Light-in-flight recording. 2: _Compensation for the
limited speed of the light used for observation

Nils Abramson

Equations are given for the apparent rotation and distortion of wave fronts caused by the limited speed of
the light used for the observation (here referred to as a relativistic effect). Methods are discussed and
mathematically derived for the compensation and the elimination of these unwanted effects. Equations
are given for how these effects can be used to advantage for the manipulation of the tilt angle of the intersect-
ing plane used in contouring. Optimization of the time resolution and the time capacity for a certain length
of hologram plate is given in tabular form. A new formula is enunciated for the curvature of the relativisti-
cally distorted wave front. Finally, it is demonstrated that the ellipsoids of the holodiagram are the spheri-
cal wave fronts from a point of illumination as they are seen in a scattering medium from another point of

observation.

l. Compensation of Relativistic Rotation

If an object in the shape of a flat surface travels past
an observer at a velocity close to that of light (which we
refer to here as relativistic velocity), it will appear both
rotated and distorted. The reason is simply that the
whole object is not seen simultaneously, because dif-
ferent points on the object surface are at different dis-
tances from the point of observation. Thus different
parts of the object are seen at different points of time,
and if the object’s velocity is fast enough compared with
that of light, it will move an observable amount during
these differences in time delays.

Let us compare this effect to that of studying the stars
in the sky. Neither the apparent position, nor the ve-
locity of individual stars, nor the configuration of stars
is true because we do not see them simultaneously. To
observe them as they really are we would have to in-
troduce delay lines that compensate for differences in
distances.

Let us return to our initial problem which is light-
in-flight recordings of fast moving objects. We shall see
the closest parts of the object as if they had moved
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further than the more distant parts. When the velocity
is that of light itself the effects are large and have to be
calculated and compensated for. Thus, e.g., a flat wave
front of light passing by an observer will in the first
approximation appear rotated 45°. A closer study re-
veals that it is curved into a paraboloid with the ob-
server at the focus. In this paper we shall study the
importance of these relativistic rotations and distortions
of the wave fronts and discuss methods (e.g., delay lines)
to reduce, or in some cases totally eliminate, their in-
fluence on the observations.

A. Delay of Arrival Caused by the Flight Time of the
Observation Beam

When the observer (B in Fig. 1) sees the wave front
at Wy it is already at W5. When the observer looks
along the line of sight he sees the light at E when it is
already at D. Thus the apparent distance (Rypp) is
shorter than the real distance, if the latter is defined as
the true distance at the moment of observation. Letus
calculate R, based on Fig. 1.

During the time it takes for the light from the wave
front W1 at E to reach the observer at B, the wave front
itself has moved to position Wo. Thus: CD = BE.

Let BE be R app, (Which means apparent distance R).
Let BF be

__BF D
cos(w—¢) cos(w—¢)’
thus
a Rapp
Rapp = - ’
cos(w—¢) cos(w— ¢)
Rapp = ————- &)

1+ cos(w — ¢)
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Fig. 1. Wave front (W;) is emitted at angle w from A and observed
at angle ¢ from B. When W is seen at E it is (Wy) already at D
separated from B by the distance B-F which is designated a. The
apparent distance in direction of observation (B-E) is designated
Rapp. Different parts on the holographic plate record the wave front
at different points of time depending on the angle () of the reference
beam (R). Because of the distance (L = Hs — B) separating the ob-
server and the hologram plate (H,~Hs), different viewing angles (¢)
represent different points of time resulting from the added influence
of the time of travel of the object beam and the reference beam,
respectively.

Fig. 2. Delay of recording caused by the added influence of the time

of flight of the object pulse (angle 6) and the reference pulse (angle

7v), respectively. The studied length (!) of the hologram plate is from
H, to Ho.

B. Recording Delay Caused by the Flight Time of the
Reference Beam

Let us study the times of arrival at a certain point on
the hologram plate of the reference pulse and of the
object pulse (Fig. 2).

Time for reference pulse to pass from H; to Hs is
t1:

1.
t; = —siny;
c
Time for object pulse to pass from H; to Hois to:
to= lsinl‘).
(4

Thus recorded at Hs will be those events that happened
to the object later than those recorded at H;. The time
delay (T') will be
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T=t1—te= ! (sinvy — sinf) 2)
C
Now let us look for maximum and minimum of T
oT = ! (cosydy — cosf60) = 0, 3)
C

The result is the minimum for v = 6 which produces
zero delay because the object and reference beams are
parallel.

The maximum is v = —6; the absolute maxima are:

¥ =90, } v = —90,}
0 =-90,) 6 =090.

These are exactly the results given by the holodiagram
of Figs. 3-6. The maximum time span is reached when
the plate intersects as many hyperboloids as possible,
which means that the normal of the plate bisects the
angle between object and reference beams. It also in-
dicates that the k value of the holodiagram is as large
as possible. In Fig. 3 this k& value refers to the separa-
tion of the ellipses divided by the separation of the cir-
cles. When the separation of the ellipses is at maxi-
mum, the separation of the hyperbolas is at a min-
imum,

Let us now study how [ of Fig. 2 depends on the ob-
servation angle ¢ if the plate has the angle Y in relation
to A B of Fig. 1:

L
L= (cosy)(tany + cotg)

Thus the delay T is found by combining Eqs. (2) and (4).
However, as increasing ¢ represents decreasing T the
sign of T should be changed. Note that the angle (f)
between the normal of the hologram plate and the ob-
servation direction is equal to ¢ — Y. The angle be-
tween the normal of the hologram plate and the refer-
ence beam is still y. Thus

_ L[sin(¢ — ¢) ~ siny]
c(cosy)(tany + cotep)

)

®

C. Resulting Recorded Distance

When we make a photograph of a star that is one
hundred light-years away, we record what it looked like
one hundred years ago. If we want to photograph what
it looks like now, this is also possible; all we have to do
is to make the exposure by pressing a button that starts
a clock which waits for one hundred years before taking
the photograph. Recorded will be how the star looked
at the moment when we pressed the button (if earth
were a stable platform).

