
Light-in-flight recording. 4: Visualizing optical

relativistic phenomena

Nils Abramson

The modified holodiagram is used to solve and visualize in a graphical way a number of problems that are

important for the evaluation of ultrahigh-speed recordings. A simplified diagram is introduced to explain

the focusing effect of fast-moving light sources or observers. The diagram is used to show the distortion of

an orthogonal coordinated system to simplify the study of apparent deformations of arbitrary shaped rigid

objects. These distortions are compared with those of pulse fronts or wave fronts of light observed with ho-

lographic light-in-flight recordings.

1. Introduction

Einstein's theory of relativity is physically based on
1-D measurements using a conventional interferometer
(the Michelson-Morley experiment). Now that holo-
graphic interferometry enables us to make 3-D mea-
surements new possibilities exist to solve evaluation
problems in connection with relativistic distortions of
time and space. Certainly much of the knowledge now
applied to fringe interpretation could be used to inter-
pret image distortions caused by ultrahigh velocities of
the recorded object. The advent of picosecond and
femtosecond laser pulses will revolutionize high-speed
photography and make compensations for relativistic
effects necessary. This is especially the case when
light-in-flight recordings by holography are used be-
cause they represent four dimensions: the three di-
mensions found in ordinary holograms plus the time
domain.

11. Relativistic Holodiagram

The diagram of Fig. 1 (Fig. 4 in Ref. 1) shows an ex-

perimenter (the traveler) who travels from left to right
at a constant velocity (v) which is 0.6 that of light (c).
As he passes through stationary space filled with par-
ticles that scatter light, the traveler emits picosecond
light pulses at Al, A2, A3, and A4. The time separation
(t) of the pulses is constant. At time t after the last
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light pulse (at A4), he makes a short (picosecond) ob-
servation at B. The traveler then finds himself sur-
rounded by four luminous spheres all with himself in the
center. We, who are stationary, understand that the
traveler is surrounded, not by four observation spheres
but by four observation ellipsoids all with one common
focal point at B, the other focal points being Al, A2, A3,
and A4.

The ellipsoids are identical in shape (the same ec-
centricity), only the scale factor differs. Straight lines
radiating from B intersect all ellipsoids at identical
angles and the distances between adjacent intersections
are also constant along these lines. The distances
separating Al, A2, A3, A4, and B are t -v. The diame-
ters (d) of the spheres are

d = t - c _ . (1)

The minor axis of each ellipsoid is identical to those of
the spheres while the major axis is t -c.

The straight lines, in the following referred to as q
lines, radiating from the point of observation (B), rep-
resent the traveler's lines of sight aberrated by his ve-
locity. On each q line the angular direction prior to
aberration is printed, that is, the direction in which the
traveler is looking, e.g., the angle of the axis of a tele-
scope he uses for his observation (angle y of Fig. 2).

In Ref. 1 we showed how the "relativistic holodi-
agram" could be used to visualize all the relativistic
optical phenomena described by Einstein in his 1905
paper. Let us now study how our concept can be used
to understand and visualize the answers to relativistic
questions that have been raised in later years.

Ill. "Headlight Beam"

One phenomena pointed out by Weisskopf2 is that
spherically emitted light from a moving source is con-
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Fig. 1. A traveler moves at constant speed (0.6c) to the right. His
lines of sight are aberrated from angle y to the angles drawn in the
diagram (the q lines). Along each q line the separation of the inter-
sections by the ellipsoids of observation have a constant value, the
q value. Doppler ratio, apparent speed of time, and apparent angular
and longitudinal magnification are all functions of q, while transversal
Doppler shift, time dilation, and Lorentz contraction depend only on

the q line representing y = 90°.

Y

Fig. 2. To the traveler an arbitrary point G of the stationary world
appears to exist at K which is found by drawing a line of constant Y
value from G to the sphere. Light rays emitted by the traveler at
angle y are aberrated by his velocity to angle a, while his lines of sight

are aberrated from angle y to angle f3.

centrated like a "headlight beam" in the forward di-
rection. This fact was stated in Sec. III.A and Fig. 2 in
Ref. 1 but because our goal then was to study image
distortions we discontinued our work on the emitted
rays and concentrated on the lines of sight.

