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Light-in-flight recording by holography uses a picosecond pulse for the reference beam, which like a sheet of
light intersects the hologram plate and produces a sensitivity area that with a speed faster than light moves
over the plate like a light shutter. If, however, the front of the reference pulse by diffraction in a grating is tilt-
ed relative to its direction of motion, the velocity of the light shutter can be slowed down resulting in increased
recording time. The practical result using a reflection grating was a true recording that corresponded to a
time compression of two to one. To minimize distortions of the recorded pulse shape we studied intersections
that are identical for apparent (ellipsoidal) and true (spheroidal) wavefronts.

1. Introduction

Light-in-flight recording by holographyl-3 is based
on the fact that an object beam is holographically
recorded on a hologram plate only if this is simulta-
neously illuminated by a reference beam. If the latter
consists of a picosecond pulse it will function like a
picosecond shutter. Finally, let this reference pulse be
in the form of a widened and collimated beam that
illuminates the plate almost parallel to its surface. In
that case a thin sheet of light, e.g., 1 ps thick (0.3 mm),
intersects the plate along a line that, similar to a light
shutter, moves over the plate with approximately the
speed of light.

If the angle ( in Fig. 1) separating the reference
beam from the normal to the plate is 900, the velocity
of the intersection will be exactly the speed of light. If
Oi is smaller, the velocity will be larger than the speed of
light. If finally 0i is zero, the velocity will be infinite,
which simply means that the whole plate is simulta-
neously sensitive to object light. In a companion pa-
per4 the experimental aspects of this paper are pre-
sented.
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II. Reference Pulse

Let us take a closer look at Fig. 1. The collimated
reference beam (R) illuminates the hologram plate (H-
H) at the angle 0i to the normal. It consists of a pulse
that has a temporal length of t and thus a spatial length
of c t. Thus, a sheet of light is formed with a thickness
of c t, that with the speed of c passes the plate. The
intersection forms a line of sensitivity with thickness s
which moves along the plate at a velocity faster than
light. Mathematically it can be described as

c
sini

c t
= i O 

(1)

(2)

where v = the velocity of the sensitivity line (the light
shutter),

c = the speed of light,
Oi = the angle between reference beam and plate

normal,
s = thickness of the sensitivity line (slit width),

and
t = temporal pulse length.

Thus, we have found that it is very easy to reach a
velocity higher than that of light ( < 900). However,
a way to make the shutter velocity lower than that of
light does not appear to exist, because in0i cannot be
larger than unity.

It is of course very satisfying to be able to produce a
continuous, frameless 3-D film that records at a veloci-
ty higher than the speed of light, but sometimes a lower
speed is advantageous because we want to study slower
phenomena of longer duration.
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Fig. 1. Reference pulse (R) with temporal length t illuminates the -S- 

hologram plate (H-H) at angle Oi. The pulse works like a light vT= L
shutter with a slit width of S that during time Tmoves with velocityv Fig. 2. Same as Fig. 1 but reference pulse (R) is tilted angle #

along the plate of length L. resulting in a lower velocity v and a longer recording time T.

Ill. Increasing the Recorded Time Interval

The time span recorded by the hologram is

T L ini
(1)

where T = the resolved time interval,
L = length of the hologram plate, and
Oi = the angle of incidence for the reference

beam.
If, for example, the hologram plate is 30 cm long and

Oi is close to 90°, the time interval that can be recorded
is limited to 1 ns. Many situations that we want to
study with this method might be of longer duration,
and the only possibilities to increase the time recorded
appear to be as follows:

(1) Increase angle Oi to 900.
(2) Increase the length of the hologram plate, e.g.,

by using a film instead of a plate.
(3) Let the reference consist of several correlated

beams that step by step have an increasing path length.
(4) Decrease c by using a material of high refractive

index.
However, one more possibility exists and that is to

tilt the wavefront so that it is no longer normal to the
travel of the light as seen in Fig. 2. The situation is
identical to that of Fig. 1 but the wavefront is tilted at
an angle to the normal of the direction of the refer-
ence beam. When : is equal to zero the situation is
identical to that of Fig. 1. If Oi is constant the velocity
v will increase with decreasing /3 while an increasing a

results in a decreasing v. The situation is described by
the following equations:

c * coso (4)
sin(OL + 03)

c t Cos# (5)

sin(Oi + i3)

L sin(Oi + 3) (6)

c- cos

where v, c, t, T, and Oi represent the same quantities as
in Eqs. (1)-(3).