If we want to know the positions of many stars at
different distances and traveling at different velocities,
we could use this method of delaying the recording of .
each individual star in relation to its distance. With
such a method we could, in theory, photograph the true
positions of the stars in relation to one another at the
same point of time. The practical problems would
however, be immense, one being the well-known cross
talk between radial and transverse velocity.

Is it possible that we could use the delay along the
hologram plate in the same way as do clocks that control
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Fig. 3. A and B are the centers of two sets of concentric circles in a
bipolar coordinate system. The moiré fringes form one set of hy-
perbolas and one set of ellipses. To emphasize these patterns, every
second rhomboid area has been painted black except for one-quarter
of the diagram where one ellipse and hyperbola have been marked.
One rhomboid is studied in detail in Figs. 5 and 6. The circles rep-
resent spherical waves emitted from the picosecond point source A
and the separation between two adjacent circles represent half of the
pulse length. Then each bright ellipse represents the spherical wave
(spherical pulse) as seen from B after it has been deformed by rela-
tivistic effects. This statement is true for both the curvature and the
thickness (separation) of the ellipses, each one representing a con-
secutive point of time.

Fig. 4. Angles of one of the rhombs of Fig. 3 are studied and the two
diagonals are calculated. The statements of the figure are true only
if Nis infinitesimal. The distance separating the ellipsesis C — E =
k - R, where R is half the pulse length. The normal to the ellipses
everywhere bisect the angle ACB. The k-value is CE/0.5 A.

the exposure of the astronomical cameras? The delay
of arrival caused by the flight time of the object beam
could perhaps be compensated for by the delay of the
recording caused by the flight time of the reference
beam. If this was possible over the whole hologram
plate, we could record objects at different distances as
they were at the same point of time. Let us therefore
study the resulting effect when the apparent distance
(R app) decreases because of the flight time of the object
beam [Eq. (1)] and increases because of the flight time
of the reference beam [Eq. (5)]. Thus,

_ a Lisin(¢ — ¢) — siny]
1+ cos(w=1¢) cosy(tany + cotg)
where, referring to Fig. 1,

(6)

R app

Fig. 5. Ellipsoids of the holodiagram represent the apparent wave
fronts of light emitted from A and observed from B. They also rep-
resent the apparent pulse length, pulse velocity, and pulse front
curvature of picosecond pulses emitted from A. When the wave front
is to be studied, the object screen (S-S) should be placed with its
normal toward B. Thus Rp (see Fig. 4) will be almost constant along
its surface, and the intersections of the ellipsoids will be identical to
those of the spheres centered at A.

Fig. 6. Holodiagram with the arcs of circles (k circles) that represent
constant separation of the ellipses. When a picosecond pulse is
emitted from a point source (A) the ellipses represent the spherical
pulse front as seen from B. If the true pulse length is ¢ - ¢ the ap-
parent pulse length is 0.5 & - ¢ - ¢, the apparent pulse velocity is 0.5
k - ¢, and the apparent radius of curvature isR = 2k - R4 - Rg/(R4 +
Rp). The value of k is 1/cosa where « is found in Fig. 4.
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Fig. 7. See also Fig. 1. When the observation angle ¢ is increased

by 8¢ the apparent distance Rqpp is increased by 0Rapp. The latter

increase is caused by the combined effects of the time of flight of the

" observation beam (EH) and of the reference beam (R), respectively.

The apparent rotation of the wave front results in the angle £ in
relation to the normal of the line of sight.

Rapp = apparent distance from wave front to ob-

server (B F),

a = true distance from wave front to observer (B
F),

L = distance between hologram plate (H3) and
point of observation B,

w = angle of illumination,

¢ = angle of observation,

¢ = angle of hologram plate, and

v = angle of reference beam.

D. Apparent Rotation of the Wave Front

Now let us look for the apparent rotation of the wave
front (Fig. 7):

5R app R (7)
Rappad)

& = apparent angle between wave front and
the normal of the line of sight,
Rapp = apparent distance, and
¢ = angle of observation.
To find £ let us differentiate Eq. (6):
ORapp _ __ asin(w—¢)
o - [1 + cos(w — ¢)]2
+ L[sin(¢ — ) — siny][1 + cot2]
cosy(tany + cotg)?
+ L cos(¢p — ¢) .
cosy(tany + cotep)
Combining Eq. (7) with Eq. (8) and inserting the a value
of Eq. (6) results in
1 [ —sin(w=—¢) Llsiny —sin(¢ ~ )]
Rapp {1 +cos(w—¢) | P cosy/(tany + cotg) ]
+ L[sin(¢ — ¢) — siny][1 + cot?¢)
cosy(tany + cotgp)?
L cos(¢p — ¢) , ©
cosy/(tany + cotg)
where the designations are those of Egs. (6) and (7) and
Figs. 1 and 7.

tanf =

8

tan =
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Fig.8. Propeller of an ordinary fan used for the contouring experi-

ment. To simplify the recording, the propeller was covered with re-

troreflective paint. During exposure it was rigidly fixed not hand-
held.

