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Abstract

This document contains a comprehensive literature review in support of the the-
oretical assessment of the 178m2Hf de-excitation, as well as a rigorous description of
controlled energy release from an isomeric nuclear state.
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1 Executive Summary

We have completed a theoretical assessment of the state of science and technology regarding
178m2Hf de-excitation, especially its use as an energetic material for storing energy and the
controlled release of that energy. While there are many outstanding nuclear physics ques-
tions regarding nuclear isomers, we would assess the prospects for the application of nuclear
isomers to energy storage technologies to be poor. The reason for this conclusion has to do
with the relative probability of the specific nuclear reactions “releasing” the energy to all
possible nuclear reactions. In all the cases studied, the nuclear reactions which “release” the
energy are not sustained by the subsequent nuclear reactions, requiring a source external to
the assembly to cause the “release.” The energy cost of the external source greatly exceeds
the energy gained in the “release” for these nuclear isomer systems.

Nuclear isomers exist as a consequence of the “structure” of nuclei, including specific
energy levels and the quantum numbers of the quantum mechanical arrangement of the
individual nucleons (protons and neutrons) in the nucleus. Some of these quantum numbers
are well understood e.g. angular momentum. Others like K are known, but the detailed
dependence of reaction rates, etc. on K is only empirically determined, as no general theory
exists. The extent of nuclear isomerism in the table of isotopes is an exploration that is
ongoing in experimental nuclear physics. This exploration is not likely to ever be complete
given the number of isotopes and the extraordinarily large number of possible nuclear states.

Common to all of these nuclear isomer systems is the fact that the transitions from the
isomer states are greatly inhibited, usually forbidden by quantum number conservation. The
31-year half life of 178m2Hf is roughly 109 seconds, while an “allowed” nuclear transition would
take place in something of order 10−22 seconds. The conservation of K is responsible for this
stability. This responsibility is not rigid, as the 180mTa half-life limit is > 1016 years. The
actual ground state of 180mTa is unstable, providing a test case for “controlled energy release”
because the natural abundance of 180mTa, while small (0.0012%), makes creating targets for
experiments possible. Another feature of 180mTa is the fact that there are no background
radiations due to decay, as there is in the 178m2Hf case, which has a molar decay rate of
roughly 1015 decays per second (or 3 kCi). By exciting the 180mTa level with a relatively
high energy beam of photons (>1 MeV) with a broad spectrum, it is possible to connect the
isomer state to other states which do sometimes decay to the ground state. This so-called
K-mixing band (a set of states) is inferred to exist where the nuclear level densities are
high. Once this happens, and the 180Ta nucleus decays by γ-cascade to the ground state,
the decay of the ground state can be observed, verifying the “de-excitation” of the isomer.
Since the isomer state is only about 77 keV above the ground state, little additional energy
is available. That is, it is necessary to put 1 MeV in, to get out 1.077 MeV, for example.

The actual K-mixing mechanism has not been identified explicitly in 180mTa de-excitation,
but is the subject of an ongoing series of experiments. However, the picture that begins to
emerge is that any K-mixing relevant to isomer decay must occur in states of high rotational
energy, such as occur high in the ground state and other known excitation bands, as these
have states with the largest angular frequency at energies close to the isomer. The identi-
fication of the likely location of K-mixing provides important constraints in other nuclear
isomer systems.
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Another possibility for de-exciting nuclear isomer states is by particle interactions, partic-
ularly neutron interactions. Neutron capture and re-emission is one possible nuclear reaction.
An isomer like 178m2Hf could capture an energetic neutron, to form a compound nucleus 179Hf
in a highly excited state. The K-mixing takes place in the compound nucleus, which emits a
neutron becoming 178m2Hf again, but now it can also decay to lower states, maybe even the
ground state. These type of reactions have been studied in 177Lu where the neutron can be
accelerated (emitted with a higher energy than was absorbed) from the isomer de-excitation
in the compound state. Assuming that the K-mixing is complete in the compound (a plau-
sible theoretical ansatz ), detailed calculations of the neutron interactions in both 177Lu and
178m2Hf show that while the neutron reaction (n,n′) increases with decreasing neutron energy,
the competing reaction (n,γ) also increases the same way, with the ratio of the two reactions
remaining the same: roughly 1 to 1000 for (n,n′) to (n,γ).

Excitation to the K-mixing band by electromagnetic transition has been investigated in
178m2Hf in a number of experiments. The theoretical considerations lead to the expectation
that the cross section is small for incident x-ray energies < 100 keV. With respect to the
reported cross sections, these theoretical expectations are 3 to 6 orders of magnitude lower,
and in agreement with the limits placed by experiments reporting null effects (that is, not
observing any de-excitation). In most of these estimates, work to identify the K-mixing
mechanism is abandoned, having made only the assumption that it exists.

Largely because of the discrepancy between expectations and observations, the possibility
that atomic electrons might play a role was explored. The physical mechanism is referred
to as NEET, Nuclear Excitation through Electron Transition. Reactions were explored
using very narrow bandwidth beams of x-rays available at synchrotron light sources. The
energy regions of the Hf L-shell electrons were scanned with a beam and positive results
reported for de-exciting 178m2Hf. The only other system where NEET has been observed is
197Au for which the probability of NEET was measured to be 5 × 10−8 per incident x-ray.
Theoretical expectations are 1.3 × 10−7, within a factor of two, which given the difficulties
is a remarkable agreement. The observations of NEET reported for 178m2Hf de-excitation is
something like 2×10−3, many of orders of magnitude greater than typical values calculated for
the corresponding transitions (≤ 10−6). The possibility of coherent effects on the Hf inner
shell electrons was explored theoretically but failed to explain the large observed values.
Finally, there are a number of other experiments observing null results, in agreement with
the calculations.