Let us now study the emitted light rays in more detail
and assume that the traveler who is moving from left to
right directs a laser in the direction BK of Fig. 2. The
direction of the beam in relation to the stationary world
will then be AG. Point G is found by drawing a line
parallel to the line of travel (the x axis) from the point
(K) on the sphere of observation to the corresponding
point (G) on the ellipsoid of observation. As the point
of observation is identical in space and time in the two
systems the center of the spheres should coincide with
the focal point of the ellipsoid of observation as in Fig.
1.

Fig. 3. The traveler in the center of the circle is moving to the right.
The radii inside the circle represent directions of the traveler emitted
light rays as seen by himself, while the lines leaving A represent those
outgoing rays after they have been aberrated (as seen by the rester).
Thus, light thrown in the forward direction appears focused as if by
a positive lens, while light thrown backward appears diverged as if

by a negative lens.

However, to simplify the drawing and the visualiza-
tion we make a new diagram (Fig. 3) where the center
of the sphere is in the center of the ellipsoid. The
graphical result is identical to that of Fig. 2 but the di-
agram is less clustered by lines and the aberration is
easier to follow. Thus the radii in the circle represent
directions of the emitted light rays as seen by the trav-
eler, while the lines leaving A represent outgoing rays
after they have been aberrated, as seen by a stationary
observer (the rester).

From Fig. 3 it is easy to see that the emitted rays are
concentrated forward as if there was a focusing effect
by a positive lens. This phenomenon, which was al-
ready pointed out by Einstein, results in the light energy
from a moving source appearing to be concentrated
forward, for two reasons: the light frequency is in-
creased by the Doppler effect and the light rays are
aberrated forward. This explains why the electron-
synchrotron radiation appears in intensity sharply
peaked in the forward tangential direction of motion of
the electrons as described by Weisskopf in Ref. 2. In
the backward direction we have the opposite effect.
The light is defocused as if by a negative lens.

In Fig. 4 the lines of sight are seen aberrated back-
ward in the direction found by drawing a line through
G from focal point B of Fig. 2. The traveler is still
moving to the right and his direction of observation
(telescope axis) is in the direction BK. Thus the sta-
tionary world around the traveler appears concentrated
in the forward direction (as demagnified by a negative
lens). In the backward direction we have the opposite
effect. The stationary world appears magnified as if by
a positive lens.

The concept of the lines of sight of Fig. 4, which are
identical to the q lines of Fig. 1, appears to demonstrate
an advantage of our approach compared with other
techniques. This idea is derived from the concept of
"wavefronts of observation" which was introduced for
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Fig. 4. Same situation as in Fig. 3. The radii inside the circle,

however, now represent the traveler's line of sight (direction of his

telescope) instead of outgoing light rays. The lines leaving B repre-

sent the traveler's aberrated lines of sight. Thus, to the traveler the
stationary world appears in the forward direction demagnified as if

by a negative lens while in the backward direction it appears magni-
fied as if by a positive lens.

the evaluation of holographic interference fringes by the
use of a conventional holodiagram (Ref. 3, p. 32).

IV. Changes of Speed

If I look at a star that is one light-year away its light
will immediately become Doppler shifted when I nod
my head. But if the star suddenly changes its direction
it will take one year before the Doppler-shifted light
reaches my eyes.

Thus the diagram of Fig. 1 is correct when point B
represents an observer traveling at constant velocity
from left to right through objects of the stationary
world. It is correct even immediately after B makes a
change of velocity or direction.

The diagram is also correct when point B represents
a stationary observer that is passed by objects moving
at constant velocity from right to left. It is, however,
not correct when these objects make any changes of
velocity or direction. It will become correct first when
the object velocity again has been constant for enough
time for the light to pass from object to observer. This
important restriction is valid not only for our diagram
but for special relativity as a whole. Thus, when B
represents a stationary observer who is studying a
fast-moving object, the relativistic holodiagram of Fig.
1 changes with the speed of light as the object changes
its direction of travel. However, if the observer at B
changes his direction of travel in a stationary world, our
diagram changes with infinite speed (faster than
light).

