Light-in-flight recording. 3:
relativistic effects

Nils Abramson

Compensation for optical

Light-in-flight recording by holography and other ultrahigh-speed recording methods are used to study
objects at speeds that are a large fraction of that of light. At these velocities, usually referred to as relativis-
tic, image distortions caused by the limited speed of light can no longer be neglected. A slightly modified
holodiagram is introduced which can be used graphically to restore the images of objects that appear distort-
ed because of a constant relativistic velocity. The diagram compensates automatically for all known distor-
tions of time and space and should thus be especially useful for the evaluation of ultrahigh-speed motion pic-
tures. The derivation of the diagram is simple and can be of value as an educational tool in the optics of spe-

cial relativity.

I. Introduction

Recordings of phenomena moving at ultrahigh-speed
velocities produce a distorted image because of the
limited speed of light. Methods are therefore needed
to restore the true shape of a moving object from its
apparent shape.

Important tools for this work are the equations of
Einstein’s special theory of relativity.! However, by
using the ellipsoids of the holodiagram we have found
a graphical method to compensate for all the distortions
caused by the flight time of the information-carrying
light. This method, which includes the accepted for-
mula for relativistic optical effects, appears to be easy
to use and to understand.

Thus it is our impression that not only can the theory
of relativity assist in the evaluation of ultrahigh-speed
holograms, but that holography can also assist in the
understanding of relativity. Einstein’s special theory
of relativity was physically based on the experiments
by Michelson and Morley, who used a 1-D interferom-
eter. Holography represents 3-D interferometry, and
it is therefore plausible that the rules and the equations
today found in the field of hologram interferomety could
be used to further understand the principles of rela-
tivity.

Light-in-flight recording by holography is a method
of recording phenomena that move with the speed of
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light or with a speed approaching that of light. Such
velocities are usually referred to as relativistic because
they cause effects that are explained by Einstein’s
theory of relativity. In Ref. 2 it is shown that spherical
wave fronts appear elliptical if the point of emission of
a light pulse (A) is separated from the point of obser-
vation (B). It was also demonstrated that the ellipsoids
of the holodigram can be used to explain these distor-
tions of the wave fronts.

In this paper we shall show that the conventional
holodiagram can be used to explain relativistic optical
effects if the separation of A and B represents the dis-
tance traveled during the time between pulse emittance
and observation. By a slight modification of the holo-
diagram it becomes a practical device for visualizing the
apparent distortions of time and space in all directions
around a traveling observer or object. In a simple
graphical way we derive the following:

The aberration of light rays and lines of sight; the
longitudinal and angular (transverse) magnification; the
apparent changes in size along the line of travel of which
the Lorentz contraction is a special (transverse) case;
the apparent change in the speed of time (clock) of
which the relativistic time dilation is a special
(transverse) case; the apparent change in wavelength
of which the transverse Doppler shift is a special case;
and the apparent distortion of rigid bodies of which the
relativistic rotation is a special case of more general
bending of straight lines into curves. Straight lines that
are parallel to the direction of travel are in this case an
exception as they always stay straight, while those
passing through the point of observation stay straight
only as long as the velocity is constant. Finally an ex-
ample is given of a graphical restoration of the true
shape from its relativistically distorted image.
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Fig.1. Experimenter travels from left to right at a speed that is 0.6
times that of light. At A he emits a picosecond light pulse, at B he
makes a picosecond observation. The ellipsoid of the holodiagram
with A and B as focal points is then the spherical wave around A as
seen in a scattering medium from B. Thus the sphere of observation
around the observer at B is elongated into this ellipsoid, and objects
in the stationary world appear to him to be contracted in the x di-
rection. At C the Lorentz contraction is I/, the transverse Doppler,
ratio is k, and the time dilation is [/, where (as in the conventional
holodiagram) k = I/cost = 1/4/! — (v/c)2. Light rays emitted at the
angle -y are aberrated by velocity to the angle a, while the lines of sight
are aberrated from the angle vy to 8.