Though many aspects of the nuclear science related to 178m2Hf and other isomer “de-
excitation” mechanisms are not entirely understood, the known theory is able to calculate
the rates for the various nuclear reactions to at least a factor of 2 or 3, and within a factor
of 10. This theory is consistent with experiments in other nuclei that measure the same kind
of reactions. Thus, while “de-excitation” of nuclear isomers had been observed, it is unlikely
to be true in the cases that these observations vary greatly with theoretical expectation,
especially where other experiments measuring the same rates observe null results.

Setting aside the nuclear physics, the various schemes for utilizing nuclear isomers for
energy storage can be further investigated. In the case of nuclear fluorescence reactions,
symbolized by the shorthand notation (γ,γ′), it is instructive to consider the condition for
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“criticality” to create a self-sustaining reaction (a chain reaction). These reactions require
that the ratio of the specific (γ,γ′) to all reactions, (γ,X) is larger than 1. This condition is
not met by many orders of magnitude even given the largest reported cross sections for the
nuclear fluorescence reactions.

These reactions in nuclei are complicated by the very narrow width of nuclear states,
for which even the very slight motion of the atom at temperatures greater than 1 K is
enough to Doppler shift the nuclear level energy away from narrow γ-ray sources. A broad
energy band is required, however this presents another problem: the (γ,X) is dominated
by photo-ionization in the atomic medium at these energies. The flux of the γ-rays and x-
rays causing the “de-excitation” are also producing an electron-ion plasma which have very
different transmission characteristics than the initial cold matter.

If, instead, an external source of x-ray is used to “burn” the isomer, the small ratio
of (γ,γ′) to (γ,X) makes the energy recovery very inefficient. Further, the same material
problems of heating the energetic medium with an effectively high black-body temperature
source complicates the analysis of such energy storage schemes.

Considering γ-ray laser (“graser”) schemes as a variant of x-ray induced energy release
from 178m2Hf and other nuclear isomers, the laser “pump” puts so much energy into the
material that the conditions required for lasing cannot be maintained. This is also because
of the dominance of the x-ray photo-ionization cross sections.

In the case of neutrons, the (n,n′) reaction on 178m2Hf could be used to “de-excite”
the nuclear isomer. In proposals using a neutron “multiplication” reaction in conjunction,
e.g. 9Be(n,2n) to construct a “chain reaction” the competing channels, mostly (n,γ) are
a few orders of magnitude larger. Consequently, the neutron flux rapidly declines and the
“chain reaction” extinguished. In fact, in the particular case of 178m2Hf (n,n′) combined with
9Be(n,2n), any concentration of 9Be effectively poisons the “reactivity” of the material.

Once again, if neutrons are used to “burn” the nuclear isomer, the efficiency of the
mechanism is very low because of the high energy expense of generating neutrons.

In conclusion, there does not seem to be any realistic scheme to utilize the stored energy
represented by the nuclear isomer level, independent of the nuclear science governing the
transition of that level to the nuclear ground state. The prospects are much less likely given
the understanding of the nuclear physics of this transition.

On a final note, the production of nuclear isomers, even in the small amounts required
for research, is a daunting process. The initial discovery of 178m2Hf irradiated 100 mg of
HfO2 for two years in a high neutron flux reactor facility and required an additional three
years to process, resulting in an estimated 25 picograms of 178m2Hf. Considerations of large
scale processing with reactor irradiation conclude that it is impractical to produce even gram
quantities in this manner.

Accelerator production is only slightly more efficient. However, estimates are based on
notional facilities for which the technologies have not yet been invented. Even in this case,
huge capital costs (≈ $1billion e.g. the class of accelerator similar to the Spallation Neutron
Source, SNS, at ORNL) would be required to produce grams per year.

Technologies beyond our imagination may exist to harness unique physical systems in
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the future, so we cannot conclude that such technologies could not exist. However, the
underlying science describing the particular physical systems we have studied in this report,
nuclear isomers, seems well understood. This scientific understanding lead us to judge that
nuclear isomers are not suitable for the practical applications proposed: energy storage. To
the extent that the de-excitation of nuclear isomers can be induced in a controlled manner,
it is unlikely that this fact has any practical application.
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2 Introduction

This report provides an assessment of the state of research on the nuclear isomer 178m2Hf
and the potential for controlled energy release. Among the elements of the assessment are an
extensive literature review of the state of nuclear isomer research, a quantitative description
of ‘controlled energy release’ and a description of the state of theoretical and experimental
understanding of nuclear isomers, particularly 178m2Hf.

A specific goal of this report was to provide a critical assessment of the claims made in
recent Russian literature by Muradian [109] that neutron induced stimulated de-excitation
through inelastic scattering produces enhanced decay of the nuclear isomer 178m2Hf.

The energy storage capacity of nuclear isomers is compared with other ‘energy storage’
systems in Table 1. The highest energy density system is ordinary matter, which if totally
converted to energy as in the expression E = mc2 sets the maximum limit of energy density.

Table 1: The energy density of various physical systems.