E. Examples of Compensation and Tests of Validity

1. No Distance Between Hologram Plate and Point
of Observation

When the distance L of Fig. 1 is zero, Eq. (9) is re-
duced to

L w—¢ w—¢
2 sin cos
sin(w — ¢) 2 2
tanf:_l-%cos(w—d)):_
2 cos? e-
= —tan w-¢ .
2
Thus
—_9z¢,

£= 5 (10)
Result: There is no influence from the hologram

plate. The apparent rotation is caused solely by the
relativistic effect which rotates the apparent wave front
from the normal to the direction of illumination until
it is normal to the bisector of the illumination and ob-
servation directions. An identical result is given di-
rectly by the holodiagram (Figs. 3-6) which is simply
based on ellipsoids of constant path lengths (and thus
constant flight time from A to B).

2. Light-in-Flight Recording where Illumination
and Observation Directions are Perpendicular

When our light-in-flight recordings of Figs. 1-8 in
Ref. 1 were made, the flat object screen was perpen-
dicular to the direction of observation and almost per-
pendicular to the wave front studied. (Object screen
refers to the screen that is illuminated by the wave front
to be studied.) The observation was made from such
alarge distance that the path length from the observer
to the object screen was constant over its whole area. In
this configuration, Rg of Figs. 3 and 4 is constant and
R depends solely on R 4.

The relativistic 45° rotation of the wave front has no
influence in that case. Thus we made no attempt to



compensate for the rotation; we just kept the camera
lens as close as possible to the hologram plate so that the
corresponding time of recording was as short as pos-
sible.

However, if instead we had wanted to make a 3-D
study of the wave front, e.g., by recording the light it
scattered when passing through a box filled with smoke,
in that case the relativistic rotation of the wave front
would be a great disadvantage. Is it perhaps possible
to use the delay of recording along the plate to eliminate
the delay of arriving of the light from the furthest parts
of the smokebox? Let us study this problem mathe-
matically.

When the angle of observation ¢ of Fig. 1 is zero, Eq.
(9) is reduced to

sinw L(siny + siny)

tan§ = —
: 1+ cosw R app cosy

(11)

If the angle of illumination (w) is perpendicular to the
angle of observation (¢), the wave front (W) appears,
by the relativistic effect, to be rotated 45° in the direc-
tion of £ [Fig. 7 and Eq. (10)]. Could this rotation be
compensated for by an opposite rotation caused by the
hologram plate?

Inserting w = 90° in Eq. (11) gives
L(siny + siny)

Rapp cosy '
Compensation is attained when the apparent wave front

is parallel to the line of observation, which is the case
when the angle £ is —90° or, in other words, when tané

= —0,

Thus

tanf = — |1 +

L siny+sing _ -
Rapp ) cosy/ N

From this equation we understand that it is impossible
to reach total compensation. The closest practical
approach could perhaps be for L = 0.9R, v = 80°, and
Y = 80°. These values give

0.99 + 0.99

tanf = — {1 4+ 0.9
0.17

=—115,
£=85°.

Far more practical would be to keep Y at 45° which re-
sults in £ = 65°. ;

Result: Tt is impossible to compensate totally for the
relativistic rotation of 45° when illumination and ob-
servation directions are perpendicular. However, it is
possible to get a partial compensation so that the rota-
tion is decreased to 25° and in very limited cases down

to 5°. Full compensation is possible for other angles of
illumination and observation.

3. Illumination and Observation Directions are
Separated by 45°

Let the illumination direction (w) be 45° (Fig. 1). In
this case is it possible to compensate so that the error
in the wave front angle caused by the relativistic rota-
tion is eliminated by the delay effect of the holographic
plate? Let usstudy Eq. (11) again and insert ¢ = 0; w

=45° ¢ = 0;y = 90; and tanf = —1. The result is that,
for L = 0.6R, Eq. (11) is satisfied. Thus in this case it
is possible to compensate totally for the relativistic
rotation of 22.5°. However, one should keep in mind
that, when a flat wave front is rotated and corrected by
the hologram plate, a curved wave front will become
slightly distorted by a second-order effect.

4. Contouring, Where the Illumination and
Observation Directions are Parallel

When light-in-flight recording is used for contouring
purposes it is most useful if the sheet of light that in-
tersects the object is perpendicular to the line of sight.
In that case the movable bright line of intersection is
like one of the level lines of a map.

Let us return to Fig. 1 and again for simplicity set the
observation angle ¢ equal to zero. Let also the illumi-
nation angle w be zero and finally let the separation (L)
between the point of observation (B) and the hologram
plate (H-H) be zero. In this case Eq. (11) is reduced
to

tanf = ————=0;
1 + cosw

£=o.

Thus there is no relativistic rotation when light-in-flight
is used for contouring and therefore no compensation
by the holographic plate is needed. However, in some
cases it might be useful to be able to rotate the inter-
secting plane to measure and compare different angles
at the object. This will be possible if we move the point
of observation (B) away from the plate (H-H) so that
L will no longer be zero. Let ¢ and w still be zero. In
this case Eq. (11) will be reduced to

tant = — L(siny) .
Rapp cosy
If we select the following practical values: L = 0.5R;y
= 0; and v = 90°, the result will be £ = —26°.

