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Three different noise moments of field strength, intensity, and their correlations are simultaneously
measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by super-
imposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant
information is obtained via the intensity noise correlation of the output modes. Detection details like
quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in
the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field
strength with intensity noise. A classical inequality including this moment is violated for almost all signal
phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.
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Introduction.—To distinguish nonclassical effects of
light from classical ones and to conceive possible appli-
cations has been a central question of quantum optics for
several decades. It is of fundamental interest if the outcome
of an optical experiment can be interpreted in the frame-
work of classical statistical electrodynamics, or if a
quantum description is necessary. A possible way to certify
nonclassical effects is based on moments, as, e.g., quad-
rature squeezing [2,3] or sub-Poisson statistics [4], each is
based on a single observable quantity.
In contrast, anomalous moments composed of noncom-

muting observables are hard to access in experiments. An
important example is the correlation of intensity and field
strength noise, as it unifies the particle and wave nature
of quantum light. Its measurement was originally proposed
by a homodyne correlation technique with a weak local
oscillator (LO) [5]. Anomalous moments were detected in
resonance fluorescence of a single trapped atom [6]. In this
setting, balanced homodyne detection (BHD) with a weak
LO was conditioned on the detection of a resonance
fluorescence photon. Conditional homodyne detection
was also studied by simulations [7] and experiments [8],
which allows us to observe large violations of a Schwarz
inequality; see also Ref. [9]. However, this approach only
applies to a Gaussian or weak source field and it requires
three detectors. Higher-order correlations of multiple field
modes are accessible by balanced or unbalanced homodyne
correlation measurements [10,11].
In Ref. [1], two detection schemes have been theoretically

analyzed, which use four-port homodyning with comparable
intensities of signal and LO. One of the techniques,
called homodyne intensity correlation measurement, was
introduced in [5]. It was realized only recently to certify

quadrature squeezing in resonance fluorescence light from a
single quantum dot [12]. Negative values of the measured
intensity noise correlation directly uncover nonclassicality of
the signal field. The other technique in [1] was called
homodyne cross-correlation measurement (HCCM): signal
andLOare interfered at a single unbalanced beamsplitter and
the two output fields are recorded with linear detectors.
Unlike inBHD, a correlationmeasurement is performed.The
detector currents are multiplied and not subtracted, which
yields second-order intensity noise correlations. An exper-
imental realization of this method has been missing.
In the present Letter, we report the first experimental

implementation of the HCCM. Our signal field is prepared in
a phase-squeezed coherent state, generated via parametric
down-conversion. For the intensity regime we use for signal
and LO standard linear photodiodes are suitable. The con-
tributions of different orders of the LO field strength are
extracted from the measured correlation function. Our
method certifies anomalous quantum correlations of
squeezed light even formost of the antisqueezedphase region.
Homodyne cross-correlation measurement.—The basic

setup of our measurement technique is illustrated in Fig. 1.
The investigated squeezed field was generated in a hemi-
lithic, standing wave, nonlinear cavity, used as an optical
parametric amplifier (OPA). An 11 mm long 7% magne-
sium oxide-doped lithium niobate (7%MgO∶LiNbO3)
crystal served as a χð2Þ-nonlinear medium with noncritical
phase matching. A strong seed beam was inserted into the
OPA to produce a coherently displaced squeezed field
with a signal power of 284 μW. The OPAwas pumped with
243 mW at 532 nm resulting in a gain of 2.3 at 1064 nm.
For the HCCM the LO power is of the magnitude of the
signal power. Both fields are combined on an unbalanced
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beam splitter and the two output beams are recorded with
photodetectors (PDs). For an independent state characteri-
zation we used the established method of BHD. There is
only one difference to a normal BHD device, an ND filter is
placed in the signal beam in front of the 50∶50 beam splitter
to reduce the intensity of the signal to 32 μW. This avoids
demolition of the PDs, as the LO power can be reduced to
1.03 mW. Because of the knowledge of the power reduction
in the signal field, we are able to estimate the squeezing of
the undamped signal to be −2.7 dB and the antisqueezing
to be 5.5 dB. The visibility in the BHD setup is 97%
and the quantum efficiency ∼90%. In the HCCM setup the
visibility is 96% and the quantum efficiencies of the PDs
are ∼94%. In both detection setups we used the technique
of continuous variation of the optical phase as presented in
[13]. This provides a uniformly distributed phase.
The measurement outcome of the HCCM is the corre-

lation of electric current fluctuations (ac) of the two

detectors. The ac time sequences, ½cð1Þ1 � � � cðNϕÞ
1 �ϕ and

½cð1Þ2 � � � cðNϕÞ
2 �ϕ, measured for a particular LO phase ϕ,

are same-time correlated, i.e.,

CðϕÞ ¼ c1ðϕÞc2ðϕÞ ¼
1

Nϕ

XNϕ

l¼1

cðlÞ1 ðϕÞcðlÞ2 ðϕÞ: ð1Þ

For the intensities present in our experiment, the detectors
respond linearly. Therefore, the quantity (1) is proportional to
the intensity noise correlationΔGð2;2ÞðϕÞ ¼ hΔI1ΔI2iϕ, i.e.,

