ined in the preceding section) that the Hamiltonian is not an observable, the
temporal evolution of any vector in this ray keeps the vector in H,,. Thus,
insofar as describing what happens in the the actual world is the goal, all
of the other superselection sectors are just extra baggage that does no real
work.

This conclusion is very narrow minded. An ordinary selection rule where
the selection sectors are defined, say, by different values of energy is not
rendered moot by being told that in fact the actual world occupies a par-
ticular energy sector. Both ordinary selection rules and superselection rules
concern the possibility structure of observables and states. Hard bitten pos-
itivists may respond that if the status of ordinary selection rules and of
superselection rules turns on mere possibilities rather than actualities, it is
of no importance to physics. On the contrary, theoretical physics is precisely
the business of articulating the possibility structures. Physics differs from
metaphysics by confining itself to articulating the kinematical and dynamical
possibility structures for our world, and among the most important questions
about these structures for quantum physics is whether superselection rules
apply.

The ways of deconstructing superselection rules seem endless. A means
to deconstruction that is perhaps more serious than the ones discussed above
is based on the observation that a superselection rule that derives from sym-
metry group can be made to disappear when the group is enlarged (Giulini
2003). The discussion of the representations of the Galilean group and its
central extension in Giulini (1996, 2003) is particularly effective in casting

Sec. 3).
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doubt on the claim that Galilean invariance provides the basis for a super-
selection rule for mass in ordinary QM. It is far from clear, however, how
effectively the point generalizes to all superselection rules based on a symme-
try. And in any case, as has been urged above, there is no convincing basis for
thinking that all superselection must derive from group theoretic/symmetry
considerations. If the algebraic approach is on the right track, the ubiquity
of cases in non-relativistic QM and relativistic QFT where unitarily inequiv-
alent representations are implicated gives currency to the notion that while
some superselection rules may be vulnerable to deconstruction, superselec-
tion is a robust feature of both non-relativistic QM and relativistic QFT.

13 Conclusion

Three different senses of superselection rules—weak, strong, and very strong—
were characterized using the nomenclature of von Neumann algebras. The
relationships among these three senses can be elucidated using surprisingly
elementary results (the only non-elementary result used here is Theorem 3)
that serve to dispel the exotic air initially surrounding superselection. But
the foundations issues that arise from attempting to understand the origins
and implications of superselection rules are far from elementary, for these
issues go directly to the heart of the meaning of quantization and the struc-
ture and interpretation of quantum observables. I approached these issues
through the lens of the Haag-Kastler algebraic formulation of quantum the-
ory, according to which unitarily inequivalent representations the relevant
C*-algebra hold the key to understanding the origin of superselection rules.
The attractiveness of the algebraic approach is that it offers a uniform and
general account of the origin of superselection rules. But as discussed in
Section 10, the proponents of this account must show that it can stand up to
various challenges. In addition, the group theoretic approach to quantization
and superselection sectors needs to be given its due. As far as I am aware,
there does not exist in the literature a detailed comparison between these two
approaches to superselection; such a comparison should be possible since on
both approaches superselection rules are bottomed on unitarily inequivalent
representations—in the one case inequivalent representations of an algebra,
in the other case inequivalent representations of a group. One obvious worry
about the group theoretic approach is that it appears to be stymied when
there is no non-trivial symmetry group in the offing.

I would also emphasize the need for more discussion of three matters.
The first concerns the merits of the attack on superselection rules originated
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by Aharonov and Susskind and recently revived in various guises. I took a
skeptical view of these attacks, but it must be admitted that the founda-
tions issues raised by the attacks are far from settled. I also took a skeptical
stance on the attempt to base hard macro-superselection rules on the ideal-
ization of infinite systems, but again issues about the role of idealizations in
physics are not easily put to rest. Much more promising in this regard are
Landsman’s situational superselection rules, but the merits of his superse-
lection semantics vs. modal semantics need further adjudication. The third
concerns the desirability of lifting the limitation imposed above to discrete
superselection rules. The obvious suggestion of treating continuous supers-

election rules in terms of the integral decompositions H = [ H(£)du(€) and
®
M = [ M({)dp(€) runs into problems. For instance, if H is not separable
T

then the H() are not subspaces of H, and it is then not evident how to
reformulate some of the core conditions for superselection rules. Moving to
nonseparable Hilbert spaces is an option, but adopting it means that some
of the fundamental results used in characterizing superselection rules—such
as Theorem 3—are no longer available.”
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