Thus it is practically possible to rotate the inter-
secting plane 25°. The absolute maximum of rotation
would perhaps be when L = R, which simply means
that the hologram plate touches the object. In this case
(which is not practically useful) the angle £ would be
45°,

Is there any possibility to get still larger rotations?
Could the distance (L) from the observer to the plate
be made larger than the distance (R) from the observer
to the object? Yes, if we study the pseudoscopic image
instead of the original virtual image. There is nothing
to hinder the separation between the observer and the
pseudoscopic image becoming close to zero, in which
case the value of tanf comes close to infinity. However,
other problems exist such as object image distortions
that finally set a limit to the value of £.

Result: When light-in-flight is used for contouring,
there is no problem of relativistic rotation of the inter-
secting plane; indeed, it is possible to utilize the effect,
if desired. In that case a rotation of some 25° is prac-
tically useful in the ordinary virtual image. If larger
rotation is needed the pseudoscopic image should be
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Fig.9. Schematic view of the holographic setup. The propeller (C)

of Fig. 8 is illuminated by the divergent beam from the picosecond

laser (A). The reference beam is reflected by the two mirrors (M; and

M) toward the hologram plate (H). In the actual experiment the

distance between H and C was much longer compared with H and C

than shown in this drawing. B;, represent different camera positions
and S;; represent the corresponding intersecting surfaces.

Fig.10. When the observation is made through the hologram plate
(H of Fig. 9) from a point close to its surface (B11), the propeller is seen
‘intersected by a plane (S;;) that is perpendicular to its axis. Illu-
mination and observation are made from a large distance and their
directions are almost parallel to the propeller shaft.

studied instead. In this case a rotation close to 45° is
theoretically possible.

This ability to rotate the intersecting plane could be
used to facilitate measurements, e.g., to compare the
angles of an object. To demonstrate this possibility we
show the propeller of Fig. 8 (from Ref. 1), the 3-D shape
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Fig.11. Same hologram plate as in Fig. 10 but the camera is moved
to position Big which results in the intersecting surface being trans-
lated in depth to Sys.

Fig. 12. Same hologram plate as in Fig. 10 is studied from a point

situated behind the plate (Bs;) at about half of the distance the pro-

peller was in front of the plate during the recording. In this case the
intersecting surface (Sg;) is tilted ~20°.

of which is measured from its cross sections visualized
by inserting a thin sheet of light. Figure 9 is a schematic
view of the holographic setup. By moving the camera
along the plate the intersecting plane is translated in
depth. By moving the camera away from the plate the
intersecting plane is rotated.

Figure 10 shows the propeller intersected by a plane
that is perpendicular to its axis. Figure 11 is photo-
graphed from the same hologram plate as Fig. 10, but
the camera is translated along the plate so that the in-
tersecting plane is moved in depth. Figure 12 shows the
result when the camera, from the position of Fig. 10, is
moved away from the plate instead of translated. The
result is a tilt of the intersecting plane of some 20°.
Figure 13 shows the result when the camera is moved
still further away so that the intersecting surface is
parallel to a large portion of one of the curved blades.

Finally Fig. 14 was made from the same area of the
same hologram plate as Fig. 11 but during reconstruc-
tion it was photographed through two slit apertures
instead of one. The resulting two parallel intersecting
planes give direct information about the tilt angle. The
separation of the bright lines is a function of the angle



Fig. 13. Same hologram plate is in Fig. 10 but by positioning the

camera still further away from the plate (Bjg) the intersecting plane
is rotated so that it becomes parallel to a large portion of one of the
curved blades of the propeller.

Fig. 14. Same hologram plate as in Fig. 10 was photographed with
the camera in the same position (Bjo) as in Fig. 11. However, instead
of having just the ordinary single aperture, the camera was equipped
with two vertical slit apertures, each 5 mm wide. The horizontal
separation of the slits represents a time difference of some 20 psec and
accordingly the propeller is seen intersected by two parallel surfaces
separated by some 3 mm. The separation of the two lines of inter-
section is a measure of the angle of the object surface.

between the intersecting planes and the object surface.
The larger the separation the smaller is that angle.

F. lllumination Pulse Front that is not Perpendicular to
llumination Direction

Still another possibility exists to compensate for the
relativistic rotation, which is not based on the delay
effect of the hologram plate and which does not distort
the shape of the wave front. It can be used to com-
pensate even when illumination and observation di-
rections are perpendicular. This method is based on
the idea of producing an illumination beam whose wave
front is not perpendicular to its direction of propaga-
tion.

That statement seems absurd. We have learned from
textbooks that by definition the wave fronts are always
perpendicular to the rays of light and thus to the di-
rection of travel. Thus we shall here introduce the word
pulse front and use this word instead of the word wave

front but only in those cases when the old definition of
wave front no longer applies. Thus the bright lines of,
e.g., Fig. 8 of Ref. 1 instead of referring to the wave front
of light could refer to the front of a short light pulse that
passed through the lens.

Very few people would dispute that the shape of the
wave front or the pulse front would be the same when
they pass through an ordinary lens as in the above ex-
ample. The delay of the pulse front will in every point
be identical to that of the wave front. However, if the
lens had not been an ordinary lens with a continuous
variation in thickness but instead had been a Fresnel
lens or a zone lens, the wave fronts moving toward the
focal point would be chopped up in small pieces of the
different wave fronts that initially reached the lens.
Only the continuity and the coherence of the light
makes it possible for these composite wave fronts to
produce a diffraction-limited point of light. If such a
lens is illuminated by a short pulse of light, the pulse
fronts passing through different parts of the lens will
arrive at the focus at different points of time and thus
no diffraction-limited point of light is produced.