II. Hlumination and Observation

A. Static Separation of lllumination and Observation

A man is making experiments based on gated viewing,
which means that a short pulse of light (picosecond
pulse) is emitted and, after a short period of time, e.g.,
20 nsec, he makes a high-speed recording (picosecond
exposure time). If the illumination point (4) and the
observation point (B) are close together, the experi-
menter will find himself surrounded by a luminous
spherical shell of ~3-m radius. This spherical shell can
be seen only if something scatters the light, e.g., if the
experiment is performed in a smoke-filled or dusty
space. If there are large objects in the space, he will see
these objects illuminated only in those places where
they are intersected by the sphere.

The experiment described can be used.-to map the
space around the experimenter and it is identical to
well-known radar methods (radio detection and rang-
ing). By changing the delay between emission and re-
cording, intersections of different radius spheres can be
studied. In this way the outside world is mapped in
polar coordinates. The experimenter should keep in
mind that, at the moment when he observes a 3-m ra-
dius sphere, its true radius is 6 m.

If the illumination point (A) and the observation
point (B) are separated, the situation will be different.
As the luminous sphere around A grows, the observer
will see nothing until the true sphere reaches B. Then
he will find himself inside an ellipsoidal luminous shell.
One focal point of the ellipsoid will be A, the other B.
By changing the delay between emission and recording,
intersections of ellipsoids with different sizes (but
identical focal points) can be studied. In this way the
space around the experimenter can be mapped (in bi-
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polar coordinates). The experimenter should know the
separation of A and B so that his mapping will be cor-
rect. If he erroneously believes the separation is zero,
he will misjudge the ellipsoids as spheres and make er-
rors, €.g., in the measurement of lengths parallel to the
line AB. He will also make angular errors because of
the angular differences between the spherical and the
ellipsoidal shells.

The ellipsoids described will in the following be re-
ferred to as the ellipsoids of the holodiagram. This
diagram has been published as a practical device for
making and evaluating holograms. The method of
producing 3-D picosecond recordings of waved fronts
(pulse fronts) has been published in Ref. 2. In Ref. 3
methods are described to compensate for errors caused
by studying the apparent ellipsoidal wave fronts instead
of the wanted true spherical ones. Finally Ref. 4 de-
scribes how a combination of the holodiagrams and the
method of light-in-flight recording produces results that
can be used to explain the Lorentz contraction and other
relativistic effects.

In the following we shall make a closer study of the
possibilities of using the concept of the holodiagram to
visualize special relativity more generally. Our goal is
to find a simple graphical way to restore the true shape
of an object from its relativistically distorted ultra-
high-speed recording.

B. Dynamic Separation of lllumination and
Observation

We have already described that, if the illumination
point (A) is separated from the observation point (B)
the gated viewing system produces recordings of in-
tersections of ellipsoids having A and B as focal points.
Now, let me, the author, and you, the reader, be sta-
tionary in a stationary space and study what a traveling
experimenter will see of our stationary world when he
travels past at relativistic velocity using light-in-flight
recordings.

The traveling experimenter (referred to as the trav-
eler) emits one single light pulse when he is at A and
makes one single recording when he is at B. (The
points A and B are both fixed in stationary space.) If
his velocity (v) is close to the speed of light (c) he will
travel a measurable distance (vt) during the time delay
(t) between illumination and observation. Thus his
observation sphere has, because of his velocity, been
transformed into an observation ellipsoid with the focal
separation AB equal to v - t (Fig. 1).

Perhaps the traveler does not know that he is trav-
eling or perhaps he does not know that his velocity has
the influence described on his sphere of observation. In
any case he will, because of the eccentricity of the el-
lipsoid, observe more of the stationary world along his
line of travel. Thus the stationary world will appear to
him to be contracted along that line. This apparent
contraction is in relativistic literature referred to as the
Lorentz contraction.