CðϕÞ ¼ ζ1ζ2ΔGð2;2ÞðϕÞ; ð2Þ
where h·i is the classical expectation value and ζk is the
product of detector parameters such as detector efficiency,
gain factor, and other positive scaling factors of the
detectors k ¼ 1, 2. The intensity noise correlation can be
separated into three contributions with different powers of
the LO field strength EL,

ΔGð2;2ÞðϕÞ ¼ ΔGð2;2Þ
0 þ ΔGð2;2Þ

1 ðϕÞ þ ΔGð2;2Þ
2 ðϕÞ: ð3Þ

Defining coefficients T i by ðT 0; T 1; T 2Þ ¼ ð1; jRj=jTj −
jTj=jRj;−1Þ and T ¼ jTj2jRj2, the zeroth-order (in EL)
term is given by

ΔGð2;2Þ
0 ¼ T T 0hðΔIÞ2i ð4Þ

with the signal intensity I ¼ Eð−Þ
ϕ EðþÞ

ϕ and the intensity
noise ΔI ¼ I − hIi. It is independent of both phase and
field strength of the LO. The first-order term,

ΔGð2;2Þ
1 ðϕÞ ¼ T T 1ELhΔEϕΔIi; ð5Þ

with the signal (electric) field strength Eϕ ¼ EðþÞ
ϕ þ Eð−Þ

ϕ

and the corresponding fluctuation ΔEϕ ¼ Eϕ − hEϕi, in
general is 2π periodic in the phase and linear in the field
strength of the LO. Note that this anomalous moment is
composed of two observables. A Fourier decomposition of
the second-order term,

ΔGð2;2Þ
2 ðϕÞ ¼ T T 2E2

LhðΔEϕÞ2i; ð6Þ
which is quadratic in the LO field strength, is in general
composed of a π-periodic and a constant Fourier compo-
nent in the LO phase. The different dependences of the
terms (4)–(6) on the phase and field strength of the
LO allow us to separate them from ΔGð2;2ÞðϕÞ; for details
see [1] and the discussion below.
Additional contributions in (3) arise from classical

fluctuations of the LO, which though very small in our
case are evaluated as follows. The dominant effect is a
constant offset, obtained from a correlation measurement
with blocked signal. This yields a direct observation of the
intensity fluctuation of the LO, including possibly occur-
ring correlated dark noise in the two detectors. To correct
for LO and correlated dark noise, this offset is removed
from the correlation CðϕÞ measured in the case with
unblocked signal. A strong point of the technique is that
even if uncorrelated dark noise in both detectors were
stronger than the quantum noise of the signal, it does not
contaminate the measurement result. By contrast, uncorre-
lated dark noise is relevant in BHD.
Note that the expressions (4)–(6) are also correct for a

lossy beam splitter, i.e., jTj2 þ jRj2 < 1. The theory of
Ref. [1] can also be extended to an asymmetric beam splitter;
see, e.g., [14]. In this case, the intensity reflection-trans-
mission ratio of the beam splitter for the LO (jRLj2∶jTLj2)
and for the signal (jRSj2∶jTSj2) can be different. This
yields the more general coefficients ðT 0; T 1; T 2Þ ¼
(ðjRSj=jRLjÞðjTSj=jTLjÞ; jRSj=jTLj − jTLj=jRSj;−1) and
T ¼ jTSjjTLjjRSjjRLj. Our beam splitter shows symmetric
transmittance, i.e., jTSj2 ¼ jTLj2, but asymmetric reflec-
tance, i.e., jRSj2 ≠ jRLj2.

FIG. 1. Experimental setup for the generation and detection
of squeezed light. The squeezed field is generated in an OPA. The
flip mirrors F1 and F2 are used to send the squeezed field either to
the BHD or the HCCM device.
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If the LO is strong compared with the signal, the term

ΔGð2;2Þ
2 ðϕÞ is dominant, and the correlation outcome is

proportional to the negative squeezing effect. Accordingly,
in this scenario the anomalous moment negligibly contrib-
utes to the total correlation and it is, therefore, not
accessible. Even if the LO intensity is comparable to the
signal intensity, the anomalous moment is only accessible if
the beam splitter is unbalanced [1]. The maximum visibility
is reached for a 14∶86 intensity partition, which is
approximately used in our experiment.
Separation of moments.—Let us study the separation of

the contributions

CkðϕÞ ¼ ζ1ζ2ΔG
ð2;2Þ
k ðϕÞ ð7Þ

from the total correlation CðϕÞ, which is given by a second
degree trigonometric polynomial,