However, represents the angle between the wave-
front and the normal to the motion of the reference
beam as seen in Fig. 2. Equation (4) degenerates into

Fig. 3. Pulse with length ct is deflected by refraction in a prism at
angles A3-a. After refraction the pulse front is still perpendicular to

the direction of propagation and the pulse length is unchanged.

Eq. (3) if /3 is equal to zero. It also shows that a = -O
results in v = A, while : = 90° results in v = 0. To take
another example, Oi = 30° and / = 60° result in v = 0.5c.

Thus we have found a simple way to vary the velocity
of our light shutter from infinity to zero. Just one
problem remains: The angle : is not allowed to differ
from zero because by definition a wavefront is a line
that is perpendicular to the direction of travel of the
waves. To solve this problem we introduce the term
pulse front instead of wavefront, to be used in all
situations when the front is not perpendicular to the
direction of travel.

IV. Pulse Front Rotation

There are different ways to produce a pulse front
that is inclined to the direction of travel. Let us first
study why an ordinary prism does not rotate the pulse
front (wavefront).

To study the deflection by refraction in a prism we
choose the situation in Fig. 3 where light is bent down-
ward. The lower part of the beam is delayed more
than the upper part so that the wavefront is rotated
just as much as the beam is deflected and therefore it is
always perpendicular to the direction of travel. The
delay is of course caused by the lower speed of light in
the glass which is thicker at the lower part of the beam.

The separation of the two wavefronts is identical in
space and time before and after the prism. Therefore
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a pulse will not change its length and a sheet of light of
a certain thickness will have that same thickness after
the beam has been deflected downward.

Let us assume that a wavefront constitutes a surface
that:

(1) represents equal phase,
(2) is perpendicular to the light rays,
(3) represents equal time of flight, and
(4) moves in such a way that every point on the front

travels along a line of least (or most) time of flight
(Fermat's principle).

The two first statements are true by definition, the
third statement might at first glance appear to be a
result of the others, while the fourth statement appears
to be true by tradition.

For light not chopped up (e.g., light not diffracted)
all the statements are true not only for wavefronts but
also for pulse fronts. However, for diffracted light,
statements (1) and (2) are true for wavefronts while
statement (3) is the only one that is true for pulse
fronts. (This shortcoming inspired a modification of
Fermat's principle.5)

A. Comparison Between Prism and Grating

Let us first again study the refraction by a prism as
described in Fig. 3. The optical path length from I to
II for the top ray is LT and for the bottom ray LB:

LT = n0 1l + n112 + n1 3 = n01l + n112 + noh* sink
cosa

LB = nll + n112 + n114 = nl + n112 + nh tana,

where no is the refractive index of air and n is the
refractive index of glass; all other notations are found
in Fig. 3.

If our statements (2) and (3) are true, LT should be
equal to LB. Thus LT = LB results in

now0 sin = n - sina.

In this way we have found that by assuming that our
statements (2) and (3) are true we have arrived at
Snell's formula of refraction which is a generally ac-
cepted formula. Statement (1) follows automatically
from statement (3) and therefore all three statements
appear to be true in the example studied.

The situation when light is deflected by diffraction
in a grating is very different (see Fig. 4). No rays are
delayed more than the others. The optical path length
and thus the time of flight are solely determined by the
path length itself. To make the situation simple and
similar to that of Fig. 3 we let the incident light of Fig. 4
be normal to the surface of the grating. We see that
the fronts of equal time (the pulse fronts) are all paral-
lel to the original front independent of the diffraction
angle. Thus the angle 6 that separates the diffracted
beam from the zero-order beam is also the angle -
between the normal (to the travel of the light) and the
pulse front. It is also seen that the thickness (11) of the
inclined sheet of light varies for light reflected in dif-
ferent directions.

Thus we have found that refraction by a prism does
not tilt the wavefront or pulse front in relation to the

G
-i---C t ---

Fig. 4. Pulse with length ct is deflected by diffraction in a grating
(G-G) at angle . The larger the angle the thinner the light sheet 1,
while the length of the total pulse increases. The tilt of the pulse

front is given by angle = -.