System Energy Density (MJ/kg)

mass-energy equivalence 9× 1010

d-T fusion 5× 108

235U fission 8× 107

64Zn(n,γ) 3× 107

178m2Hf de-excitation 3× 106

Radioisotope thermoelectric generator 1× 105

hydrogen combustion 1× 102

propane 5× 101

gasoline 5× 101

body fat 4× 101

wood 2× 101

TNT 4× 100

Li Battery 1× 100

lead-acid battery 1× 10−1

Nuclear fusion and fission both have large energy density, followed in the list by neutron
capture on specific nuclei (such as happens in supernova explosions). The de-excitation of
178m2Hf to the ground state of 178Hf is shown in comparison.

The interest in nuclear processes for energy storage is the fact that the ‘energy densities’
of such systems are 4 to 6 orders of magnitude larger than chemical systems. Practical
energy producing systems have been realized using nuclear fission and the heat generated
from nuclear decay.

Nuclear fission works because of the nuclear properties of the excited nucleus 236U, which
is formed by the capture of a neutron on 235U. The subsequent fission of 236U produces
multiple neutrons along with the decay daughter nuclei. A property of 235U is that the
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probability of capturing a neutron is high, and does not vary over the energy spectrum of
the neutrons, at least in the range of neutron energies produced in the fission. Thus it is
possible to arrange a concentration of 235U such that the net number of neutrons produced
increases in time through multiple captures, fissions and neutron production: the so-called
‘chain reaction.’ Large energy release is possible here because the system will ‘run away’
exponentially if the neutrons are not taken out of the chain of reactions. Controlled energy
release is possible because the reaction can be controlled by regulating the number of removed
neutrons.

This example is instructive because it illustrates the requirements of an energy release
system with a practical realization as a power source. The system is designed so that neutron
production balances neutron loss. Once this is done, the system is configured to minimize
the loss of neutrons through diffusion. In an unregulated system, the reaction runs away
until the energy produced by the sum of the reactions destroys the conditions required to
sustain the reaction. However, introducing elements in the system to regulate the number
of neutrons provides a means of controlling the energy release.

A similar scenario must exist for all means of controlled release of energy stored in nuclear
states.

This report first reviews the physics of isomers, particularly 178m2Hf (see Section 3).
The reactions leading to a transition of the nuclear isomer state to some lower energy state
can proceed through a number of channels. In Section 4, we review the possibilities of de-
exciting the isomer via reactions with photons or particles such as neutrons, as well as via
electric interactions. The physics of controlled and explosive energy release is developed
in Sections 5.1–5.2. In Section 5.3, we explore the criticality conditions of admixtures of
178m2Hf and 9Be with a Monte-Carlo simulation; such a mixed system was proposed by
Muradian [109] as a possible avenue for achieving a self-sustaining process of energy release
from an isomeric state.

Because some of the experimental results on 178m2Hf are in disagreement with theoretical
expectations from nuclear and atomic physics, we have presented the analysis of experiments
on other nuclear isomers in comparison with theoretical calculation. This provides a test of
the degree to which theory can explain the various physical phenomena relevant to 178m2Hf.
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3 The physics of hafnium isomers

In this section, we review the nuclear structure ingredients that lead to nuclear isomers in
general and to the isomer of interest, 178m2Hf, in particular. We explain the physics reasons
leading to the remarkably long life time of 178m2Hf and discuss the structural changes that
are required to de-excite this state. We summarize the present knowledge of the structure
of 178Hf and provide an overview over the research contributions from the past 40 years that
have resulted in a well-established and fairly comprehensive picture of the structure of this
nucleus.

3.1 Basics of nuclear isomers

3.1.1 Classification of isomers

Atomic nuclei, like all quantum systems, when excited, will eventually decay to the lowest
energy configuration. An isomer (or isomeric state) is an excited state in the nucleus whose
decay is generally suppressed (most often due to nuclear structure effects) leading to an
excited system with an uncharacteristically long lifetime. For systems where the total exci-
tation energy is below the threshold for particle emission, decay generally proceeds through
a chain of electromagnetic transitions until the ground-state configuration is reached. Typi-
cally, electromagnetic transitions between nuclear states occur quickly, with half-lives, t1/2,
of the order of picoseconds (1 ps = 10−12s). However, for some excited nuclear states, their
structure inhibits normal electromagnetic-transition mechanisms, slowing down the decay
considerably. While experimental constraints generally establish t1/2= 1 ns (1 nanosecond
= 10−9s) as an effective lower lifetime limit for the purpose of defining an isomeric state,
many isomers have much longer lifetimes. For example, 180mTa has a half-life of over 1015

years. The isotope detailed in this report, hafnium-178 (178Hf), has several isomeric states:
178m1Hf at 1.147 MeV with a lifetime of 4s and 178m2Hf at 2.446 MeV with a lifetime of
31 years (here m1, m2, . . . denote the first, second, etc., metastable states of the isotope
under consideration). While electromagnetic processes, such as γ-ray emission and internal
conversion are still the most common decay mechanisms for isomers, their long lifetimes may
permit the state to decay through other slower channels, such as α-emission, β-decay, and
spontaneous fission (see Walker and Dracoulis [155]).

The enhanced lifetime of isomeric states is generally due to the fact that the electro-
magnetic decay of the excited state requires a significant change in shape, spin, and/or spin
orientation, thus suppressing the decay. According to the mechanism that hinders their
decay, isomers are classified into shape isomers, spin isomers, and K-isomers.

Shape isomers occur when the surface that determines the energy as a function of nuclear
deformation for a given isotope exhibits not only a primary minimum, which corresponds
to the ground-state configuration, but also a secondary minimum, which often leads to an
isomeric state of different deformation. In this case, the energy barrier between the two
minima leads to distinct and disconnected configurations, where the de-excitation of the
excited state through gamma-decay is highly suppressed. An example of such a shape isomer
is the 14 ms (1 millisecond = 10−3s) state 242mAm, which has an energy of 2.2 MeV and
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decays by spontaneous fission.

