
Minkowski diagram in relativity and holography

Nils Abramson

Now that ultrashort laser pulses can be used in holography, the temporal and spatial resolution approach the
same order of magnitude. In that case the limited speed of light sometimes causes large measuring errors if
correction methods are not introduced. Therefore, we want to revive the Minkowski diagram, which was

invented in 1908 to visualize relativistic relations between time and space. We show how this diagram in a

modified form can be used to derive both the static holodiagram, used for conventional holography, including
ultrahigh-speed recordings of wavefronts, and a dynamic holodiagram used for studying the apparent

distortions of objects recorded at relativistic speeds.

1. Introduction

The holodiagram is a tool used for evaluation and
visualization of the interferometric sensitivity in both
classical and holographic interferometry. The desen-
sitizing factor of the holodiagram (k) has the same
influence as an apparent red shift of the light. (One
interference fringe represents a distance of k 0.5X,
where k = 1/cosa, and a is half of the angle separating
illumination and observation direction.) When pico-
second laser pulses are studied it is found that again,
the k value is a measure of an apparent lengthening of
the pulse. In both cases the desensitizing of measure-
ments based on wavelength or pulse length is caused by
the angular separation of the point source of illumina-
tion from the point of observation.

If this separation is not caused by a fixed distance
but instead by a velocity in relation to the measured
object of the one who makes the measurement, the
resulting desensitizing factor will still be the same.2

Thus the k value of the holodiagram can also be used to
evaluate and visualize relativistic effects like the Lo-
rentz contraction and refer them to an apparent red
shift or lengthening of the measuring rods. It is inter-
esting, however, that in this way we find that the
Lorentz contraction is only one special case of more
general apparent elongations and contractions of fast
moving objects. 3
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II. Minkowski Diagram

The reason such different phenomena as holograph-
ic interferometry and special relativity can use the
same tool for visualization is perhaps best explained by
the Minkowski diagram. 4 5 This diagram was de-
signed in 1908 to visualize relativistic deformations of
time and space in a graphic way. It is based on a light
cone and its intersections with planes representing
space. The inclination of these planes represent ve-
locity and thus it is easy to understand that a moving
circle is transformed to an ellipse or a sphere to an
ellipsoid. By introducing a second cone, the light cone
of observation we can, in a geometrical way, produce
not only the ellipsoids of the holodiagram but also the
ellipsoids of observations that explain the accepted
relativistic Lorentz contraction and also a number of
other apparent deformations of space and time. Our
method is based on first transforming a fixed coordi-
nate system to the reference frame of a moving observ-
er, whereafter his measuring results are transformed
back again. Thus, we who are stationary judge how a
moving observer judges our stationary world.

Let us study the original Minkowski diagram of Fig.
1. The x andy axes of the coordinate system represent
two dimensions of our ordinary world, while the z axis
represents time (t), multiplied by the speed of light (c),
just to make the scales of time and space of the same
magnitude. Thus in the x-ct coordinate system the
velocity of light is represented by a straight line at 450
to the ct axis. As all other possible velocities are lower
than that of light, they are represented by straight
lines inclined at an angle of less than 450 to the ct axis.

A. Illumination

A point source of light (A) is situated at the center
(0,0,0) of the coordinate system of Fig. 1. A spherical
wavefront is emitted in all directions and expands with
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Fig. 1. Minkowski diagram. The x and y axes represent two di-
mensions of our ordinary world, while the vertical z axis represents
time multiplied by the speed of light. Any constant velocity is
represented by an inclined line inside the cone representing the
speed of light. Thus, the expansion of a spherical wavefront is
represented by a cone with its apex at the light source A. A converg-
ing spherical wavefront is represented by another, inverted cone
with its apex at the point of observation B', separated from A by xl.
The two cones are out of contact because x is larger than ctl. This
situation corresponds to a picosecond pulse of light emitted by A and
a picosecond observation is, after a time delay of t, made at B'. No
light is seen because the observation was made before the light

arrived.

the speed of light. In our chosen coordinate system,
which is limited to only two space coordinates and one
time coordinate, this phenomenon is represented by a
cone with its apex at A, expanding in the direction of
the positive time axis. Since no signal can be sent
faster than light, no information from A can reach
outside this cone that has an apex angle of 90°. The
passing of time is represented by cross sections of the
cone by planes parallel to the x-y plane at increasing ct
values. These intersections will, when projected down
to the x-y plane, produce circles of increasing radius
that in out 3-D world represent the expanding spheri-
cal wavefront from the point source at A.