Thus differences exist between wave fronts and pulse
fronts. These differences only arise when the light is
chopped up by discontinuities of an optical element
such as Fresnel lenses, zone lenses, diffraction gratings,
or holograms. The pulse front represents the shape of
one single wave front, while the wave front defined as
perpendicular to the level of the light represents a new
composite wave front built up by the cooperative effect
of many chopped up wave fronts.

Bartelt et al.? have demonstrated in an interesting
experiment that the wave front of light that has been
deflected by a grating is no longer perpendicular to its
direction of travel. Thus the smoke-filled box inside
which we want to study the 3-D shape of the wave front
could be illuminated by a beam of light whose pulse
front is so rotated that it compensates for the unwanted
relativistic rotation. _

However, we want the direction of the illumination
beam, the wave front of which we want to study, to be
perpendicular to the direction of the observation (same
situation as in Sec. LE.). Its.wave front should be tilted
so that after observation it should appear to be per-
pendicular to the direction of illumination.

Let us make a calculation of how such an experiment
could be made. From Eq. (10) we know that the rela-
tivistic rotation in the case studied will be 45° (the angle
between illumination and observation directions is bi-
sected). Thus we shall chop up the illumination beam
by a deflection in a grating so that its pulse front is ro-
tated 45° in relation to the direction of propagation.

Let us study Fig. 15 where the illumination beam
arrives at the angle o + (3 from the left. It illuminates
the grating (g-g) and as it passes through is diffracted
into a horizontal direction. The wave front (W;) enters
the grating at angle « and leaves it at angle 8. The
pulse front is rotated at an angle +y.

The path length of the lowest ray is the distance a +
b longer than the highest ray. Thus, after diffraction
the lowest part of the beam will be delayed the distance

15 May 1984 / Vol. 23, No. 10 / APPLIED OPTICS 1487
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Fig. 15. Studied beam arrives at the angle « to the normal of the
grating g—g with the length [. It leaves the grating at the angle 3 re-
sulting in a total deflection of & + 8. The original wave front (Wy)
is transformed into the new (wave front) pulse front (Wy) which is
tilted at an angle <y relative to the direction of propagation. When
this tilted (wave front) pulse front is observed from B it appears
normal to the propagation (W3) because of the relativistic effect.

a + b, resulting in the tilt angle v of the pulse front. Let
the illuminated length of the grating be ! and the
thickness of the diffracted beam be t. Thus

a = | sing,
' b =l sing,

t =1 cosp, L
a+b

>

tany =

_sina + sinf
cosB

tany 1)

For simplicity set « = @ which results in vy = 2c.

Thus the rotation of the pulse front is equal to the
deflection of the beam or, in other words, the pulse front
is kept parallel to itself independent of the changes in
propagation directions caused by diffraction. These
statements, however, are true only when « =  or o =
0.

Results: The illumination beam should be deflected
at 45° by a grating bisecting this angle. The result will
be a beam whose pulse front is rotated 45°. The rela-
tivistic rotation of the pulse front will be of the same
value but opposite direction, which results in the wave
front appearing to an observer at B at its true angle.

fl. Time Resolution

Let us study Fig. 16 which differs from Fig. 1 in that
W1 and W5 now represent the simultaneous front and
back of a light pulse. This pulse is emitted from A at
the angle w and its projection on the screen (S-S) is
observed from B at the angle ¢.

This time we shall not try to find the general solution
to the observed pulse width (d) but only study the
special case when ¢ is close to zero. Thus the object
screen S-S is perpendicular to the direction of obser-
vation and therefore the relativistic rotation has no
influence on d (see also Fig. 3). Further on, the point
of observation is so close to the hologram plate (H-H)
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A B

Fig. 16. Apparent pulse width (d) seen on the screen (S—S) generally

depends on the angle of illumination (w), the angle of observatioin

(¢), and the angle (y) of the reference beam (R). It also depends on

the distance between the hologram plate H-H and the point of ob-

servation (B). We study only the special case when this distance is
zero and ¢ also is zero.

Fig. 17. Shorter pulse produces a thinner line of intersection on the
surface of the object. To resolve a thin line a large aperture is needed,
which uses a larger area on the hologram plate. The resulting pho-
tographic image corresponds to a longer recording time, which again
results in a broader line. One therefore has to compromise and seek
for the optimum aperture. The photograph is made from the same
reconstruction as that of Fig. 11, but too large an aperture has
broadened the line of intersection.

that the delay of the reference beam (R) along the plate
will produce no rotation either.

The true length of the pulse is ¢ - ¢, its projection on
the screen is

d=—: (12)
SInw
where d = projection of pulse on the object screen,
t = time duration of pulse,
¢ = speed of light, and
w = illumination direction.
When we are looking through a hologram plate, differ-
ent parts of the observing aperture see what was re-
corded at different points of time. If a slit aperture is
used, the broader the slit and the larger the angle of the
reference pulse the longer will be the corresponding
observation time. As an example study Fig. 17 which
is photographed from the same area of the same holo-
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Fig.18. Resolution (d) of a lens (L) with the diameter D positioned
close to the hologram plate (H) is calculated from the observation
angle (2cv) and the distance (R). At the hologram plate, (D) repre-
sents a time difference depending on the angle () of the reference
beam. Line broadening is caused both by limited aperture resolution
and by time smear. The resolving power is optimized when the
conditions are such that these two effects are equal.

gram as Fig. 11. The use of a larger aperture, however,
results in a decrease of resolution.