Let us study Fig. 1. An experimenter travels along
the positive x axis, he emits a light pulse at A, and
makes a picosecond observation at B. The speed of the



Fig.2. Situation is identical to that of Fig. 1 but now we study how
an arbitrary point G of the stationary world appears to the traveling
observer at B. Because of his velocity the traveler’s sphere of ob-
servation is transformed into an ellipsoid of observation. To the
traveler G appears to exist at K which is found by drawing a line of
constant y = value from @ to the sphere. Light rays emitted by the
traveler at the angle y are aberrated by his velocity to the angle «,
while his lines of sight are aberrated from the angle v to 8. The
wavelength of light appears to the traveler to be changed in the ratio
BG/BK = q, while all radial lengths appear to be changed in the ratio
1/g. The speed of time (clock) also appears to be changed in the ratio
1/q independent of whether there is an expansion.

experimenter (traveler) is v and the time delay between
illumination and observation is £. Let us study the light
rays passing ACB.

Our statements are based on the fact that distances
measured by the speed of light will always produce the
same results in all directions (if acceleration and gravity
gradients are zero). The well-known experiment by
Michelson and Morley has proved this fact. Further,
we accept the statement that a measurement of the
speed of light (¢) always must involve information sent
in a closed loop, a fact that has been fully discussed by
Einstein. The result of such a measurement always
produces the same value of (¢) independent of any
constant velocity of the light source or observer.!

We who are stationary (the resters) understand that
the traveler’s observation ellipsoid has its focal points
at A and B and that light with the speed of ¢ travels
ACB. The traveler, on the other hand, believes his
observation sphere to be centered at B and that the light
simply has traveled with the speed of ¢ in the path BRB.
Thus everything in the stationary world parallel to the
x axis will appear to the traveler contracted in the

ratio:
2 - p2 2
lz=@=t\/c_2_=\/1_(z) : o
lg EF ct c

where EF = ACB,
l7 = the length as measured by the traveler,
and
Ir = the true length (as measured by the
rester).
This result is identical to the accepted value of the Lo-
rentz contraction.
In the conventional holodiagram the value [/cosf =
I\ T=(v/c)2=k. Thuslp/lg =1/k. We,theresters,
see a certain number of lightwaves along the path ACB.

The traveler sees the same number of waves along BRB.
Thus

Mo _ACB__ 1

Ar BRB ) (,,)2 ’ @

C

where Ag refers to the wavelength measured by the
rester and A7 refers to the wavelength emitted by the
traveler.
Because of the symmetry of Fig. 1,
AC _CB

BE RB’ 3

Thus, the rester and the traveler observe an identical
transverse red shift of each other’s light.

Now, referring to the conventional holodiagram,
Ar/Ar = k, it is interesting to note that in conventional
uses of the holodiagram the factor & is used exactly as
if it had the meaning of a red shift.

This result is identical to the accepted value of the
relativistic transverse Doppler ratio. The result is also
identical to the inverted value of the accepted time di-
lation. The reason is that the longer wavelength, and
thus lower frequency, is explained as caused by a slower
passing of time for the emitter (the traveler). Another
way to say the same thing is that time (clock) must run
slower for the traveler otherwise he would not accept
that the light has only passed BRB when in reality it has
passed the whole distance ACB. Thus

tr v\2 1
tr ! (C) R @
The traveler does not observe that the angles o and 8
differ from 90°; he believes the light is simply traveling
BRB. The reason can be described in the following
way:

Let the traveler direct a telescope in the Y direction.
As he passes the point A he emits a light pulse that
leaves the telescope like a cannonball in the direction
AC. The reason the light rays travel in the direction o
toward C is that the telescope functions like a cannon
that is moving sideways and therefore gives the can-
nonball a motion component in the direction of the
positive x axis.

The light pulse bounces like a cannonball at C and
returns in the direction toward B. As the light pulse
enters the telescope it moves parallel to the moving
telescope axis so that the traveling observer at B thinks
it arrives in the direction of the Y axis, while a stationary
observer would say it arrives at the angle 5. Thus the
traveler is in every way unaware that he is traveling.

The deviation of the light caused by the velocity of
the traveler is calculated from Fig. 1 in the following

0.5t \ " l)E v (Uc)
= = -

0.5vt v

c

tana > (5)

ol (3

tanf = —tana.