B. Observation

If a point of illumination represents a point source of
light, a point of observation represents a point sink of
light, a point toward which spherical waves are shrink-
ing. In the Minkowski diagram it is represented by a
cone that is inverted in relation to the light cone,
referred to as the observation cone (B in Fig. 1), which
like the light cone has a cone angle of 90° and where the
observer is at the apex (B'). Thus an observer atB' can
see nothing outside this cone because of the limited
speed of light (c).

C. Light Transmitted to the Observation Cone

Now let us study the light cone and the observation
cone used in a system for measurements based on, e.g.,
conventional interferometry, radar, gated viewing, ho-
lographic interferometry, holographic contouring us-
ing two frequencies or limited coherence length or
short pulses of light (light-in-flight recording by holog-
raphy).6 All these methods are based on one point of

Fig. 2. Illumination and observation cones are separated in time
but not in space. Two picosecond pulses are emitted at times to and
t1, whereafter finally an observation is made at t 2 . Light can be
transmitted from illumination to observation cones only by scatter-
ing objects situated at the circular intersections of the cones. These
circles have half of the radius of the cones at the time of observation
(t2). In our ordinary world this indicates that scattering or reflect-
ing objects are seen only at a spherical surface that has half of the
radius of the true spherical wavefront. Examples of this situation
are radar and conventional interferometry where one fringe repre-

sents half of the wavelength.

illumination (A), one point of observation (B), object
points (C), and a time delay.

D. Separation in Time but not in Space

The point source (A) produces two picosecond
pulses of light at (0,0,0) and (0,0,tl), respectively.
Thereafter one single picosecond observation (B) is
made at (O,0,t 2). The time separations of to, t, and t2
are all dt. The result is seen in Fig. 2. Two concentric
light cones are intersected by one observation cone.
The intersections consist of two concentric circles in
space (the. x-y plane) with radii of c dt and 0.5c dt,
respectively. They are thus separated in space by 0.5c
dt. Their time separation is 0.5dt. Thus, to the ob-
server the apparent radii and separation of the circles
are half of their true value at the time of observation
(t 2 ) as seen in Fig. 2.

This fact represents in our 3-D world that, for a
certain time delay between illuminating pulse and ob-
servation, the object points that are seen are situated
halfway out to the true wavefront. The reason is, of
course, that to see an object point, light has to go twice
the radius, out to the object and back again. The
circles are separated in time by 0.5dt, which corre-
sponds to the fact that objects situated further away
from the observer are seen as they were at an earlier
point of time.
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Fig. 3. Illumination and observation cones are separated both in
time and space. One picosecond pulse is emitted at (0,0,0), and
one picosecond observation is made at (xi,O,tl). At the intersection
ellipse light is scattered by objects into the observation cone. When
projected to the x-y plane, this ellipse produces one of the ellipses of
the ordinary static holodiagram. If, however, the separation of
emittance and observation is not static (xi) but dynamic (vtl),
caused by a traveling observer, the projected intersection ellipse
represents a relativistic effect. The desensitizing factor, halfway
between A and B, is the same in the two cases and produces identical
results, but in holography it is referred to as a trigonometric factor,

while in relativity it is referred to as a transverse Doppler shift.

Ill. Cones Separated in Time and Space

A. Out of Contact

1. Static
If A and B are separated too far in space or too close

in time (xl > ctl), the light cone and the observation
cone will not meet at all (Fig. 1). In our 3-D world this
situation corresponds to that observation made before
the light pulse has reached the observer, which ther-
fore sees no light at all.