This concept also explains why acceleration but not
velocity can be detected in a closed system. If observer
and object move as a unit, the apparent red shift and
blue shift will compensate each other, but after a change
in velocity there will be a delay before the compensation
again takes place.

Now after visiting the border of general relativity, let
us go back to the holodiagram used within the limits of

Fig. 5. The traveler looks in the direction (,y) perpendicular to his
direction of travel which is to the right. His line of sight is aberrated
backward to angle /. He sees a stationary object at C as if it existed
atR, while the viewing angle in the image is unchanged. The object
therefore appears rotated at angle -y. When it approaches, its back
side is seen even before the object seems to be at the closest range.

special relativity and study how it, in a general way, can
visualize the apparent relativistic distortion of objects
moving at high velocities.

V. Relativistic Rotation

In 1959 Terrell published a paper,4 in which he states
that a camera photographing a fast-moving object will
not record any Lorentz contraction; instead it will rec-
ord an apparent rotation of the object. In the following
we study whether this statement agrees with our di-
agram.

This situation would be as seen in Fig. 5. The ob-
server is moving from left to right which in this case is
identical to the object moving from right to left. The
stationary camera at B observes an apparent object
rotation of t at the moment when its distance appears
to be at a minimum at R. This is the situation we study
in the following and this is the situation in which the two
theories agree completely. There is no doubt that the
relativistic rotation at large becomes easy to understand
and almost trivial when we study Fig. 5 and simply
compare the view of an object at C with that seen from
either D or B.

A. Lorentz Contraction

Let us start with Terrell's first statement that "in
contrast to what has been previously expected, the
Lorentz contraction is invisible when recorded two-
dimensionally by using a camera."

The apparent distortion of a fast object, as stated by
the special theory of relativity, results in the front and
the back surfaces of, e.g., a passing car appearing tilted.
The sides that are parallel to the motion appear, how-
ever, to stay this way independent of the velocity. Thus
the car appears to be sheared, not rotated. Terrell,
however, states that an observer using a camera cannot
decide from the photo whether the object is sheared or
simply rotated. The reason behind this statement is
that the sides that are parallel to the travel are short-
ened by the Lorentz contraction so that their visual solid
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Si statement also agrees with our derivation of the rela-
tivistic effects based on the holodiagram.

The sphere differs from the studied car in that a
rotation of a rotational symmetric object is invisible.
Therefore it is sufficient for us to study whether there
is any change in the solid angle of view.

In Ref. 1, Eqs. (13) and (14) show that

S 
Fig. 6. A flat surface (s-s) perpendicular to the direction of travel
will appear distorted to the traveler (B) into the curved surface s-s',
which is constructed in the following way: Draw lines parallel to the
x axis from the points where s-s intersects the ellipsoids of observa-
tion until they reach corresponding points on the spheres of obser-
vation. The same can be done going from the intersections with the
aberrated lines of sight (q lines) to the original lines of sight (at angle
y). Connecting these points results in the traveler's impression s-s'
of the stationary surface s-s. (a) Ellipsoids of observation and ab-
errated lines of sight, (b) Spheres of observation and original lines of

sight.

angle is decreased as if the total object had been rotated
without any distortion at all. He proves that the Lo-
rentz contraction has exactly the value to make this
interpretation possible.

Let us now see whether the statement about the
"invisibility of the Lorentz contraction" agrees with our
derivation of the Lorentz contraction from the holodi-
agram.

Equation (1) in Ref. 1 states that the Lorentz con-
traction is represented by

1T
IT (V/c)2 = I/k, (2)1
R

where T = the length as measured by the traveler,
IR = the true length (as measured by the rest-

er), and
k = 1/cost (Fig. 5).

The resulting equation,

1r-= cost, (3)
IR

simply states that T appears shortened as if it were seen
from the angle to the normal. Thus we find full
agreement with Terrell's first statement. Looking at
our Fig. 5 it is almost trivial to understand that the ob-
server at B sees the object C (traveling from right to left
in relation to the observer) almost 450 from behind.
When he looks in direction BR he sees along the aber-
rated line of sight BC. Further discussion of this phe-
nomena is given in Sec. VI and Fig. 7.