CðϕÞ ¼ a0 þ
X2
k¼1

½ak cosðkϕÞ þ bk sinðkϕÞ�; ð8Þ

with real parameters ak and bk, as proposed in [1]. Since
both C0ðϕÞ and C2ðϕÞ contain a phase-independent part, it
is necessary to perform in addition a measurement with
blocked LO, which yields the resulting correlation outcome
Cblock. The contributions CkðϕÞ are obtained from the latter
and the Fourier coefficients as

C0ðϕÞ ¼ Cblock; ð9Þ

C1ðϕÞ ¼ a1 cosðϕÞ þ b1 sinðϕÞ; ð10Þ

C2ðϕÞ ¼ a2 cosð2ϕÞ þ b2 sinð2ϕÞ þ a0 − Cblock: ð11Þ
Figure 2 shows the measured correlation CðϕÞ for 120

phases selected equidistantly in ½0; 2π� and the fit according
to Eq. (8). For each phase the same number of 4.58 × 105

data samples was used. For details on the fit via regression
analysis [15,16] and the error calculation see Supplemental
Material [17]. We observe an excellent agreement of the
experimental outcome with the theoretical prediction.
For the LO-blocked case we obtain Cblock ¼ 0.80153�
0.00014 using 3 × 108 data samples. In addition, the
extracted contributions C0, C1, and C2 are shown. One
clearly observes the 2π-periodic anomalous moment of
intensity-field noise. Once a calibration of the setup is
performed, i.e., ζ1 and ζ2 in Eq. (2) and the LO strength are
known, the moments can be quantified.
It is important to note that our method is quite sensitive

to drifts of the signal state, since one has to ensure that
approximately the same signal state is present in the
LO-blocked and unblocked case. We incorporate a drift
error of Cblock as the difference of the result of two
subsequent measurements. Note that drift errors can be
further reduced by increasing the frequency of blocking and
unblocking the LO.

Alternatively, the contributions Ck may be separated by
the dependence on the LO field strength; see Supplemental
Material [17]. In our experiment five different LO powers
namely 0 (blocked LO), 117, 166, 216, and 275 μW
were probed for the phases ϕ ¼ 3π=4 and ϕþ π. The
result is shown in Fig. 3 together with the contributions Ck

proportional to Ek
L.

Classical correlations.—In a classical picture an inequal-
ity can be derived based on the extracted moments, which
is always fulfilled. For an arbitrary function f of Eð�Þ

ϕ , the
expectationvalue hjfj2i is non-negative. Forour experimental
outcome we use a properly chosen function of the form
f ¼ h0ΔI þ h1ΔEϕ and h0; h1 ∈ C. Defining the matrix

MðϕÞ ¼
� hðΔIÞ2i hΔEϕΔIi
hΔEϕΔIi hðΔEϕÞ2i

�
; ð12Þ

the determinant of MðϕÞ for a classically correlated signal
field is non-negative for all phases ϕ ∈ ½0; 2πÞ. This is
equivalent to the inequality

hΔEϕΔIi2 ≤ hðΔIÞ2ihðΔEϕÞ2i: ð13Þ

If the beam splitter transmittance and reflectance ratios are
known, one can determine the matrix

LðϕÞ ¼
�
C0ðϕÞ=T 0 C1ðϕÞ=T 1

C1ðϕÞ=T 1 C2ðϕÞ=T 2

�
ð14Þ

fromthe contributionsCkðϕÞofCðϕÞ. Thedeterminant of this
matrix is related to the determinant of MðϕÞ as

det ½LðϕÞ� ¼ ζ21ζ
2
2T

2E2
L det ½MðϕÞ�: ð15Þ

FIG. 2. Measured correlation CðϕÞ (markers) as a function of
phase. The error bars of one standard deviation statistical
uncertainty are within the size of the markers. The fit according
to Eq. (8) is shown by the thin solid curve, composed of the
contributions C0, C1, and C2.
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Obviously, the sign of det ½LðϕÞ� equals that of
det ½MðϕÞ�. Thus, the necessary condition (13) for a
classically correlated signal field can be tested directly
by the matrix LðϕÞ through det½LðϕÞ� ≥ 0. Note that no
knowledge of the efficiencies and gain factors incorporated
in the detection process is required. Also the exact strength
of the (weak) LO is meaningless, cf., Eq. (15). The ratios
jRLj2∶jTLj2 and jRSj2∶jTSj2 have to be known, but not the
reflectance and transmittance itself, which makes the test
robust to beam splitter losses.
Quantum correlations.—Figure 4 shows the experimen-