These two results are identical to the values from ac-
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cepted equations for relativistic aberration. Thus,
outgoing light (emitted by the traveler) is bent at the
angle v« in the forward direction. Incoming light (the
line of sight of the traveler) is bent at the angle B~y in
the backward direction. These two angles have iden-
tical numerical values but different signs for v = 90°.
In the following we shall see if the concept of the ellip-
soids of the holodiagram is also useful in the general
cases when vy might have any value.

. General Cases

A. Relativistic Aberration

Let us study Fig. 2 which is identical to Fig. 1 except
for the studied point G which is at an arbitrary position
on the ellipsoid. The traveler believes he is in the center
(B) of his observation sphere and looks at one point K
of the outside (stationary) world at the angle y. How-
ever, the point K does not exist in the sphere but instead
its true position is at G on the ellipsoid. The point G
is found by drawing a line parallel to the x axis from K
until it intersects the ellipsoid. Thus the aberrated line
of sight is BG at the angle 3 and the aberrated emitted
light tray is AG at the angle «.

From Figs. 1 and 2 the following calculations are de-
rived:

tang = —21
x1+ 0.50¢
x2 y2
2.y
a2 b2

a = 0.5EF = 0.5¢t,
b=CD = 0.5/ (ct)Z - (vt)3,
y1 = BK siny = b sinvy.

Result:
Outgoing light (by traveler-emitted light rays):
siny4/1— (2)2
tano = —r . 6)
2 + cosy
c

Incoming light (the traveler’s lines of sight):

v\2
siny4/1— (—)
tanf = —r 7

v
— =+ cosy
[4

These two equations, solely derived from Figs. 1 and 2,
are identical to accepted relativistic equations (e.g., Ref.
5, p. 49).

B. Relativistic Doppler Effect

Let us again study Figs. 1 and 2 and calculate the
Doppler ratio. The traveler observes the wavelength
Ar as he measures the true wavelength Az from the
stationary world:
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Ar_BG
Ar BK
2,2
RSl
BK = b = 0.5v/(c0)Z = (00)%,
BG = /yT+ (x; — 0.50t)3,
¥1=bsiny = 0.5 siny /(ct)Z — Wt)3,

x1 = 0.5¢ct cosy.

Result

Incoming light (the wavelength A which the traveler
observes when he studies the true wavelength Ag from
the stationary world):

v
1 — - cos
M et

)\R 1— (2)2 ’
C
This equation, derived solely from Figs. 1 and 2, is
identical to accepted relativistic equations (e.g., Ref. 5,
p- 47).
Outgoing light (the wavelength A\ which the rester
observes when he studies the true wavelength Ap
emitted by the traveler):

®)

c
e ®

Because of the constant speed of light the apparent
speed of time (¢;) to the traveler will be

=
tr 4

Lo (10)

C. Zero Doppler Shift

Let us study Fig. 3 and seek the directions (v) in
which the traveler should look to experience zero Dop-
pler shift. He should not look backward because in that
direction there is a red shift. Nor should he look di-
rectly sideways because even then there is a red shift
(the transverse red shift). Forward is the blue shift, so
apparently he should look slightly forward. The way
to find the zero Doppler shift for incoming light (v of
Fig. 3) and outgoing light () is as follows:

G(x1y1) is the point where the traveler’s sphere of
observation (as seen by the traveler) and the ellipsoid
of observation (as seen by the rester) intersect. Draw
a line parallel to the x axis from G to the corresponding
point on the sphere (K). Thus BK at the angle 1y is the
direction the traveler should look to see zero Doppler
shift. BG at the angle ( represents that direction after
the line of sight has been relativistically aberrated.

The line AL, at the angle v, represents the light rays
that are emitted by the traveler and which the rester
experiences as having zero Doppler shift. From Fig. 3



let us calculate the angle v of zero Doppler shift from
the intersection of the ellipsoid and the spheres:

x2 y2

2t h

x = 0.50t — R cosvy,

y = R sinvy,
R =b =0.5v(ct)2 - )3,
a = 0.5¢ct.
Result
Incoming light:
cosy =< (1 —af1- {5)2) . 1y
1) C
Outgoing light:
cosa = < (l - 1- (2)2) . (12)
v C
Exactly the same result is found by using Eq. (8):
Ap 1- ; cosy

Thus Fig. 3 produces a result that is identical to that of
accepted relativistic equations.