2. Dynamic
The static separation in space of A and B is zero, but

a dynamic separation is caused by a constant high
velocity (v) in relation to a fixed space of the person
who emits the light pulse and makes the observation.
Thus, if we go back to Fig. 1, both the source of the
short light pulse (point of illumination (A) and the
point of observation (B) are at zero distance when the
pulse is emitted at the coordinates (0,0,0). However,
the observer travels with velocity v along the x axis,
which corresponds to the observer moving along a
straight line from A to B in Fig. 1. When observation
takes place the coordinates of B' are (vti,0,t1). Refer-
ring to Einstein's special theory of relativity, the speed

of light in vacuum always appears to have the constant
value of c, therefore the light cone and the observation
cone are (when studied from our stationary world) in
no way influenced by the velocity of A and B. Thus
the evaluation based on the two cones is, in the case of a
dynamic separation, identical to that already de-
scribed for static separation.

Let us point by point compare this situation to the
static one described in Sec. III. A.1, where the two
cones do not meet at all. In our 3-D world that situa-
tion corresponds to the velocity of the observer being
faster than the speed of light, so that the observation
can be made before the light arrives. Referring to the
basis of Einstein's special theory of relativity, such a
velocity does not exist. For the studied dynamic sepa-
ration, the situation of Fig. 1 is therefore impossible,
the angle separating the line A-B' from the ct axis must
always be smaller than 45°.

B. Tangential line

Let us now keep the time separation of A and B'
constant, but step by step move B toward A and study
what will happen. As the two cones touch each other,
B' will see a flash of light in the direction of A.

1. Static

In our ordinary 3-D world this means that the ob-
server makes his observation just as the spherical wa-
vefront of the pulse from A passes B'.

2. Dynamic
In our dynamic case this situation indicates that B'

travels with the same speed as the pulse (v = c).

C. Intersecting Cones

If we move B still closer toward A, again no light is
observed, this time because B makes the observation
too late; the spherical light pulse from A has already
passed. However, as the apex of the light cone now is
inside the observation cone and vice versa, the two
cones intersect because x < ct (Fig. 3). If there are
scattering particles everywhere in space, or even some
larger surfaces, light might be scattered from the light
cone into the observation cone. As this can happen
only on the surfaces of the cones, only those particles
and those objects situated where the two cones inter-
sect can be seen from B. The line of intersection forms
an ellipse on a plane, the inclination of which decreases
from 450 to 00 as the distance A-B decreases toward
zero. At the same time the eccentricity of the ellipse
decreases too, until the situation is identical to that in
Fig. 2. The intersection ellipse is tilted because the
observer sees different objects at different points of
time. It is interesting to note that this inclined ellipse
is flat, which proves that there is a linear relationship
between x and t along the intersection line.

The projection of the inclined intersection ellipse of
Fig. 3 down to the x-y plane produces another ellipse,
its focal points being A and B, respectively. This
ellipse is one of the ellipses of the holodiagram.
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Fig. 4. Differences between the static and the dynamic holodia-
gram are revealed when more than one picosecond pulse is studied.
In this figure the separation of A and B is static and therefore the
intersection ellipses, when projected down to the x-y plane, repre-
sent the total ordinary static holodiagram. They all have the two
common focal points A (illumination) and B (observation). The
smallest ellipses have the largest eccentricity and their correspond-

ing intersection ellipses have the largest tilt.

1. Static (holography)
Let us now study the situation when A emits first

one pulse at (0,0,0), then with a separation of dt, a
second pulse is emitted at (0,0,tl), and finally the
observation is made after another delay of dt at B
(0,0,t 2), as seen in Fig. 4. Two intersecting ellipses
are formed, the one closest to B is smallest but has the
largest eccentricity and the largest tilt.