B. Distortion of a Sphere

Terrell's second statement is that the Lorentz con-
traction is also invisible in the case of a passing sphere.
One would expect the sphere to appear shortened along
its line of travel so that it is transformed into an ellip-
soid, but according to Terrell no such effect is seen in
a photographic recording. Let us see whether this

where Ma is the angular magnification and M, is the
longitudinal magnification (along the line of sight).
Thus the solid angle of view appears to depend inversely
on the distance, as we are used to in our stationary
world. Accordingly, the sphere appears essentially
circular in outline, independent of its velocity. How-
ever, this result is restricted to small solid angles of view.
This is also true for our derivation of Ma because Eq.
(14) in Ref. 1 was produced by differentiation, and
represents the only approximation in that paper. This
restriction limits the use of the equations but in no way
limits the use of our diagram, which clearly shows the
apparent relativistic rotation to be only a by-product
of the total object distortion, as seen in our Fig. 7 and
in Fig. 5 in Ref. 1.

We now understand one advantage of holographic
methods over photographic. They include the distance
information so that the difference between shear and
rotation is seen, thus making the Lorentz contraction
visible as described in Sec. VI.

VI. Transformation of an Orthogonal Coordinate
System

Now we use the graphic method introduced in Fig. 4
in Ref. 1 to study the transformation of an orthogonal
coordinate system (Fig. 6).

The traveler (B) is passing from left to right at a speed
of 0.6 c through the stationary world. Figure 6(b) shows
the traveler's spheres of observation and his lines of
sight. In Fig. 6(a) we see how, in relation to the sta-
tionary world, his lines of sight are aberrated and his
spheres are transformed into ellipsoids. Let us study
one stationary straight line that is perpendicular to the
direction of travel and see how it appears distorted to
the traveler.

From every point at which the studied stationary line
of Fig. 6(a) is intersected by an ellipsoid or by an aber-
rated line of sight, a horizontal line is drawn to Fig. 6(b)
until it intersects the corresponding sphere or the cor-
responding (unaberrated) line of sight. The curve
connecting these intersections in Fig. 6(b) then repre-
sents the straight line of Fig. 6(a) as it appears distorted
to the traveler.

In Fig. 7(a) a total stationary orthogonal coordinate
system is shown and in Fig. 7(b) we seen the corre-
sponding distorted image as observed by the traveler,
represented by the small circle (i,O) passing from left
to right. The identical transformation would occur if
the observer at B were stationary and instead the or-
thogonal coordinate system were passing him with the
constant speed of 0.6 c from right to left. From Fig. 7(b)
we find the following:
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IJ K L M Fig. 7. Orthogonal coordinate system of the sta-
tionary world (a) appears to the traveler transformed
into that of (b). The traveler exists at the small
circle (iQ) and is moving to the right at a speed of
0.6c. This situation is identical to that when the
observer is stationary while the coordinate system
is moving to the left. From the diagram we find that
flat surfaces are transformed into hyperboloids that
point like arrows in the direction of travel. The
plane (i-i) through the observer is transformed into
a cone. The back side can be seen on all objects that
have passed this cone. The separation of advancing
hyperboloids is increased, while that of those moving

Ad' away is decreased.

A. Surfaces Parallel to Velocity

All apparent displacements are caused by the fact
that different points on the object are studied at dif-
ferent points of time. During this time difference the
object has moved in relation to the observer, but only
along its line of motion. Thus, flat surfaces parallel to
the direction of velocity are not changed in respect to
flatness, angle, or separation.

B. Surfaces Orthogonal to Velocity

(1) Flat surfaces moving toward the observer are
transformed into hyperboloids that appear convex to
the observer.

(2) Flat surfaces moving away from the observer are
transformed into similar hyperboloids that appear
concave to the observer.

(3) The flat surface passing through the observer
(i-i) is transformed into a cone.

(4) The observer can see the back side of all objects
that have passed through the surface of the cone.

(5) The spacing of the surfaces moving toward the
observer is increased.

(6) The spacing of the surfaces moving away from the
observer is decreased.