G

d 01 2
0

2

W2 w1 W P P P2

Fig. 5. Pulse arrives normal to grating (G-G), which has a line
separation of d. The beams of different orders leave at directions 0,
01, and 2, their wavefronts are Wo, W1, and W2, respectively, but

their pulse fronts PO, P1 , and P2 are all parallel to Wo.

direction of travel, neither does it change the temporal
or spatial length of a pulse; the only change is in the
diameter of the beam. A grating on the other hand
tilts the pulse front, it also appears to change the
temporal and spatial length of a pulse. To study the
situation of Fig. 4 in more detail let us first look at Fig.
5.

We find that the angle separating the angle of the
pulse front from that of the normal to the light rays
follows the equation

sino = -,
d (7)
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where n = diffracted order,
X = wavelength, and
d = separation of the grating lines.

From Fig. 4 we also find

11 = c t cosp,

where l = thickness of the light sheet after diffrac-
tion, and

c t = thickness of the light sheet before diffrac-
tion.

B. Grating, General Case

Until now we have studied the special situation
when incident light is perpendicular to the grating.
Let us now consider a more general case. First we
evaluate graphically the distortion of a pulse diffracted
by a reflection or transmission grating (see Fig. 6). A
pulse front (P0-PO) arrives at grating (G-G) at angle y
and is diffracted in different directions at angle 6. H is
the point where the highest rays of the beam pass the
grating, while L is the lowest point. The original in-
coming pulse front is assigned (P0 -Po), while the dif-
fracted pulse front is (PD-PD). By simply making the
path lengths (POHPD) and (POLPD) equal for all the
diffracted beams, we find the tilt angle / of all the pulse
fronts including the retroreflected one. The pulse
length along the light rays is identical for all beams, but
the thickness of the light sheets varies. It is interest-
ing to see that wavefronts and pulse fronts are identical
and unchanged for the zero-order diffracted beams.

Now let us study the situation of Fig. 6 in more detail
using trigonometry to calculate the path lengths (see
Fig. 7). The difference in path length D between the
highest and the lowest rays measured from (PO-PO) to
(PD-PD) is

D = L-L2 = s (sin-y - sinb), (9)

where s = separation along the grating between upper
and lower studied rays,

-y = angle of incidence for the incoming light
beam, and

6 = angle of the diffracted light beam.
If we let s be the separation of the grating lines d and

set the path length difference to an integer number n of
wavelengths X we get the usual equation for diffrac-
tion:

sin7 - sinb = nd * (10)
d

Now let us instead use Eq. (9) to evaluate the pulse
front which is defined as the surface of zero path length
difference for highest and lowest rays from the original
pulse front (wavefront) to the diffracted pulse front
(PD-PD). The result is the following:

tank = sin7 - sinb (11)

where /3 - angle between pulse front and normal to the
dirracted light rays = the tilt angle and -y and 6 are the
same notations as in Eq. (9). Thus with Eqs. (10) and
(11) we have found the general formula for the tilt of

G

Fig. 6. General case of pulse front tilt. A pulse, as long as it is wide,
moves toward grating (G-G) at angle ry. By transmission and reflec-
tion it is deflected into several diffraction orders, of which we study
the one in the 6 direction. All the angles are measured positive in the
counterclockwise direction. For all diffraction orders, except the
zero order, the pulse front is tilted at an angle 13, the thickness of light

sheet 1l is reduced, and the total pulse length tot is increased.
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Fig. 7. Pulse front tilt angle 13 is calculated on the basis that the
path lengths from the incoming wavefront (P0-Po) to the outgoing
pulse front (PD-PD) are identical for the top ray (Lj) and for the

bottom ray (L2).

the pulse front caused by diffraction. If the incoming
beam is perpendicular to the grating (-y = 0), we get / =
-6 as stated in Eq. (7) and Figs. 4 and 5.

The tilt of the pulse front becomes zero for 6 = -y and
for 6 = 180 -y which both represent zero-order dif-
fraction beams. Finally the tilt approaches a maxi-
mum of 90° for retroreflection ( = 180 + y) when -y
approaches 900. The thickness of light sheet 11 is
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Fig. 8. Picosecond pulse with length o is emitted at A producing a
spherical light sheet with thickness lo. The pulse is scattered by
smoke or small particles so that it can, be observed at C using a
picosecond observation from B. It then appears to be in the form of
an ellipsoidal shell with thickness app, where lapp = k 0.5 lo, k = 1/

cosa, and a is half the angle ACB.