D. Longitudinal and Angular Magnification

The Doppler effect, or changes in the passing of time,
influences our measurements of distances. A shorter
wavelength, or a faster passage of time (clock), makes
distances appear longer. Thus if A/ is larger than
1, longitudinal stationary distances appear to the
traveler longer than their true value. The traveler ex-
periences a longitudinal magnification M;:

M="E=—. (13)

The relativistic aberration does not only change the
direction of sight, its derivative also changes the ap-

parent angular (transverse) size of objects. If 60 is

smaller than 0+, there will be an angular magnification

M,.
Let us differentiate Eq. (7):

/ 2
siny4/1— (2)
c

v
=+ cosy
c

tan@ =

Result:

My=—F=—-o—. . (14)

Thus M, = 1/M; or M, - M; = 1. The product of lon-
gitudinal and angular magnification is equal to unity

Fig. 3. Zero Doppler shift is observed by the traveler when he looks
in the direction y (where v is defined in the traveler’s world). The
angle v is found by drawing a line of constant Y value from the point
of intersection of the sphere with the ellipsoid (G) until it again in-
tersects the sphere (K). Zero Doppler shift of light emitted by the
traveler is found at o (where « is defined in the stationary world).
The angles « and v are identical. As 7y is <90°, the red shift in our
universe is predominant over the blue shift.

everywhere. Only at the angle (cone) of zero Doppler
shift are they equal; they both have a magnification
factor of 1.

To verify our concept of angular magnification let us
study if it can be used to derive the Lorentz contraction.
If the traveler looks normal to his travel (y = 90 of Fig.
1), the aberrated line of sight has the angle (.

The traveler studies a stationary object that is sit-
uated at the Y axis of Fig. 1 and has the small true
length g parallel to the x axis. Because of the oblique
observation the length appears shortened into /p:

v\2
lB=losin/3=l()'\/1—(—) .
C
Thus
w01 (] -1
lapp = —2—-—L - 05ct A/ 1 =[] =lo4/1 =[] >
PP 0.5c¢ 88 ¢ c 0 c

o8 M, CD

where lap, = apparent [g (to the traveler),

0 = true angle of view, and

0y = the traveler’s angle of view.
Thus our calculation based on the concept of an angular
magnification (M, ) results in an apparent length which
is identical to the Lorentz contracted length, which in
turn is a special case of the longitudinal magnification
(M)).

IV. Complete Diagram

Figure 4 shows an experimenter (the traveler) who
moves from left to right at a constant velocity (v) which
is 0.6 of that of light (c). He emits picosecond light
pulses at Ay, As, Ag, and A4, The time separation (t)
of the pulses is constant. At time ¢ after the last light
pulse (at A4) he makes a short (picosecond) observation
at B. The traveler then finds himself surrounded by
four spheres all with himself in the center. We, who are
stationary, understand that the traveler is surrounded
not by four spheres of observation but by four ellipsoids
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Fig.4. With constant time separation the traveler emits light pulses
at Ay, Ag, Ag, and Ayg; finally he makes one observation at B. His
concentric spheres of observation around B are transformed by his
velocity into a set of ellipsoids that has one common focal point at B
while the other focal points are Ay, As, A3, and A4. The traveler’s
lines of sight (q lines) are aberrated backward from v to 8 as if there
was a negative lens in front of the traveler and a positive lens behind
him. The separation of the ellipsoids divided by the separation of
the spheres along each q line defines its ¢ value. Variation in the
spacing of the ellipsoids results in that a longitudinal distance appears
magnified in front of the traveler and demagnified behind him. The
apparent speed of time (clock) is inverted proportional to the g
value.

of observation all with one common focal point at B, the
other focal points being A1, Ag, A3, and A4. These el-
lipsoids are identical in shape (the same eccentricity);
only the scale factor differs. Straight lines radiating
from B intersect all ellipsoids at identical angles and the
distances between adjacent intersections are also con-
stant along these lines.