Spin isomers occur when the decay of the metastable state requires gamma radiation of
high multipolarity λ1, where λ also determines the maximum change in the nuclear spin (also
referred to as angular momentum) that is permitted in the transition. Typical electromag-
netic decays, with lifetimes of the order of picoseconds, occur with λ = 1 or 2. In general,
since large changes in the intrinsic structure are required, high multipolarity decreases the
decay rate. In addition, the decay rate is also determined by the gamma-ray energy, Eγ,
and is proportional to E2λ+1

γ . A combination of high multipolarity and low transition energy
leads to a highly suppressed decay probability, and, thus, a long lifetime. Typically, spin
isomers occur when the only option for the decay of a high-spin state is a transition to lower
states that require a change in spin greater than three units. For instance, the 180mTa state
mentioned above, has spin J = 9~ and lies only 75 KeV above the J = 1~ Ta ground state.
The decay by gamma emission requires a spin change of 8~, which is highly suppressed; this,
in combination with the small energy difference between the states accounts for the isomer’s
anomalously long lifetime.

K-isomers can occur in axially-symmetric deformed nuclei. Such nuclei (most of which
are prolate, i.e. cigar shaped), can undergo collective rotation about an axis [see A. Bohr and
B.R. Mottelson, Nuclear Structure (World Scientific, Singapore, 1998), vol. 2]. For even-
even nuclei, such as 178Hf, the starting point is for all the constituent nucleons to couple
their intrinsic spins to a total spin of zero. Quantum-mechanically, collective rotation about
an axis of symmetry is forbidden, and, thus, the collective nuclear spin is perpendicular to
the symmetry axis. The energy spectrum for collective rotation follows the simple pattern
E = J(J + 1)/2I, where I is the moment of inertia and only even values for J are allowed,
i.e. J = 0, 2, 4, .... The nucleus, however, is not a rigid object, and it is possible for the
constituent particles to realign, giving an intrinsic spin that then couples with the collective
rotational motion. In this case, the intrinsic spin, ~K, is aligned along the symmetry axis; it
is added vectorialy to the collective spin, ~I, to produce the total angular momentum vector
~J . The energy spectrum in this case follows the pattern E = [J(J + 1) − K2]/2I, where
J now assumes all values starting from K. For a given projection K of the total angular
momentum ~J onto the symmetry axis, a set of levels with J = K, K + 1, K + 2, . . . exists.
Each set is characterized by strong electromagnetic transitions among its members and is
referred to as a K band. There are two commonly occurring mechanisms for generating
K bands. The first involves an intrinsic motion caused by a surface vibration that distorts
the nuclear quadrupole shape; this vibration has K = 2. The second mechanism is the one
that is responsible for the long-lived isomers in 178Hf: individual single-particles detach from
the collective rotation and couple their intrinsic spins (with amplitude K) to the angular-
momentum vector of the collective motion. Overall, the projection K is very nearly conserved
and introduces an additional selection rule: electromagnetic transitions between states of
different K are allowed when the change in K is less or equal to the multipolarity λ of the
transition: ∆K ≡ |Kfinal − Kinitial| ≤ λ. In addition, due to the fact that changing K

1Electromagnetic transitions are characterized by two quantities. First, is their type: electric (E), which
involves changes in the charge distribution, and magnetic (M), which involves changes in the internal distri-
bution of magnetic moments. Second, is their multipolarity λ. The labeling convention is then Eλ and Mλ.
Thus, an electric-quadrupole transition is labeled as E2, while a magnetic-dipole transition is M1.
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requires a realignment of individual particles or the dissipation of shape vibrations coupled
to the collective motion, transitions that change K, even if allowed, tend to be suppressed
relative to transitions within the K-band, i.e. those with ∆K = 0. For example, often λ = 2
transitions within the γ-band (∆K = 2 − 2 = 0) are preferred relative to transitions into
the ground-state band (∆K = 2 − 0 = 2). Transitions that violate the K-selection rule
are called K-forbidden. However, since K is approximately conserved, such transitions are
only severely hindered, rather than strictly forbidden. Excited states of axially-symmetric
deformed nuclei that require K-forbidden transitions in order to decay can be classified as
K-isomers. The states 178m1Hf and 178m2Hf mentioned above are such K-isomers, with K=8
and K=16, respectively (the ground-state band of 178Hf has K=0).

A classical picture that illustrates K alignment and its conservation is the precession
observed in a rotating symmetric top, such as a gyroscope or the Earth. The top is spinning
about a symmetry axis, which is tilted. To an observer sitting on the top, it is spinning at
a constant rate about its symmetry axis, which is analogous to K in the nuclear system.
In the external reference frame, the tilted spinning top then precesses about a vertical axis.
The two angular momenta then add to the total angular momentum, which is aligned with
a vertical axis.