On the other hand, the shorter the illumination pulse
the thinner will be the bright line representing the wave
front and the larger is the observation aperture needed
to resolve that line during reconstruction. These two
effects set opposite demands on the slit width. To see
a thin line we need a large aperture which causes a
broadening of the line. Thus we have to reach a com-
promise. Let us accept that the studied linewidth ap-
pears broadened to twice its true thickness because the
width of the aperture slit represents a certain duration
of recording time.

A. Aperture Width

An ordinary circular aperture has by definition the
following resolution:

122\
" 2sina '
where d = diffraction-limited resolution,
A = wavelength of light, and
o = half of the observation angle as defined in
Fig. 18.
A slit aperture is used and the factor 1.22, which refers
to a circular one, is excluded for the sake of simplifica-
tion. We also make the approximation 2 sinae ~ D/R.
Then the combination of Egs. (12) and (13) results in

_ AR sinw

(13)

(14)
t-c

Thus D is the length of the hologram plate (aperture slit
width) needed to resolve the pulse of the duration ¢.
Now let us study how long recording time (7) is rep-

resented by D. This has already been calculated in Eq.
(2):

T = % [siny — sind],

where T is the recording time over the distance | along
the plate (see Fig. 2). Insert! =D andf = ¢ — ¥, so

m
—————— pm————

___0,5m 0,5m
S, M S,

Fig. 19. Looking through a slit at a slit; an eye (E) looks through a
slit (S;) with width (d) at the mirror image of this slit (Ss). The
mirror M is placed so that the distance separating the observing slit
(S1) and the observed slit (S2) is 1 m. What is the minimum slit that
can be resolved through the limited width of the slit itself? This
problem is identical to: What is the shortest light pulse that can be
resolved if the illumination of the object screen and the hologram plate
are identical?

T = % [siny — sin(¢ — ¥)]. (15)

Now finally let us combine Eqs. (14) and (15) while in-
serting T' = t, corresponding to equal apparent pulse
width caused by the true pulse length and by the re-
cording time caused by the observation aperture slit
width: :

202
AR sinw

where vy = reference beam angle (Figs. 5 and 6),

t = pulse duration,

R = distance separating object screen from

observation,

w = illumination direction,

¢ = observation direction, and

¥ = hologram angle. A
In this equation -y represents the largest angle (Fig. 16)
allowed for the reference beam in order that the ap-
parent linewidth should not become more than twice the
true linewidth.

siny =

+sin(¢ — ¢), (16)

B. Examples of Linewidths and Tests of Validity

Equation (13) has been used to calculate the mini-
mum observation slit aperture needed during recon-
struction to resolve the linewidth caused by a certain
pulse direction (¢). Let us use this equation to find out
what is the minimum slit width through which we can
resolve another slit of the same width 1 m away (Fig. 19).
In other words, if we stand in front of a mirror that is 0.5
m away and look through a slit at the mirror image of
that slit, what would be the narrowest slit that could be
resolved? Again, start with Eq. (13) and exclude the
constant 1.22 which refers to a circular aperture. Insert
2sine = D/R (Fig. 18), and d = D which means that the
studied slit has the same width as the slit through which
the observation is made. Finally insert the distance R
=1m:

d2=\-R,
d =+/0.6328 1076,
d = 0.8 mm.
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Table l. Distance to Object Screen (R)is 1m
t (sec) t-c(m) D (m) siney T n
2 X 10715 6 X 10°7 1.2 X 57 X 10°8 19 X 10-16 0.81
10-14 3 X 106 2.1 X101 14 X 10-6 48 X 1015 4.8
10-13 3% 1075 2.1 X 102 14 X 10~ 48 X 10713 48
1012 3x 1074 2.1 X 1073 14 X 102 48 x 10711 480
2.7 X 10712 8.1x10¢ 8.1Xx10™¢ 1 33 X 1010 1250
101t 3X1073 2.1 X 1074 1 33 X 10°10 333
10-10 3% 1072 2.1X10°5 1 33 X 10°10 33
10-9 3% 1071 2.1 X 1076 1 33 X 10°10 3.3
¢ = pulse duration,
t-c = pulse length,
D = aperture width,
sine?y = sine of reference beam direction,
= time capacitance of 1-m hologram plate,
n = number of information frames per meter of hologram plate.

Thus the 0.8-mm wide aperture slit has the unique
property of producing minimum apparent slit width
when viewed through itself from a distance of 1 m. Had
the viewing distance instead been only 10 mm the cor-
responding slit width would be 0.08 mm.

Let us finally study the time capacity of the hologram
plate when different pulse lengths are to be resolved.

When the studied pulse is very short a large obser-
vation aperture slit is needed and therefore the number
of information frames is low (if we define an information
frame as the length along the hologram plate needed to
resolve the linewidth of the pulse).

When the studied pulse is very long only a small ap-
erture slit is needed. On the other hand the studied
linewidth will be broad and the number of information
frames will for this reason below. (This time if we de-
fine an information frame as the length along the ho-
logram plate we have to move the aperture slit in order
to move the pulse one pulse width.)