A. Relativistic Aberration

The straight lines, in the following referred to as q
lines, radiating from the observation point (B) represent
the traveler’s lines of sight aberrated by his velocity.
On each ¢ line is printed the angular direction prior to
aberration of the direction in which the traveler is
looking, e.g., the angle of the axis of the telescope that
he uses for his observation (angle v of Fig. 2).

Thus, when the traveler looks 60° from the forward
direction the aberration bends his line of sight so that
in the stationary world it is directed slightly backward.
When the traveler thinks he is looking perpendicular
to the line of travel (v = 90°) he is actually looking at
the stationary world at a point almost 40° behind that
direction (8 = 127°). No wonder there exists a rela-
tivistic transverse Doppler shift toward longer wave-
lengths.

The traveler is moving to the right and all his lines of
sight are rotated to the left as blown backward by a wind
caused by his velocity. This picture is quite pleasant
and easy to visualize. (The effect on the light rays
emitted by the traveler is exactly opposite.) The ab-
erration of the line of sight also results in objects in front
of him appearing smaller while those behind him appear
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larger. There is an angular demagnification as by a
negative lens in front of him and a magnification as by
a positive lens behind him. The magnification factor
is equal to the inverted value of the Doppler ratio
(Ar/AR) which is printed at each ¢ line. Ap/Ag in the
following is referred to as the g value or q.

B. Deformations of Space and Time

When the traveler is looking at the stationary world
in front of him it appears as if time is going faster.
Moving toward a clock results in its hands appearing to
rotate faster, because the time of flight of the informa-
tion-carrying light decreases as the distance decreases.
This speeding up of time is represented by the shorter
distances between the ellipsoids in front of the trav-
eler.

The distances between intersections with the ellip-
soids are constant along the lines of sight from B. As
calculated in Eq. (8) the apparent wavelength is a
function of this distance compared with the corre-
sponding distance between the intersections of these
lines with the spheres. Thus the Doppler shift is con-
stant along the q lines. The apparent time shift is also
constant along these lines, so is the longitudinal and the
angular magnifications.

Where the separation of the ellipsoids along the g
lines is short, time appears to move fast; where the
separation is long, time appears to move slow. Thus
there are different speeds of time in all different direc-
tions. The relativistic time dilation representing the
transverse red shift is only a special (transverse) case
of the different apparent speeds of time.

Where the separation of the ellipsoids along the g
lines is equal to that of the spheres, time appears to be
normal, or rather, clocks behave as if stationary in
relation to the traveler. Our best clocks are light
emitting atoms and therefore the slowing of time is
equal to the Doppler red shift and accelerated time is
equal to the blue shift. Along the g lines (Fig. 4) the
Doppler shift is constant and the g value, the Doppler
ratio (A7/Ag), is printed. Thus the g line marked 30°
represents the traveler’s aberrated line of sight when he
looks in the direction v = 30° (Fig. 4). The Doppler
ratio he observes in that direction is ¢ = 0.6, which
means that he observes a wavelength (\r) that is 0.6 of
the wavelength of the stationary world (Ag). Thus the
traveler sees a blue shift.

The direction of zero time shift and zero red shift is
slightly forward (y ~ 70° as seen in Fig. 8). Thus more
than 50% of the stationary world appears to the traveler
to be red shifted. No wonder that the red shift is pre-
dominant in our universe. (A calculation from Fig. 3
where v = 0.6¢ results in a ratio of red shift to blue shift
of 2:1 even if the directions of motions were totally
random.)

Where the ellipsoids of observation are closely spaced,
the stationary world to the traveler appears elongated
in depth. Thus the velocity with which the stationary
world appears to run toward the traveler is increased for
two reasons: its clocks run faster and it is elongated
along its apparent line of travel.