3.1.2 K mixing and the decay of K isomers

The fact that K isomers can decay by K-forbidden transitions indicates that the initial
and/or final states contain some mixture of K values. A measure of the goodness of the K
quantum number is the reduced hindrance, fν ≡ (T γ

1/2/T
W
1/2)

1/ν , where T γ
1/2 is the partial γ-ray

half life of the transition, TW
1/2 is the corresponding Weisskopf single-particle estimate, and

ν ≡ |∆K|−λ is the degree of forbiddenness [155]. The quantity fν provides insight into how
the hindrance scales with the degree of forbiddenness. An early study by Löbner [100] found
fν ≈ 100 to be a reasonable value. While this value is often used as a rule of thumb, subtle
nuclear structure effects, which are responsible for K mixing in the states under consideration
can cause large variations in fν . Several mechanism are known to induce K mixing in nuclear
states: (i) Coriolis effects, which induce an alignment of the orbital angular momenta of the
individual nucleons with the angular momentum characterizing the collective rotation of the
nucleus; (ii) small admixtures of triaxial shapes in the wave function, and (iii) statistical
mixing with neighboring levels in regions of high level density. An important aspect of all
three of these mechanisms is that mixing will occur only if the states that are being mixed
are relatively close in excitation. This is largely deduced from first-order perturbation theory
where the mixing amplitude between two states is proportional to V/∆E, where V is the
interaction matrix element (of the fundamental nuclear Hamiltonian) between the two states
and ∆E is their energy difference. In general, K mixing becomes more prominent at higher
excitation energies where the density of states is high and states of different K can be nearly
degenerate. Past experiments have examined all three mechanisms to analyze K-forbidden
transitions and to understand the systematic behavior of observed reduced hindrance factors
(For more details, see the articles by P. Walker [154, 155] and the thesis of Gareth Jones [73]).
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3.2 The structure of 178Hf

Figure 1: Levels and decay scheme for 178Hf showing the observed band structure (from
Ref. [69])

To date, 134 discrete levels up to an excitation energy of 5.388 MeV have been identified
in 178Hf. Shown in Fig. 1 is a level diagram showing most of the levels with spin and
parity and their excitation energy. In addition, the decay paths (arrows) are also shown
with the gamma-ray energies tabulated. The decay scheme outlines the structure of seven
bands, including the ground-state band, which exhibits the typical structure of a rotating
deformed nucleus, i.e., even spins with a quadratic dependence in the excitation energy on
spin as well as a strong de-excitation exclusively within the band. Also typical is the γ-band
shown to the left; it has K = 2 and exhibits a characteristic set of rotational levels built
on top of a 2+ bandhead state that is associated with an intrinsic surface vibration along
the quadrupole gamma degree of freedom. Shown in the right side of the figure are several
bands built on the quasiparticle excitations of the ground state. There are two low-lying
K = 8− bands built on neutron and proton two-quasiparticle states, respectively, as well
as two other two-quasiparticle K = 4+ and K = 6+ bands. The 4 s 8− state (the lowest
two-quasiparticle state) preferentially decays by K-forbidden electric-dipole (λ = 1) emission
to the 8+ state in the ground-state band at 1.059 MeV. Additionally, there is the very long-
lived four-quasiparticle K = 16+ band, which is an excitation constructed by combining
both of the lower K = 8− two-quasiparticle excitations. The decay of the 16+ state is highly
suppressed (with a 31 yr half-life) not only because a change of K by at least 8 units is
required, but also because the transition has to have a high multipolarity λ, due to large
angular-momentum differences between the initial (J = 16+) and energetically feasible final
states. Electromagnetic decay of this state occurs to three levels in the K = 8− isomer band,
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Table 2: Multi-quasiparticle structure of isomeric states in 178Hf. Shown are the Kπ=Jπ

quantum numbers of several isomeric states in 178Hf, their energies, life times, and quasi-
particle structure, deduced from experimental and theoretical observations. The Kπ=6+

state can be explained as a two-quasiparticle proton excitation, while the Kπ=8− isomer is
a mixed proton-neutron two-quasiparticle state. The Kπ=14− and Kπ=16+ states, which
are at higher energy, are 4-quasiparticle states. For details, see References [15, 108, 44, 66].

Kπ E [MeV] Life time Quasiparticle structure

6+ 1.554 78 ns p(5/2+[402])p(7/2+[404])

8− 1.147 4 s αp(7/2+[404])p(9/2−[514]) + βn(9/2+[624])n(7/2−[514])

14− 2.574 68 µs p(5/2+[402])p(7/2+[404])n(9/2+[624])n(7/2−[514])

16+ 2.446 31 y p(7/2+[404])p(9/2−[514])n(9/2+[624])n(7/2−[514])

First, there is the electric λ = 3 transition to the 13− state with a transition energy of only
12.7 keV. The low transition energy not only significantly suppresses the decay, but also
causes the transition to occur via internal conversion, rather than gamma emission. The
two other γ-decay modes that have been identified are the magnetic λ = 4 transition to the
12− state in the 8− band with a γ-ray energy of 309.5 keV, and the electric λ = 5 decay
to the 11− state with a transition energy of 587 keV. Overall, the combination of the high
multi-polarity and change in K by eight units accounts for the extraordinarily long half-life
of the 16+ state.

3.2.1 Quasiparticle excitations and high-spin isomers in the hafnium region

Deformed shell-model calculations can predict energies for single-particle (neutron or proton)
orbitals as a function of nuclear deformation. The orbitals are generally labeled by their
asymptotic Nilsson quantum numbers Ωπ[NnzΛ], where Ω denotes the single-nucleon spin
projection on the symmetry axis (here taken to be the z-axis), π is the parity of the state,
N is the principal quantum number associated with the major shell to which the orbital
belongs, nz gives the number of oscillator quanta in the z-direction (and thus the number of
nodes in the wave function along the z axis), and Λ is the projection of the single-particle
orbital angular momentum onto the z-axis. For the well-deformed hafnium isotopes, such
calculations find that orbits with large values for Ω cluster around the Fermi level [163].
These high-Ω orbitals play an important role in explaining the existence of isomeric states
in the hafnium region: When neutron or proton pairs are broken, these orbitals can be
occupied and nuclear states with large K values (resulting from a combination of the large
single-particle Ω values) and long lifetimes are produced.