tal result for det½LðϕÞ� as a function of the LO phase. The
determinant is significantly negative in a wide range of
phases ϕ, which is a clear violation of the classicality
condition (13). Remarkably, the determinant is even neg-
ative for phases where no squeezing is present, e.g., for
ϕ ¼ 3π=4 with 28 standard deviations significance. Hence
the anomalous quantum correlations under study also exist
in the antisqueezed phase region. For comparison, the
determinant obtained by separation through the LO field
strength dependence is shown for ϕ ¼ 3π=4. Since the LO
intensity is not scanned continuously in our case, the drift
of the signal state yields a larger uncertainty than the
separation by phase. Nevertheless, this proof-of-principle
experiment certifies nonclassicality with a significance of
4.7 standard deviations. With some technical effort, this
technique could also be further improved.
Our method is especially beneficial, when the phase

interval of squeezing is small, e.g., for strong squeezing or
phase diffused states. Then it is challenging to stabilize the

system onto the squeezed phase. In this regard, our method
may detect quantum effects under demanding squeezing
conditions of the input state. Note that the positive
correlation outcome Cblock for blocked LO shows that
the necessary classicality condition hðΔIÞ2i ≥ 0 for the
variance of the signal intensity is valid.
It is important that the whole previous analysis is purely

classical and does not require any bosonic commutation
relations [18–21]. This essential property has the benefit
that the derived classicality condition based on anomalous
correlations applies without assumptions on the validity of
quantum physics for the interpretation of the measurement
outcome. By contrast, the squeezing condition hðΔÊϕÞ2i <
hðΔÊϕÞ2ivac for a particular phase ϕ, which is applied in
balanced homodyne detection, intrinsically utilizes non-
vanishing commutators. Hence, such quantumness tests
require the postulate of the validity of quantum physics.
This consideration is closely related to the definition of
nonclassicality in the sense of Titulaer and Glauber [22],
which is based on the Glauber-Sudarshan P function
[23,24]. That is, a state is nonclassical if it violates a
condition h∶f̂†f̂∶i ≥ 0, wherein ∶ · ∶ denotes normal order-
ing, classical expectation values are replaced by the
quantum mechanical ones, and classical field quantities
f are replaced by the corresponding field operators f̂.
It is eminent that our HCCM device accesses, based on

quantum measurement theory [1,5], three pairwise non-
commuting observables, ∶ðΔÎÞ2∶, ∶ðΔÊϕÞ2∶, and ∶ΔÊϕÎ∶,
within a single measurement scenario. The anomalous

FIG. 3. Measured correlation CðϕÞ (filled markers) and
Cðϕþ πÞ (unfilled markers) for ϕ ¼ 3π=4 as a function of the
rescaled LO field strength ~EL. The error bars of one standard
deviation statistical uncertainty are within the size of the markers.
The quadratic fits are the thin solid and dashed curves, composed
of the contributions C0, C1, and C2.

FIG. 4. The solid line shows det½LðϕÞ� as a function of phase as
obtained through separation by different phase periodicity.
Because of the π periodicity of the plot, we confine ourselves
to the interval ½0; π�. The thin dashed lines correspond to an error
of one standard deviation. The thick dashed line marks the border
between the classical and nonclassical regions. Squeezing is
present within the light-colored interval. The marker at ϕ ¼ 3π=4
(antisqueezed region) follows from the separation by the LO field
strength, from data measured for ϕ and ϕþ π. The error
corresponds to one standard deviation.
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correlations violating the classicality condition (13), cf.,
Fig. 4, turn out to be in excellent agreement with the
condition for anomalous quantum correlations,

h∶ΔÊϕΔÎ∶i2 > h∶ðΔÎÞ2∶ih∶ðΔÊϕÞ2∶i; ð16Þ

of the normal-ordered fluctuations of intensity and field
strength. For the derivation of general criteria for quantum
correlations of light, we refer to [25].
Conclusions.—In conclusion, we have experimentally

realized the homodyne cross-correlation measurement to
observe up to fourth-order moments of the field fluctua-
tions of a phase-squeezed coherent state. In particular, this
allows us to determine the anomalous moment, which is
composed of two noncommuting observables, namely,
intensity and field strength noise, which are observed with
high significance. Furthermore, a quantum correlation test
based on solely the measured moments shows the existence
of anomalous quantum correlations even outside the
squeezed phase region. As a central benefit, the data
analysis of our technique is completely free of quantum
physical assumptions, such as nonvanishing commutation
relations. Hence the technique visualizes directly violations
of classical physics. The anomalous quantum correlations
of squeezed light, which have been verified here for the first
time, may pave the way for alternative applications of
squeezed light in quantum technology, beyond the phase
interval of squeezing.
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