11 = 0- cosf, (12)

where lo is the length of the original pulse. The total
temporal pulse length (ttot) as measured by a detector
covering the whole beam diameter (see Fig. 7) is

ttot = to + D sin-y - sinb (13)
c cos-y

where D is the diameter of the incoming light. All the
calculations made here have been based on simple
trigonometry and do not take into account the diffrac-
tion-limited resolutions caused by the short pulses.
As the pulse length of monochromatic light goes down,
the light becomes less monochromatic due to the Fou-
rier transform limit. Thus a very short pulse, say a few
waves long, appears almost white, resulting in the dif-
fraction-limited resolution having not only an ordi-
nary spatial contribution, but also a temporal contri-
bution. Another way to look at it is to say that the
short pulse only illuminates a fraction of the grating
simultaneously and therefore the shortness of the
pulse has a temporal influence on the diffraction-limit-
ed resolution.

The equations given here agree well with our experi-
ments made with pulses down to 12 ps (-5 X 103
waves), while calculations show that corrections begin
to be of importance when the pulses are <100 waves.

VI. Object Beam

When a wavefront or pulse front is studied by light-
in-flight (LIF) recording by holography or any other
possible high-speed photography, the wavefront will
appear distorted in time and space, because different
points in space are recorded at different points in time
because of the time delay caused by the limited speed
of light used for observation.

Thus a flat wavefront that passes by appears tilted
at 450. A closer look reveals that a flat wavefront not
only appears tilted but also transformed into a parabo-
loid, its focal point being the point of observation (e.g.,

Fig. 9. Holodiagram originally designed for the evaluation of holo-
graphic interference fringes. The apparent pulse length is repre-
sented by the separation of the ellipses with a constant k value along
arcs of circles. This k value (k = app/0.5 lo) is equal to unity along
the x axis to the right of observation point B and to the left of the
point for illumination A. Everywhere else the k value is higher and

between A and B it is infinite.

the studied point of the hologram plate). A spherical
wavefront emitted from point A appears transformed
into one of the ellipsoids of the holodiagram where A is
one focal point and the point of observation B is the
other. If A is at infinite distance from B the ellipsoids
are transformed into the already mentioned parabo-
loids (see Fig. 9).

A. Ellipsoids of the Holodiagram

The apparent length of the pulse is equal to the
separation of the two ellipsoidal shells that represent
the front and the end of the pulse. The relation be-
tween the apparent pulse length to the true pulse
length is

lapp = k 0.5 ' 1true'

where lapp = apparent spatial pulse length,
ltrue = true spatial pulse length = c to,

to = original temporal pulse length,
k = the k value of the conventional holodia-

gram = 1/cosca, and
a = half the angle separating illumination and

observation directions (see Fig. 8).
The spheres appear ellipsoidal because light transmit-
ted from A to B via the ellipsoidal surface represents a
constant path length and thus constant time delay
between emittance and detection of the pulse. The
factor 0.5 is caused by the fact that light goes to the

15 February 1989 / Vol. 28, No. 4/ APPLIED OPTICS 763

Y



ellipsoidal surface and back again. It is exactly the
same phenomena as in interferometry but the wave-
length is substituted by the pulse length.

The true 3-D shape of a wavefront (pulse front) can
be seen only in the case when the separation of A and B
is zero. In all other situations the ellipsoids differ
from the spheres (see Fig. 9). Very often a sideways
look at the wavefront is preferred and then a certain
distance between A and B is needed; in that case it
would also be useful to have an undistorted view.
Even if the apparent 3-D shape of the wavefront differs
from its true shape it is, however, still possible to find
cross sections of the ellipsoids with focal points A and
B that are identical to cross sections of spheres cen-
tered at A. These cross sections reveal the true spatial
and temporal shapes of any pulse or wavefront.

B. Undistorted Wavefront

To find this undistorted wavefront we should study
the intersection produced by a screen that is as parallel
to the light rays as possible. To see the total intersec-
tion at the same point of time the screen should be
perpendicular to the direction of observation B. From
Fig. 10, which visualizes the ellipsoids as caused by the
moire effect of spheres, we see that along a circle cen-
tered at B the intersections by the ellipses are identical
to the intersections by circles centered at A. Thus, if a
spherical screen with its center at B is illuminated by
light from A the intersections by the ellipsoids are
identical to those by the spherical wavefronts emitted
by A. We choose this configuration but for simplicity
we accept the approximation made by using a flat
surface at a large distance from B instead of a spherical
one. In this way we also become more or less indepen-
dent of the position of A as long as it is close to the
surface of the screen. The result is that we should
position a flat screen so that its surface almost inter-
sects the point of illumination A while its normal inter-
sects the point of observation B at a large distance.