The configurations that are obtained by breaking nucleon pairs and occupying excited
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single-nucleon orbitals are referred to as quasiparticle excitations. For 178Hf, several high-
Ω orbitals have been identified as building blocks for quasiparticle states: Ωπ[NnzΛ] =
7/2+[633], 5/2+[512], 7/2−[514], 9/2+[624], 9/2−[505], and 11/2+[615] neutron orbits cluster
around the Fermi level for quadrupole deformations around β(neutrons)=0.2; the relevant
proton orbits for β(protons)≈0.25 are Ωπ[NnzΛ] = 5/2+[402], 7/2+[404], 9/2−[514]. Isomeric
states in 178Hf have been explained in terms of 2-quasiparticle or 4-quasiparticle states that
can be constructed from these single-nucleon states, as Table 2 indicates.

Rotational bands, built on the quasiparticle configurations, have been identified. Since
quasiparticles in large-Ω orbits tend to resist the rotational alignment of their angular mo-
menta induced by the Coriolis force, high-K isomeric bands are expected to have good K
values. Experiments testing the K-band mixing of the rotational bands in 178Hf seem to
confirm this [68, 66] (also: see below).

The location of the deformed single-particle states with large Ω-values close to the Fermi
level is responsible for the extremely low value of the excitation energy of the 4-quasiparticle
state that is known as the 178m2Hf isomer. The fact that it lies below any states of spin 14
or higher prevents it from decaying via a low-mulitpole gamma transition and contributes
directly to the remarkably long lifetime of the isomer.

More generally, the hafnium region near A=178, with its well-deformed, axially sym-
metric isotopes, provides particularly favorable conditions for the existence of K isomers.
Multi-quasiparticle isomers have been found there systematically and calculations predict
the existence of further isomeric states with very large K values [155, 163].

3.3 Summary of key publications on the structure of 178Hf

Over the forty years or so since the discovery of the 31-year 178m2Hf isomer, a wealth of
information about the properties of 178Hf and its isomers have been obtained from a wide
variety of experiments, which has also lead to theoretical interpretations. For the most
part, the experiments have focused on tracking the complex network of γ-transitions to
build a detailed picture of the level structure. Structure information has been obtained
from the β-decay of the ground-state and isomeric states of 178Ta, neutron capture on 177Hf,
and Coulomb excitation to high-spin states in heavy-ion experiments. In addition, laser-
spectroscopy has been employed to measure static properties, such as the charge radius and
electric quadrupole and magnetic dipole moments of the isomer. This section summarizes
some of the principal works that have shed light onto the structure of 178Hf .

Decay of an isomeric state in 178Hf with K ≥ 16; Helmer and Reich (1968) [70]. The first
observation of the 178m2Hf state was reported in 1968, when Helmer and Reich [70] published
their observation of a long-lived isomeric state in 178Hf at about 2.5 MeV excitation energy.
The state (178m2Hf) was produced by neutron irradiation of hafnium oxide of natural isotopic
abundance. Chemical purification and isotopic separation of the irradiated samples allowed
the authors to identify the observed transitions with the relevant isotopes. A decay scheme
was proposed for 178m2Hf and a conservative lower limit of 10 years was placed on the half-
life of the isomer. The observed decay pattern, half-live and energy considerations, and an
examination of the arrangement of single-particle configurations in the mass region led to
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the conclusion that the isomeric state had to be one of very high intrinsic spin, with the most
reasonable configuration being a 4-quasiparticle state with Kπ = 16+, which predominantly
decays via a 5-times K-forbidden, highly electron-converted, E3 transition to the I = 13
member of the Kπ = 8− band (and an alternative, less likely, configuration being a 4-
quasiparticle state with Kπ = 17+, which decays via a M4 transition to the I = 13 member
of the Kπ = 8− band).

Half life of 178m2Hf and its neutron capture production; Helmer and Reich (1973)[71]. In
1973, the half life of the 178m2Hf isomeric state was determined by the same authors [71].
They compared γ-ray spectra of 178m2Hf samples, produced via neutron irradiation of 177Hf,
taken over the course of six years and determined the half life of 178m2Hf to be 31±1 years.

The four quasiparticle 178Hf isomeric state; De Boer et al. (1976)[15]. The energy of
the isomeric state was determined more precisely by De Boer et al. [15] in 1976. The spin,
parity, and K-value of the isomer were were established by measuring conversion lines of
its de-exciting transitions; the level scheme was verified by measuring γ-rays in single and
coincidence experiments. They found the excitation energy of the isomeric state to be
2.4475±0.0025 MeV, determined the spin and K-quantum numbers as (Iπ, K) = 16+, 6,
and assigned the four-quasiparticle configuration p(7/2+[404]) p(9/2−[514]) n(9/2+[624])
n(7/2−[514]) to the level. Decay of the isomer via a 5-times K-forbidden E3 transition
was found to be in agreement with findings for the decay of other isomers.