If A finally, produces not only two pulses but a train
of pulses at the constant intervals dt, a set of concen-
tric intersection ellipses will be produced where those
that are innermost have the largest eccentricity and
also the largest inclination in relation to the x-y plane.
When projected down to the x-y plane, they will all
have their focal points at A and B. The separation of
the ellipses in the x-y plane will (along the x axis and
outside A-B) be constant and have the value 0.5c dt.
At all other points in the x-y plane this separation will
be larger, and we will designate it k = 0.5c dt, where k is
the k value of the holodiagram (Fig. 5).

In our 3-D world these ellipses represent the cross
section through the axis of rotation A-B of a set of
rotational symmetric ellipsoids that represent con-
stant path lengths for light that is transmitted from A
to B via points on the ellipsoidal surfaces. To simplify
the situation let us go to the 2-D ellipses of the holodia-
gram (Fig. 5) and, to visualize the function of these
ellipses, let us paint black every second area between
adjacent ellipses (Fig. 6).

2. Dynamic (Relativity)
If we start with Fig. 1 and then move B closer to A, by

decreasing the velocity, the situation will be identical
to that of Fig. 3, as already described for the static case
(Sec. III. C.1). The line of intersection forms an ellipse
on a plane the inclination of which decreases from 450
to 0° as the distance A-B decreased toward zero (the
velocity of the observer B' decreases to zero). At the

Fig. 5. Static holodiagram as derived from Fig. 4. When used in
holographic interferometry, A is the point from which the divergent
laser beam originates, while B is the point of observation behind the
hologram plate. Light from A scattered to B by the object at C will
not change its path length if C is displaced along an ellipse, while the
difference in path lengths to adjacent ellipses is a constant number
of wavelengths. The displacement perpendicular to the ellipses
needed to cause one fringe is k 0.5X, where k is constant along arcs of

circles, each representing a different spacing of the ellipses.

I7141*1*1*FFF**#t FtIII H- A + 8 -HWWW**Hff I| 411 1H

Fig. 6. To visualize the ellipses of the static holodiagram we have
drawn a number of closely spaced ellipses with the common focal
points A and B. Every second elliptic area between adjacent ellipses
was painted black, so that the thickness of black-and-white areas
represents the k value and thus the interferometric sensitivity to
displacement. If two transparencies are made of this figure and one
is displaced in relation to the other, moire fringes are formed that
correspond to the interference fringes caused by that displacement.

same time the eccentricity of the ellipse decreases too,
until the situation is identical to that in Fig. 2.

The projection of the inclined intersection ellipse
down to the x-y plane produces another ellipse, its
focal points being A and B, respectively. This ellipse
is identical to one of the ellipses of the holodiagram.
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Fig. 7. Dynamic holodiagram. In contrast to that of Fig. 5 the
distances along the x axis are solely caused by a constant velocity in
the x direction by the person who makes the observation. He emits
the first picosecond pulse at (0,0,0), the second at (vt1 ,0,t1 ) and
finally he makes the single picosecond observation at (vt2 ,0,t2).

When the intersection ellipses are projected down to the x-y plane, it
is found that they all have one common focal point atB, but the other
focal points (A, A2, etc.) are different for each ellipse. In contrast to
the static holodiagram of Figs. 5-7 it is also found that all the ellipses
have the same eccentricity and that all the intersection ellipses have
the same inclination. The k lines of the static holodiagram are in
this dynamic holodiagram substituted by q lines that are constant,

no along circles through B, but along straight lines through B.

Thus the moving observer's spheres of observation,
because of his velocity, are transformed into these
ellipsoids of observation in the stationary frame of
reference (the x-y plane). The eccentricity (e), which
is identical to the relationship between the major axis
of the ellipsoid and the radius of the sphere, results in
the distances along the x axis of the stationary world to
the traveler appearing foreshortened. Thus the well-
known Lorentz contraction is equal to the inverted
value of the eccentricity.

Referring to Fig. 3 we show how this eccentricity is
calculated and how the static (k) and the dynamic (q)
desensitizing factors are derived:

static:
1 g 0.5D,

cosa h 0.5D,

dynamic:

q =- 1 =g = 0.5D e g = 1
cosa h 0.5Dy g2-:f 2

(-)

3. Static and Dynamic Holodiagram
Until now the static and dynamic situations pro-

duced identical results concerning the ellipses of inter-
section and the corresponding ellipsoids of our 3-D
world, as seen in Fig. 3. In the following we show the
characteristics of each.