Now let us finally see how the proposed setup agrees
with results from the holodiagram of Fig. 9. The angle
of 900 between illumination and observation direc-
tions corresponds to a k value of 1/cos 450 = A2. Thus
the pulse length c * to results in a separation of 0.5 -. -c
* t between the ellipsoids representing the front and
the end of the pulse (apparent 3-D pulse length). For
the k values of b2 studied, which is situated on a circle
through A and B, the screen is everywhere at an angle
of almost 450 to the ellipsoids. Thus the pulse length
as seen on the screen is identical to the true pulse
length (0.5 * .* ct = cto).

VIl. Conclusion

This work has been made to demonstrate in a gener-
al way that the behavior of short pulses is in many
respects different from that of continuous light. Thus
both pulse shape and pulse length are changed after a
pulse is diffracted by a grating. Equations have been
given to explain these changes. It is, for example,
important to note that the pulse length of a tilted pulse
appears different when measured holographically

Fig. 10. Another way to visualize the holodiagram in Fig. 9. A and
B are the centers of sets of concentric circles in a bipolar coordinate
system. The moire fringes form a set of ellipses. To emphasize this
pattern every second rhomboid area is painted black except for one-
quarter of the diagram where just one single ellipse (and hyperbola)
has been marked. The ellipses are formed where circles around A
intersect circles around B. Therefore, a spherical screen centered at
B will be intersected by spherical wavefronts from A in exactly the
same way as it will be intersected by the ellipsoids. Thus projected
on this screen the apparent pulse shape and pulse length will be

identical to those of the true pulse.

compared to the total pulse time measured using a
photoelectric detector. This means that, when a short
pulse is used in combination with a grating, in, e.g., a
monochromator, the pulse length as seen by a detector
is increased and this fact must be taken into account
when doing time-resolved measurements. We also
show how an experimental setup should be designed to
make a true image of pulse fronts recorded in a light-
in-flight experiment. A tilted pulse front was used to
expand the view time of a light-in-flight recording.
The theoretical result was verified by a successful ex-
periment where the recording time was doubled, as
described in a companion paper. 4

The development of light-in-flight recording by ho-
lography has been sponsored by the Swedish Board for
Technical Development whose interest and support
are gratefully acknowledged.

Appendix

The pulse front concept is also useful in understand-
ing white light interferometry. A conventional inter-
ferometer is seen in Fig. 11. Light of short pulse
length or short temporal coherence length (P) arrives
from the lower left and is divided by a beam splitter
(BS) into two symmetrical beams that are combined at
C by two mirrors (M). Because the pulse fronts are
always perpendicular to the beam directions, fringes
are formed only inside the rhomb at C where the two
pulses intersect. The rhomb moves from left to right
and the number of fringes within the height of the
rhomb is calculated:

H
n = - '
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Fig.11. Conventional interferometer is illuminated byalight beam
of short pulse length or short temporal coherence length that arrives
from the lower left. It is divided by the beam splitter (BS) into two
symmetrical beams that combine at C after reflection in two mirrors.
The angle 2a separating the two intersecting pulse fronts restricts
the number of fringes produced only within the rhomb with

height H.

Fig. 12. Corresponding grating interferometer with the same illu-
mination as in Fig. 11. Grating G1 divides the beam while another
grating G2 recombines the two beams. As the two intersecting pulse
fronts are parallel, they cover each other totally and interference
fringes are produced across the whole area of the beam. Thus even

white light produces a large number of fringes.

H= , (Al)
sina(

d 2 sinT
Thus

2P
n

where n = number of fringes formed,
H = height of rhomb,
d = fringe separation,
P = the pulse length or temporal coherence

length,
a = half of the angle separating the intersection

beams, and
X = the wavelength.

The result shows that for H < D the number of
fringes formed is simply twice the number of waves
within the pulse length or the temporal coherence
length.

As a contrast in Fig. 12 we show a grating interferom-
eter that functions with a white light source.6 Light of
short pulse length arrives from the left and is divided
by grating G1 into two symmetrical beams combined at
C by grating G2. Because the pulse fronts are always
parallel to the original pulse front (vertical), the two
pulses cover each other completely. Therefore fringes
are formed across the whole beam area. Thus

2D sina

This result shows that the number of fringes for the
grating interferometer is not limited by pulse length or
coherence length.
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