In between these two extremes there are pulse widths
corresponding to large numbers of information frames.
The maximum appears at the two previously calculated
values of 0.8 mm at 1-m distance and 0.08 mm at 1-cm
distance. The results of our calculations are given in
Table I. The shorter the distance (R) between holo-
gram plate and object screen the higher is the resolution.
If this distance is zero the resolution can be of the order
of one wavelength. Such a configuration is described
in Ref. 3, where the hologram plate itself is used as
object screen. In such a case, however, the number of
information frames will be unity.

lll. Relativistic Distortion of Wave Fronts

A flat surface traveling at relativistic velocity past an
observer will not only appear rotated but also distorted
into a complex curvature. The reason for this effect is
the motion of the object during the time delays caused
by different path lengths for the light traveling from the
surface to the point of observation. These time delays
result in the apparent distances to points on the surface
differing from the true distances as described in Eq. (1),
where the studied surface is the wave front of light.
The apparent distance is a result of the true distance,
the angle of illumination, and the angle of observation.

1490 APPLIED OPTICS / Vol. 23, No. 10 / 15 May 1984

Thus also the apparent curvature is a function of these
parameters.

The curvature of the aparent (relativistically dis-
torted) wave front can be calculated mathematically,
e.g., by integrating the rotations of infinitesimal areas
using, e.g., Eq. (9), but this is an indirect and complex
method. For this reason most of the calculations made
in this paper have been limited to a constant illumina-
tion direction (w = constant) and one simple direction
of observation (¢ = 0).

However, a simple device already exists for calcu-
lating the angle and the 3-D curvature of the apparent
wave fronts and this device is the holodiagram.4

A. Holodiagram

The holodiagram (Figs. 5 and 6) is based on ellipsoids
representing the locus of constant path length for light
traveling from the point source of illumination A to the
point of observation B. Thus all the light from A re-
flected by one of these ellipsoids will arrive at B after
the same traveling time. This statement is true inde-
pendent of whether the reflection is specular or diffuse.
If an ultrashort spherical light pulse is emitted from A,
one single totally illuminated ellipsoidal surface at a
time would be seen from B.

Thus the ellipsoids of the holodiagram represent the
relativistically distorted spherical wave fronts emitted
from A and observed from B.

To minimize the distortion of a wave front the object
screen should be placed so that all points on its flat
surface are the same distance from B. This is the case
when the object screen is at a large distance from B and
at such an angle that its normal is directed toward B.
Such was the configuration when Figs. 3 and 8 of Ref.
1 were made. The object screen was close to A but
distant from B; its normal was directed toward B. The
result was that the wave fronts from A appeared un-
distorted. Spherical waves from A were represented
by circular intersections of the rotational symmetric
ellipsoids. From the construction of the ellipsoids of
Figs. 3 and 4 it is easy to understand that, when Rp is
constant, the intersections of the ellipsoids are identical
to those of the spherical waves emitted from A.

The properties of the holodiagram have been de-
scribed before (see, e.g., Ref. 4, Secs. 4 and 5). Points



Fig.20. Radius of curvature (R) of the ellipsoids of the holodiagram

at any general point (C) is calculated from the distance (R4) to the

point of illumination (A), the distance (Rp) to the point of observation

(B), and the knowledge that R bisects ACB. The radius R represents

the apparent direction of light and the apparent curvature of wave

fronts that in reality come from A and have a radius of curvature that
isRa.

A and B of Fig. 6 are the focal points of a set of rota-
tional symmetric ellipsoids each representing a path
length that is one wavelength longer than that of the
adjacent smaller ellipsoid. The separation of the el-
lipsoids is & - 0.5\, where the numerical value of % is
constant along arcs of circles and printed in the diagram.
The value of & is

k = 1/cosa, an

where 2a is the angle (ACB of Fig. 4) separating the
direction of illumination and the direction of observa-
tion. The direction of maximal interferometric sensi-
tivity to displacements is along the normal to the el-
lipsoids which is identical with the bisector of ACB.
The displacement of an object point that has been twice
exposed in a hologram is calculated as follows:

d=n‘k'22\’y (18)

where n = number of interference fringes between

fixed and displaced points on the object,
- A = wavelength of light, and
k = k value from the holodiagram.
When the object is large the curvature of the ellipsoids
results in different parts having different % values and
different angles of sensitivity. Thus it is important to
know the curvature of the ellipsoids not only for light-
in-flight recordings but also for hologram interferom-
etry.

Knowing that the ellipsoids are the wave fronts from
(A) as observed from (B) it is not surprising that holo-
gram interference fringes as seen from (B) are a result
of changes in the intersections of the object made by the
ellipsoids. When the point of observation is changed
the focal point (B) of the ellipsoids changes. Conse-
quently the hologram interference pattern seen on the
object depends on the point of observation.

B. Radius of Curvature

Let us study Fig. 20 and calculate the radius of cur-
vature (R) of one ellipse as a function of the distance
and direction of illumination (R,) and the distance and
direction of observation (Rg).

We start with the knowledge, perhaps easiest found
in the holodiagram, that R bisects the angle ACB. [The
diagonals of a rhomb (Fig. 4) bisect the angle between
two adjacent sides.] Another condition is that all three
radii should intersect at C; if therefore C is moved a
small distance (d) along the tangent of the ellipse all the
radii rotate at such angles that their motion at C is equal
to the projection of d on their normals:

20y = dw + ¢,
&Y =d/R,
_ d cosa
Ry
- d cosa

Oow

¢

3

Thus
=—t—, (19)
or
R=2r—4—-2, (20)

where R = radius of curvature of ellipse,
R4 =radius of wave front of illumination

beam,
Rp = radius of wave front of observation beam,
and ;
k = the usual constant of the k& circles of the
holodiagram.