If A emits not only one single pulse but a train of
pulses at constant time intervals dt (which because of
the constant velocity correspond to constant space
intervals dx), a set of concentric intersection ellipses is

Fig. 8. Traveling observer moves at constant speed (0.6c) to the
right and emits picosecond pulses at Al, A2, etc. separated by vdt.
His lines of sight are aberrated from angle y to the angles drawn in
this dynamic holodiagram (the q lines). Along each q line the
separation of the intersections by the ellipsoids of observation have a
constant value, the q value. Doppler shift, apparent speed of time,
and apparent longitudinal magnification are all functions of q, while
transversal Doppler shift, time dilation, and Lorentz contraction

depend only on the q line representing y = 900.

(1) Fig. 9. To visualize the ellipses of the dynamic holodiagram we
have drawn a number of closely spaced ellipses all derived from the
projected intersection ellipses as described in Fig. 7. Just as in the
static diagram of Fig. 6 every second elliptic area between adjacent
ellipses was painted black. The separation of these ellipsoids of

(2) observation divided by the separation of the ordinary spheres of
observation corresponding to zero velocity represents the q value.

produced. However, in contrast to those of the con-
ventional static holodiagram the whole set of ellipses of
this new dynamic holodiagram has the same eccentric-
ity and also the same inclination in relation to the x-y
plane (Fig. 7). When projected down to the x-y plane,
they all have one common focal point at B, while their
respective focal points A are separated by the distance
dx = v dt (Figs. 8 and 9). The separation of the ellipses
(s) in the x-y plane along the x-axis to the right of B (in
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front of the observer) is smaller than the separation
corresponding to zero velocity (s), while it is larger
than s behind the observer. At all other points in the
x-y plane the separation varies between these two val-
ues, and we designate it qs.

Thus we could say that the k value of the static
holodiagram (Fig. 5) represents the relation between
the separation of the ellipses of Fig. 6 compared with
the separation of the spheres corresponding to zero
distance between A and B. In a similar way we could
say that the q value of the dynamic holodiagram (Fig.
8) represents the relation between the separation of
the ellipses of Fig. 9 compared with the separation of
the spheres corresponding to zero velocity. However,
in the dynamic holodiagram the separation of the ellip-
ses should be measured along the (aberrated) lines of
sight from the observer at B.

In the static holodiagram (Fig. 5) the innermost
ellipses have infinite eccentricity (infinite k value),
while the outermost ellipses asymptotically become
spheres (k value equal to one). The k value is constant
along arcs of circles through A and B (Fig. 5). Its value
at C is

k , (3)
Cosa

where a = half of the angle ACB. In the dynamic
holodiagram (Fig. 8), on the other hand, for a certain
velocity the eccentricity is constant for all ellipses,
thus they are all identical and vary only in size. There-
fore the q value is constant along straight lines that
radiate from the common focal point B. The q value at
a certain angle is referred to in Fig. 10:

q = the distance BG divided by the distance BK,

or

1 -- cosY
c= - - -

r ,
(4)

IV. Uses of the Static Holodiagram

A. Optimization

The static holodiagram can be used to optimize the
utilization of a limited coherence length and to evalu-
ate the sensitivity of conventional and holographic
interferometry.1

B. Measuring Pulse Length Using Light-in-Flight Recording
by Holography

Let the difference in path length corresponding to
two adjacent ellipses represent the pulse length (ct) of
a laser (A) used for making a holographic recording at
B. Then, the bright fringe seen in the reconstructed
holographic image of an object (C) represents its inter-
section by the area between those two adjacent ellip-
ses, the separation (s) of which is

s = k 0.5ct. (5)