(7) Let the original spacing (d) rotate so that it is
kept normal to the hyperboloid surface. Then it will
always occupy the same angle of view as the spacing of
the hyperboloids. This fact, which confirms Terrell's
statement, is true only for infinitesimal angles of
view.

We have compared results from Fig. 7 with those of
several other workers and found good agreement.
Bhandari5 states that a vertical line moving at high
speed assumes the shape of a hyperbola. Mathews and
Lakshmanan6 criticize the concept of relativistic rota-
tion and introduce "the train paradox" as follows:
When a fast-moving train is studied should one imagine
each boxcar to be rotated or the train as a whole rotat-
ed? What happens to the stationary rails? Finally
they conclude that the rotated appearance is not self-
consistent. We agree with this statement, and the train
is easily visualized in our Fig. 7 as being one of the hor-
izontal rows of deformed squares, from which it is ob-
vious that the distortion of the total train cannot be
explained as caused solely by rotation.

However, the statements by Terrell that objects ap-
pear rotated but nondistorted (Sec. V) are verified in
Fig. 7 within the assumptions that the studied objects
subtend sufficiently small visual angles and that
changes in distances are neglected. It is seen from our
diagram that the solid angle of sight of the separation
of the hyperboloids varies as if the original separation
(d) had rotated to keep it perpendicular to the hyper-
boloids. Thus each infinitesimal original square which
has been distorted into a rhomblike shape might, to the
observer, appear to be rotated. Further, small spheres
are transformed into ellipsoidlike shapes that, however,
cover approximately the same solid angle of view as do
the original spheres. It is interesting to note that these
two statements are equally true whether the object
appears Lorentz contracted or expanded as seen in the
diagram in Fig. 7.

Even if our diagram in a limited way verifies Terrell's
statements, it does so only when the observation is made
by a camera. As soon as holography is included, it is
easy to study variations in distances and in this way
distinguish between shear and rotation so that the large
scale distortions as presented in Fig. 7 are observed.

Finally, in the paper by Scott and van Driel,7 the ce-
lestial sphere is studied, and it is shown that at increased
speed stars appear moved toward the point of travel. It
is also pointed out "though a sphere remains circular in
outline, the apparent cross section may be grossly dis-
torted and in some conditions the outside surface of the
sphere appears concave." The last statement is verified
by our Fig. 7 where a flat surface that has passed the
observer appears concave.

Thus we have shown that our diagram (Fig. 7) in a
concentrated form produces results that agree with
those found in different publications based on the
Einstein equations.

C. Comparison to Wave Fronts

Let Fig. 7(b) represent an orthogonal coordinate
system moving from right to left at the speed of 0.6 c
past the stationary observer at B. As the velocity is
increased and approaches that of light, the cone angle
mentioned in Sec. VI.B(3) approaches zero. Thus all
approaching objects appear rotated through 90° so that
their back side [as mentioned in Sec. VI.B(4)] can be
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Fig. 8. Orthogonal coordinate system identical to that in Fig. 7(a)
is made up of light using horizontal light rays and vertical pulse fronts
(wave fronts) that pass from right to left. An observer makes a
light-in-flight recording and finds that the flat pulse fronts appear
transformed into a set of paraboloids with himself at the common focal

point. The back side is seen on all pulse fronts.

seen. The separation of the advancing hyperboloids
[mentioned in Sec. VI.B(5)] approaches infinity. At the
same time the hyperboloids moving away [mentioned
in Sec. VI.B(2)] are transformed into paraboloids and
their separation along the line through the observer (0)
approaches zero.

It is interesting to compare these results with the
apparent shape of the only known flat surfaces that
move with the speed of light, namely, flat wave fronts
or flat sheets of light that are studied by its scattered
light (Fig. 8). The cone angle of Sec. VI.B(3) is zero and
the back side of all visible wave fronts is seen. The
separation of all approaching surfaces is infinite. As
the wave fronts pass by they are tilted through 450 in-
stead of approaching 900. The wave fronts that move
away from the observer are transformed into parabo-
loids instead of hyperboloids. Their spacing appears
to be half of their value instead of zero.