Structural changes in the yrast states of 178Hf; Khoo and Lovhoiden (1977)[90]. Further
evidence for the quasiparticle nature of several rotational bands in 178Hf was presented by
Khoo and Lovhoiden in 1977 [90]. The 176Yb(α, 2n)178Hf reaction was employed to produce
the isotope of interest and γ-ray spectra and angular distributions were observed. The
known level scheme of 178Hf was enhanced and probable structures for the band heads in
terms of quasiparticle configurations were identified. The K=16 isomer was singled out as a
particularly striking example of an yrast trap, a high-spin state lying so low in energy that
its decay is strongly hindered.

K-forbidden decays in 178Hf; Van Klinken et al. (1980) [94]. In 1980, Van Klinken
et al. [94] studied K-forbidden decay modes in 178Hf. They carried out electron and γ-
ray spectroscopy and identified an M4 branch in the decay of the 178m2Hf isomer, which
allowed them to place the 178m2Hf isomer at an excitation energy of 2.4460 keV. They also
determined hindrance factors for several K-forbidden transitions and compared them to
similar transitions in neighboring nuclei. The dominant decay mode of the 178m2Hf isomeric
state, by an E3 transition to the 13− state of the Kπ = 8− band was found to have a
hindrance factor of 66 per unit of forbiddeness, and the M4 transition to the 12− state of
the band was found to have a hindrance factor of 64. Decays from members of the Kπ = 8−

band to the ground state band (Kπ = 0+) were studied as well.

Isomeric trapping following Coulomb excitation of high spin states in 178Hf; Hamilton
et al. (1982)[61]. Hamilton et al. [61] were the first to populate the 4s K = 8− isomer at
1147.4 keV in 178Hf in a Coulomb-excitation experiment that was designed to investigate
band crossing effects for K = 0+ bands. The observation of transitions in the K = 8− band
was unexpected, as Coulomb excitation primarily populates states that are connected to the
ground-state band by collective electric quadrupole (E2) transitions and no branching from
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members of the ground-state band to the K = 8− was observed in the experiment. The
mechanism for populating this isomer could not be explained.

Study of the low-lying states in 178Hf through the (n,γ) reactions; Hague et al. (1986) [60].
Hague et al. [60] carried out a detailed study of the structure of 178Hf below about 2.1 MeV
employing thermal- and resonance-neutron capture processes. They constructed an extensive
level scheme, containing 65 levels, most of which were ordered into rotational bands, and
provided information on the location and intensity of a very large number of γ-transitions
and branching ratios.

Coulomb excitation of the Kπ = 8− isomer in 178Hf; Xie et al. (1993) [161]. This
work investigated the reaction mechanism for populating the Kπ = 8− isomer in 178Hf using
Coulomb excitation. The experiment used a 178Hf target bombarded by a 130Te beam at
beam energies of 560, 590, and 620 MeV. Both prompt and delayed γ-rays were analyzed
using the Crystal Ball. The 4s Kπ = 8− isomer at 1.1474 MeV was populated with a cross
section reported to be 2.7±1.9

1.4, 4.3±3.4
2.0, and 7.56.1

3.2 mb for each of the three bombarding
energies, respectively. Analysis showed that the population of the Kπ = 8− isomer could
be explained by a direct excitation with an electric λ = 3 transition from excited states in
the ground-state band to odd-spin states in the Kπ = 8− band. However, this experiment
could not rule out other mechanisms such as Coulomb excitation of high-spin states in the
ground-state band, with higher K-mixing, followed by γ-decay into states in the Kπ = 8−

band.

Nuclear properties of the exotic high-spin isomer 178m2Hf from collinear Laser Spec-
troscopy; Boos et al. (1994) [16]. This paper examines the hyperfine spectrum in atomic
transitions in the optical spectrum to determine nuclear properties of the 31-yr 178Hf iso-
mer. By measuring small shifts in the hyperfine spectrum where the hafnium nucleus was
in the ground-state configuration or the 31-yr isomer they performed a precise determi-
nation of the difference in the mean-charge radius between the ground state and the iso-
mer (δ〈r2〉 = −0.059(9) fm2) as well as the magnitude and sign of quadrupole moment
(Q178m2 = +6.00(7) b) and the magnetic dipole moment (µ178m2 = +8.16(4) nuclear magne-
tons) for the isomer.

Rational band on the 31 year 16+ isomer in 178Hf; Mullins et al. (1997) [108]. Mullins
et al. [108] employed an incomplete fusion reaction in order to populate high-spin states in
several hafnium isotopes and study their decay via electromagnetic transitions. The authors
were able to extend previously known bands in 177,178,179Hf. In 178Hf, they added a Jπ = 18+

and a tentative Jπ = 20+ level to the ground state band and measured rotational bands built
on the 16+ 178m2Hf isomer and the 14− isomer at 2.574 MeV. They presented further evidence
for the four-quasiparticle structure of 178m2Hf and for the two-quasiparticle structure of the
two lower lying 8− states.

Limit to high-spin isomerism in hafnium isotopes; Xu et al. (2000) [163]. This paper
presents a theoretical examination of the properties of hafnium isotopes to determine the
potential existence of high-spin isomers. The authors achieved a realistic treatment of multi-
quasiparticle states by performing configuration-constrained calculations of the potential
energy surface within a deformed Woods-Saxon basis with a Lipkin-Nogami treatment for
pairing and the Stutinsky averaging method. Calculations were performed for a variety of
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hafnium isotopes. Overall good agreement was achieved in describing the Kπ = 16+ isomer
in 178Hf. Further calculations were reported for 182Hf and 186Hf to investigate the lowest spin
occurring for three distinct types of excitation to generate high spin: 1) prolate collective
rotations, 2) oblate collective rotations, and 3) multi-quasiparticle excitations. They report
that with increasing neutron number, the multi-quasiparticle states become yrast (i.e. they
become the lowest states of a given angular-momentum value in the spectrum of the nucleus)
at higher angular momentum, leading to the possible existence of high K isomers. In general,
the multi-quasiparticle states are energetically favored over oblate collective rotations up to
spins of 35~.