Now let us measure the pulse length by introducing a

Fig. 10. To the traveling observer an arbitrary point G of the
stationary world appears to exist at K which is found by drawing a
line of constant Yvalue from G to the sphere. Light rays emitted by
the traveler at angle y are aberrated by his velocity to angle a, while
his lines of sight are aberrated from angle y to angle A. This is the

method used to produce both Figs. 8 and 11.

ruler, with, e.g., one division per millimeter, into the
scene that is recorded by the hologram. This ruler will
then, in the reconstructed holographic image, be seen
illuminated by one bright fringe representing its inter-
section by the separation of two ellipsoids. To get the
true pulse length we tilt the ruler until we get the
shortest possible reading of the illuminated part. In
this way we make sure that we measure in a direction
that is perpendicular to the apparent pulse front and
that we therefore measure the correct value of the
apparent pulse length. Thus the apparent pulse
length (Lapp), as represented by the bright fringe,
seems to be half of its true value (Ltrue) at the x axis to
the right of B and to the left of A. Everywhere else it
appears to be longer. At the x axis in between A and B
it appears to be infinitely long. The true temporal
pulse length (ttrue) will be

ttrue = Lapp/k .5c. (6)

C. Measuring Pulse Velocity

The pulse velocity appears to be half of that of light
at the x axis to the right of B and the left of A. Every-
where else it appears to be faster. At the x axis in
between A and B the apparent pulse velocity (vapp) is
infinitely higher than the speed of light:

Vapp k 0.5c. (7)

The pulse shape appears distorted. The originally
spherical pulse front around A appears transformed
into one of the ellipsoids of the holodiagram. A flat
wavefront appears transformed into another 3-D
equivalence to a conical section, a paraboloid.

D. Measuring the 3-D Shape of Objects Using Light-in-
Flight Recording by Holography

The setup is identical to that of the last example.
However, instead of measuring the pulse itself we use
the pulse as a ruler to measure 3-D objects. Because of
the already discussed apparent distortions of the
pulse, we get the following results:

1830 APPLIED OPTICS / Vol. 27, No. 9 / 1 May 1988



S

p
[a] S

Fig. 11. Flat surface (s-s) perpendicular to the di
appears distorted to the traveling observer (B)
surface s'-s', which is constructed in the following
parallel to the x axis from the points where s-s int
soids of observation until they reach correspondi
spheres of observation. The same can be done
intersections with the aberrated lines of sight (q line
lines of sight (at angle -y). Connecting these poir
traveler's impression s'-s' of the stationary surfac
soids of observation and aberrated lines of sighi

observation and original lines of sigi

Ltrue = Lapp 0.5k.

Because of the different apparent veloc
different locations in the diagram, the
simultaneity is changed and, as the sp
fronts appear elliptical, the measured ar
of objects will change.

V. Uses of the Dynamic Holodiagram

A. Transformations from Spheres to Ellipsc

Using simple trigonometry and the tra
of Figs. 8-10 produces the following resu

(1) The apparent length (L,,pp) comp
true length (Ltrue) of object dimensions r
allel to the line of travel is

Lapp = Ltrue,
q

Thus objects coming toward the observe:
er, while those moving away appear sho

A B C D E F G H K

they are just passing by (with an observation angle of
900) do they appear Lorentz contracted.

(2) The wavelength of light (Xtrue) from moving ob-
jects appears Doppler shifted into xx. Thus,

(10)X.app =q\true

Therefore, when interferometry is used,

Lapp = 1 Ltrue.
q

$ < s-, ~B. Distortions of an Orthogonal Coordinate System

Si [be ' Finally we use the graphic method of Fig. 11 to study
5' [bI the transformation of an orthogonal coordinate system
rection of travel (Fig. 12). The traveling observer (B) passes as before
into the curved from left to right with the speed of 0.6c through the
way: Draw lines stationary world. Figure 11(b) shows the travelers
ersects the ellip- spheres of observation and his lines of sight. In Fig.
ag points on the 11(a) we see how, in relation to the stationary world,
going from the his lines of sight are aberrated and his spheres are

es) to the original transformed into ellipsoids. Let us study one station-

ce s-s (a) Ellip- ary straight line that is perpendicular to the direction
I, (b) spheres Of of travel and see how it appears distorted to the travel-
it. ing observer.