Fig. 5. Graphic visualization of the apparent distortion of the rigid
stationary triangle CDE as seen by the observer at B who is traveling
to the right at a velocity of 0.6c. From each intersection of the triangle
by the ellipsoids a line is drawn parallel to the X axis until it reaches
the corresponding sphere. The resulting deformed triangle C’D’E
then represents the stationary triangle CDE seen by the traveling
observer at B. It represents just as well a triangle CDE traveling to
the left with 0.6¢ velocity as seen by a stationary observer at B. To
restore the distorted triangle to its true shape the intersections are
moved from the spheres to the ellipsoids. The true speed of time
(clock) at, e.g., D is the observed speed of time (at D’) multiplied by
BD/BD’.

The stationary world also appears much distorted as
it, at the same time, is longitudinally magnified and
angularly demagnified. When the traveler studies the
stationary world behind him everything looks just the
opposite. Clocks move slow and objects are longitu-
dinally demagnified and angularly magnified.

C. Example of Graphic Evaluation

We have demonstrated that the ellipsoid of the hol-
odiagram produces results that agree with those of ac-
cepted relativistic equations. The reason we have made
all these comparisons is that it appears to be the best
way, apart from experiments, to prove the correctness
of our approach.

One advantage of our new approach to relativity is
that it uses a method already accepted for conventional
optics and therefore makes the conceptual step to rel-
ativistic optics rather small. Another advantage is that
it visualizes phenomena in special relativity in a simple
way and makes possible a graphic compensation for the
measuring errors that otherwise occur in ultrahigh-
speed recordings. In the following we shall demonstrate
how the diagram can be used for practical evaluation of
the true shape of rigid bodies, the images of which are
relativistically distorted. The true shape is defined as
the shape seen by an observer at rest in relation to the
studied object.

Again, let a traveling experimenter at high velocity
(v = 0.6¢) pass through the stationary space (Fig. 5).
He emits four picosecond light pulses with a constant
time separation of £. After another time delay of ¢ he
makes one single picosecond observation (at B).

In the stationary world the triangle CDE exists. How
will it appear to the traveler? Draw a line parallel to the
x axis from the corner C on the ellipsoid until it reaches
C’ at the corresponding sphere. C’ now represents the

apparent position (to the traveler) of C. Make the same
transformation of the corner D to D’ and E to E’. Also
make similar transformations of all the intersections of
the sides of the triangle with the ellipsoids. The de-
formed triangle C’D’E’ then represents the traveler’s
view of the stationary triangle CDE.

The side C’D’ still is a straight line because it is par-
allel to the x axis. However C’D’ is shortened in rela-
tion to CD corresponding to the Lorentz contraction.
(From the diagram of Fig. 5 we understand that the
Lorentz contraction is a special transverse case of ap-
parent length changes parallel to the x axis.)

The angle of D’ is different from that at D because of
the relativistic rotation of the segment of the side D’E’
that is closest to D’. However, as we study the whole
side D’E’ we see it is not just rotated, it is relativistically
distorted into a curve. The reason is that, in contrast
to what happens along CD, the angle between ellipsoids
and spheres varies along DE. (From the diagram of Fig.
5 we understand that the relativistic rotation is only a
special case of relativistic distortions.)

The side C’E’ and the angles of C’ and E’ have
changed similarly to D’E’. The sides are deformed as
blown by a wind caused by the speed of the traveler.

The corner C has moved toward C’ which is closer to
the traveling observer at B. This result could be ex-
pected from the well-known Lorentz contraction. But
the corner D has moved to D’ which is further away
from B. These results agree with our earlier statements
that longitudinal distances are magnified in front of the
traveler and demagnified behind him.

The changes in the directions of the lines of sight
toward the displaced corners of the triangle also agree
with our earlier statement that there is an angular
(transverse) demagnification in front of the traveler and
a magnification behind him.

At, e.g., the corner D’ the longitudinal magnification
is BD’/BD, and the angular (transverse) magnification
is BD/BD’; the Doppler ratio is also BD/BD’, while the
speed of time (clock) is advanced in the ratio BD’/
BD.

V. Conclusion

All the results described refer to the observations
made by the traveler at B as he travels past the sta-
tionary true triangle CDE. The reasons we have
studied this situation exclusively are twofold.