The main difference between a set of flat solid sur-
faces moving perpendicular to their surfaces and flat
wave fronts or flat sheets of light is that the former ex-
perience Lorentz contraction which the light surfaces
do not. This fact has already been discussed in Sec.
VIII.E in Ref. 1. To this could be added that the
Doppler shift is a sign and a measure of relativistic
transformations. The light reflected from a moving
solid surface is Doppler shifted, but scattered light from
a moving sheet of light is not, as the wavelength is in-
dependent of where it is observed.

The apparent length of the cars of a passing train is
equal to the true length only at the angle of sight of zero
Doppler shift [close to G-H in Fig. 7(b)]. The apparent
length of light pulses, on the other hand, is equal to the
true length only at an angle of sight that is perpendic-
ular to light propagation (C-D in Fig. 8).

The rules for the apparent distortion of wave fronts
or pulse fronts are much simpler than those of solid
objects moving at relativistic velocities. In the following
we give three simple rules concerning the practical use
of light-in-flight recordings for the study of the shape

of wave fronts or the shape of stationary objects.
The curvature of a wave front appears transformed

into the curvature of a mirror surface so shaped that
it would focus the total wave front into the point of
observation. The reason is that a focusing mirror re-
flects light in such a way that the total wave front arrives
to the focal point at one point of time. Thus a small flat
wave front that passes by will appear tilted 450. A
larger flat wave front will reveal that it does not only
appear tilted, it is also transformed into a paraboloid
whose focal point is the point of observation. A
spherical wave front appears transformed into an el-
lipsoid, one focal point of which is the point source of
light (A) while the other is the point of observation (B).
This configuration represents one of the ellipsoids of the
holodiagram (Fig. 5 in Ref. 8).

Light-in-flight recording by holography can be used
to reveal the intersection of a light slice and a scattering
surface. By positioning this surface in a special way it
is possible to produce a cross section of the apparent
wave front which is identical to a cross section of the
true wave front. Such an undistorted view of the true
wave front is formed if the scattering surface is a part
of a sphere the center of which is the point of observa-
tion. A good approximation of this configuration is a
flat surface a large distance away with its normal di-
rected toward the observer.

If the apparent wave front is flat it can be used to
produce a flat undistorted cross section of a studied
object of unknown shape. There are two ways to pro-
duce a flat apparent wave front: RA and RB should
either be infinite or equal but of different sign. In
practice the latter represents a convergent illumination
beam [Eq. (20) in Ref. 8].

VII. Conclusion

In a new graphical way we have solved optical prob-
lems found in the literature about special relativity. To
arrive at these results we have used the accepted con-
cept of the constancy of the speed of light and the fol-
lowing tools: a string and two nails for making ellipses;
a ruler, pen, and paper to draw the diagrams.

No further mathematical knowledge and no prek-
nowledge about relativity is needed to make and use the
diagram. The technique is based on a slightly refined
diagram, the holodiagram, which was initially designed
for holography and conventional interferometry.
Simplicity and visualization are the main advantages
compared with the uses of the conventional equations
presented by Einstein. The result is that each velocity
presented in a concentrated form in one diagram shows
the distribution in space of the following phenomena:
The Doppler shift of which the transverse red shift is
found to be one special case. The aberration of light
rays and lines of sight. The apparent rotation which
is found to be a part of the more general object distor-
tion. The Lorentz contraction which is found to be a
special case of apparent expansions and contractions.
The time dilation which is found to be a special case of
more general apparent speeding up and slowing down
of the speed of time.
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Further, we have found that the diagram can be used
directly after the observer has changed his velocity but
not when the object studied changes its velocity. From
this we conclude that the ellipses (ellipsoids) and the q
lines (cones) of the diagram move at infinite velocity
with the observer but only with the speed of light with
the observed object.

Finally, we have shown that our method can be used
to predict the relativistically distorted image or to re-
store the true image from it. The apparent distortion
of a flat surface that approaches the speed of light is
compared with the apparent distortion of a flat wave
front observed, e.g., by holographic light-in-flight re-
cording. It is found that these distortions are not
identical but their main features are similar.
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