From every point at which the studied stationary
line of Fig. 11(a) is intersected by an ellipsoid or by an

(8) aberrated line of sight, a horizontal line is drawn to Fig.

ity of light at 11(b), until it intersects the corresponding sphere or
definition of the corresponding (unaberrated) line of sight. The
herical wave- curve connecting these intersections in Fig. 11(b) then
)parent shape represents the straight line of Fig. 11(a) as it appears

distorted to the traveling observer.
In Fig. 12(a) a total stationary orthogonal coordinate

system is shown and in Fig. 12(b) we see the corre-
sponding distorted image as observed by the traveler,

)ids represented by the small circle (iO,) passing from left
Lnsformations to right. The identical transformation would occur if
lts: the observer at B were stationary and instead the or-
ared with the thogonal coordinate system were passing him with the
measured par- constant speed of 0.6c from right to left.

All apparent displacements are caused by the fact
that different points on the object are studied at differ-

(9) ent points in time. During this time difference the
object has moved in relation to the observer, but only

r appear long- along its line of motion. Thus, flat surfaces perpendic-
rter. Only as ular to the direction of the velocity are distorted into
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Fig. 12. Orthogonal coordinate system of the sta-
tionary world (a) appears to the traveling observer
transformed into that of (b). The traveler exists at
the small circle (iO) and is moving to the right at a
speed of 0.6c. This situation is identical to that
when the observer is stationary while the coordi-
nate system is moving to the left. From the dia-
gram we find that flat surfaces are transformed into
hyperboloids. The plane (i-i) through the observ-
er is transformed into a cone. The back side can be
seen on all objects that have passed this cone. The
separation of advancing hyperboloids is increased,

while that of those moving away is decreased.
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hyperboloids, while those that are parallel to the mo-
tion are not changed with respect to flatness, angle, or
separation. This fact can also be understood from Fig.
3 where all the distortions result from the tilt of the
intersection planes of the two cones. This tilt is
caused by the separation of B from A which in turn is
caused by the velocity of B along the x axis. Because of
symmetry the tilt axis is parallel to the y axis, along
which it consequently produces no distortion.

VI. Conclusion

By studying the intersection of light cones we have
derived in a new way the ordinary static holodiagram
that can be used for conventional or holographic inter-
ferometry. We have also shown how it can be used to
explain the apparent distortions of time and space
when wavefronts are studied, e.g., using light-in-flight
recordings by holography. Thus it is our belief that
the Minkowski diagram will also become an important
tool in ordinary interferometry and especially in holog-
raphy with picosecond pulses. To be able to evaluate
such ultrahigh-speed movies it is necessary to compen-
sate for the distortions caused by the limited speed of
light.

Just as the Minkowski diagram, intoduced to ex-
plain relativistic effects, can assist in the understand-
ing of holographic phenomena, the holodiagram, intro-
duced to explain holographic effects, can assist in the
understanding of relativistic phenomena. Therefore
we have introduced the modified dynamic holodia-
gram and demonstrated how it can be used to visualize
in a graphic way relativistic apparent distortions.
Good agreement was found when we compared these
results with our earlier work23 and with those pub-
lished by a number of physicists working in the
field.7-10 However, in this paper we do not pretend to
distinguish between apparent and true distortions.
We hope that our work has built a bridge between the

conventional static optics and the optics of ultrafast
exposures and of ultrahigh velocities which will be-
come more and more important as picosecond and
femtosecond pulses find more general use as measur-
ing tools.
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Preach, my dear Sir, a crusade against ignorance; establish

and improve the law for educating the common people. Let

our countrymen know that the people alone can protect us

against these evils, and that the tax which will be paid

for this purpose is not more than a thousandth part of what

will be paid to kings, priests, and nobles who will rise up

among us if we have the people in ignorance.

T. Jefferson, 1786
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