The first reason is that the ellipsoids of the holodi-
agram are already used in conventional 3-D optics, e.g.,
for evaluation of holographic interferograms. The
conceptual step is small and one passes easily from this
situation to the situation where the separation of the
focal points of the ellipsoids is caused by the velocity of
the observer.

The second reason is that it is convenient to visualize
ourselves, you the reader and I the author, as stationary.
When we are stationary we find it to be a simple task to
measure the true shape of a stationary object; we simply
use optical instruments or measuring rods or any other
conventional measuring principle. We believe that we
make no fundamental mistakes and thus accept our
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measurements as representing the true shape. No
doubt the traveler has a much more difficult task and
thus we do not trust his results but define them as rep-
resenting the apparent shapes. However we accept the
postulate as stated by Einstein:

The laws by which the states of physical systems
undergo change are not affected whether these changes
of state be referred to the one or the other of two sys-
tems of coordinates in uniform translatory motion.!

Thus all our statements including the diagram of Fig.
5 could just as well represent a stationary observer at B
studying an object which at relativistic velocity travels
toward the left. In that case Fig. 5 represents a triangle
with the true shape CDE that passes by the stationary
observer at B, who then sees the apparent shape C’D’-
E’.

Thus the method of Fig. 5 can be used to restore the
true shape of any object that moves at relativistic ve-
locity and is observed by any technique based on the
emission and receiving of short pulses of radiation. Will
‘that same restoration also produce the true shape for
ordinary observations where the illumination is con-
tinuous? The answer is in the affirmative, as explained
in the following.

The holodiagram in Fig. 4 is overdetermined (as is the
conventional holodiagram). The aberrated lines of
sight, the g lines, represent information that is identical
to that of the ellipsoids. Thus the graphic transfor-
mation of Fig. 5 could just as well have been made using
no ellipses and no circles, using only the g lines of Fig.
4,

Each corner of the undistorted triangle CDE is moved
parallel to the x axis from the aberrated g lines (at angle
B) to the unaberrated lines of sight, at angle y. The
triangle C’D’E’ then again represents the distorted
image as it appears to the observer at B. At, e.g., the

corner D’ the longitudinal magnification is I/q, the an-
gular magnification is g, the Doppler ratio is also g,
while the speed of time (clock) is advanced in the ratio
l/q. The q value is found at the g line through D (not
through D).

Only the aberration of lines of sight has been used for
this transformation of the triangle and therefore I be-
lieve that our method, even if it is based on the ellipsoids
of the holodiagram, applies to the restoration of the true
shape of an object independent of what optical method
is used for its recording.

Our method describes the apparent distortions of
objects caused by the elongation of the observation
sphere into an ellipsoid. The knowledge of these dis-
tortions is important for evaluation of true shape and
true passage of time when studying movie recordings
of objects at relativistic velocities. This paper does not
discuss any deeper meaning of the words apparent or
observation sphere. It is, however, interesting to ob-
serve that, while a fast object appears shortened by
Lorentz contraction, its observation sphere becomes
elongated until, at the speed of light, it includes the total
length of travel even for a pointlike object.
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Books continued from page 3943

two-space dimensions. Other chapters discuss spectral transforms
for matrix equations (Chaps. 15 and 16) and for partial differential
operators (Chap. 14). The last two chapters lead back to the physics
of nonlinear waves. Chapter 17 presents and discusses several ex-
amples of nonlinear wave systems which exhibit recurrence phe-
nomena. The final chapter (Chap. 18) is devoted to the statistical
mechanics of the sine Gordon field. Action-angle variables obtained
from IST are used to calculate both the classical and quantum dis-
tribution functions, and apparent discrepancies are analyzed.

The articles in this volume are mostly fairly self-contained. The
treatment is in most cases either implemented by a review and/or
restricted to simple models and techniques demonstrating the es-
sential points. The book will hence serve as a useful introduction to
the topic and some aspects of current research. It should not be
mistaken, however, for a comprehensive treatment of this vast and

expanding subject. '

4014 APPLIED OPTICS / Vol. 23, No.22 / 15 November 1984

KAI DRUHL