Let us set this new rule of the holodiagram in words:
The curvature of the ellipse at C multiplied by 2k is
equal to the sum of the curvature of the illumination
beam and the curvature of the observation beam.

This statement is true not only for the ellipse but for
any optical case as we will see in the following.

1. Separation of A and B is Small

Let us now study the conventional equation of an
ellipse:
x2 y2
a—z' + ﬁ =1, (21)
where a and b are the intersections of the ellipse by the
x axis and y axis, respectively.
When the separation of A and B is zero, the factors
a and b are equal (b = a) and thus the ellipse is trans-
formed into a circle (R = a). We get the same result
from Eq. (20) with inserted R4 = Rg and 2 = 1. Thus,
if the point of illumination and the point of observation
are very close together, the apparent wave front will be
identical to the true wave front and the relativistic
distortion is zero. This configuration is therefore ad-
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vantageous and it was used for the contouring method
described in Sec. L.LE.4.

To make the intersecting surfaces as flat as possible
the distances to the point of illumination and that of
observation should be large. If R4 and Rp of Eq. (20)
are infinite, R also is infinite and the curvature is zero.
Thus, for contouring purposes, the intersecting surfaces
can be made flat by using collimated illumination and
observation.

From Eq. (20) it is, however, evident that another
condition exists that also produces intersecting surfaces
that are flat, namely, when R4 and Rp are equal but of
different sign. Such is the case if, e.g., the illumination
beam is converging toward a point that is situated at the
same distance behind the object surface as the obser-
vation point is situated in front of it.

Thus, we have shown two ways to produce inter-
secting surfaces that appear flat to the observer. Either
illumination and observation should be collimated or
they should be spherical with the same radius but dif-
ferent sign. When used for large objects these two
methods, however, have the disadvantage that they
need collimating or focusing optics of a size that is at
least as large as the area of the object studied. How-
ever, a third method that does not have this drawback
exists based on manipulation of the reference beam.

Light-in-flight recordings differ from ordinary ho-
lograms in that they are influenced by the angle and
direction of the reference beam. (This is not the case
for ordinary holograms; they are indifferent to the
properties of the reference beam as long as it is identical
to the reconstruction beam.) Thus a properly shaped
reference beam can be used to correct for the out-of-
flatness of the apparent intersecting light surface
without distorting the image of the object. The calcu-
lation of the needed shape and curvature of such a ref-
erence beam is quite complicated and outside the scope
of this paper.

However, when the contouring method is combined
with observation by a TV camera interconnected to a
computer, the intersection by an apparent spherical
light sheet might be just as useful as by a flat one. The
transformation from spherical to orthogonal coordinate
should produce no problems. :

2. Separation of A and B is Large

When the separation of A and B is infinite the factor
a of Eq. (21) becomes infinie and the ellipse in the vi-
cinity of B is transformed into a parabola. Thus, if the
point of illumination (A4) is distant (collimated illumi-
nation) the plane waves from A are, by relativistic effect,
transformed into paraboloids with B at its focus. The
radius of curvature of this paraboloid is k - Rg, where
Rp is the distance to the point of observation (B). To
make the apparent wave front (with the radius R) as
identical as possible to the true wave front (with an in-
finite radius) the distance from object screen to the
observer (Rpg) should also be large.
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IV. Summary

An equation is given for the relativistic rotation as a
result of the delay of arrival caused by the flight time
of the object beam. Another equation is given for the
delay of recording caused by the flight time of the ref-

“erence beam. Itis demonstrated how the combination

of these two equations produces the resulting apparent
wave front.

Calculations are used to find different holographic
configurations for which the relativistic rotation can be
compensated for and in some cases totally eliminated.
It is also mathematically demonstrated how the rotation
can be used to an advantage, e.g., to manipulate the tilt
angle of the intersecting plane when light-in-flight is
used for contouring purposes.

The time resolution of light-in-flight recording by
holography is studied mathematically, and it is dem-
onstrated that the resolution is a function of the aper-
ture of the camera used in the reconstruction stage.
The larger the aperture, the higher is the optical reso-
lution of the thin line representing the wave front. On
the other hand, a large aperture covers a large part of
the hologram plate and thus represents a longer obser-
vation time which again lowers the time resolution. For
every pulse width there exists a certain optimal angle
of the reference beam and an optimal aperture width.
These factors are given in a table that also describes how
a certain length of hologram plate can be utilized either
to produce a high time resolution or a high time ca-
pacity.

The relativistic distortion of wave fronts is also
studied and it is demonstrated that the spherical wave
front is distorted into one of the ellipsoids of the holo-
diagram. A new equation for the curvature of these
ellipsoids is presented. Direct knowledge of the holo-
diagram can be utilized not only for hologram inter-
ferometry but also for the study of the relativistic dis-
tortion of wave fronts.

Finally, it should be pointed out that the calculations
and the descriptions of curvatures of pulse fronts are
identical for light of short duration, for light of short
coherence length, and for the intersecting surfaces used
in two-frequency contouring.

The experiments described in this paper were all
carried out by the author at the Royal Institute of
Technology, Stockholm and at the Spectra-Physics
Laboratory, Mountain View, California. The work was
sponsored by the Swedish Board for Technical Devel-
opment whose interest and support is gratefully ac-
knowledged.
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