Gamma rays emitted in the decay of 31-yr 178m2Hf ; Smith et al. (2003) [137]. Smith et al.
investigated the spontaneous decay of the 178m2Hf isomer by coincidence γ-ray spectroscopy.
They were able to observe direct, high-multipolarity, strongly K-forbidden, M4 and E5 γ-
ray emission associated with the transition from the 16+ isomer to the 12− and 11− states,
respectively, in the rotational band built on the Kπ = 8− 4s isomer. They also measured
low-intensity transitions between members of the two Kπ = 8− bands, which allowed them to
obtain an estimate of the mixing strength between the two bands. They determined reduced
hindrance factors for transitions between the Kπ=16+ and Kπ=8+ bands to be of the order
of about 100, in agreement with earlier systematics and measurements. They were not able
to detect any direct γ-ray transition to the ground-state band; nor did they observe the 129
keV line that both Collins et al. [37] and Rusu [131] had reported earlier as associated with
stimulated decay of 178m2Hf.

Coulomb excitation paths of high-K isomer bands in 178Hf; Hayes et al. (2002) [69]. Hayes
et al. carried out Coulomb excitation experiments with a 650 MeV 136Xe beam impinging
on an enriched 178Hf target. They observed prompt γ-ray yields of high spin states in the
rotational bands built on on the Kπ=6+ (77 ns), Kπ=8− (4s) and Kπ=16+ (31 y) isomeric
states in 178Hf. They employed different models for K-mixing in the rotational bands in order
to fit the measured γ-yields and extract information on the mechanisms for populating the
different rotational bands. They concluded that three different mechanisms are responsible
for populating the isomer bands: The Kπ=6+ appears to be primarily populated by multistep
allowed and forbidden excitations through the γ and 4+ bands, while the Kπ=8− band
appears to be populated via E3 excitation from the ground-state band. While Coulomb
excitation of the high-K band built on 178m2Hf is in apparent violation of the K-conservation
rule, Hayes et al. observed the population of that band, as had Hamilton et al. [61] and
Xie et al. [161] in earlier experiments. Hayes et al. deduce that the population of this band
occurs via direct feeding from the ground-state band, but at very high levels. They conclude
that K mixing must increase rapidly with increasing spin.

Study of Isomers using Reactions with a 178Hf beam - Ph.D. Thesis by Gareth Jones,
Surrey (2006) [73]. The objective of this thesis work was to search for theoretically predicted
high-K multi-quasiparticle states in 177,178Hf and to examine their decays. Blocked BCS
calculations, which have successfully reproduced the energies of experimentally observed
multi-quasiparticle states in the hafnium region motivated and guided the search. Deep-
inelastic collisions between 1.15 GeV 178Hf projectiles and the nuclei in a thick 208Pb target
produced a range of hafnium isomers, populated to high spins. The γ-rays from the decays of
the excited nuclei were detected with the GAMMASPHERE array. Measured transitions and

18



half lives for 177,178,179Hf were found to be consistent with previous measurements. A new,
weak M3 decay branch for a known isomer in 177Hf was discovered, but the predicted high-K
states were not identified. The Kπ = 19+ and 22− 6-quasiparticle states predicted to exist in
178Hf, were not observed either, despite a careful consideration and search for possible decay
paths of such states. The absence of experimental evidence for the predicted states could not
be sufficiently explained. Possible explanations for the outcome of the experiment included
limited accuracy of the predicted energies, difficulties in the experimental identification of
low-multiplicity γ cascades by which the states may decay, the possibility of very long life
times (> 1 yr) of the predicted states, or some combination of these factors. The thesis work
also identified new spin-trap isomers in antimony and molybdenum isotopes, produced via
fusion-fission reactions of the 1.15 GeV 178Hf beam with an 27Al target.

Breakdown of K selection in 178Hf; Hayes et al. (2006) [68]. Hayes et al. carried out
an activation experiment to measure Coulomb excitation of the 178m2Hf isomer as a func-
tion of collision energy. They irradiated natural Ta targets with a 178Hf24+ beam at safe
Coulomb excitation energies, collected the scattered Hf ions, and counted the activities
five months later. These measurements, in conjunction with a new analysis of their earlier
178Hf(136Xe,136Xe)178Hf Coulomb excitation experiment, were employed to probe the good-
ness of the K quantum number as a function of spin. The authors observed a systematic
decrease with increasing spin of the hindrance of K-forbidden transitions from the ground
state band to rotational bands with K ≥ 4. The rapid breakdown of the goodness of the
K quantum number as low-K bands are excited to higher rotational levels indicated that
higher-K components are admixed in these bands with increasing spin. The observed (large)
hindrance factors for the decays of the high-K isomer bands, on the other hand, indicate
that high-K bands remain very pure, even for states at higher spin.

Spin dependence of K mixing, strong configuration mixing, and electromagnetic proper-
ties of 178Hf; Hayes et al. (2007) [66]. This paper is a long article that details the work
summarized in the earlier Physical Review Letter [68] by the same authors (see Breakdown
of K selection in 178Hf, above). The purpose of the work was to shed light on the K-
forbidden population of the K=8− isomer that had been seen in early Coulomb excitation
experiments [61, 161] and to investigate in detail the unexpectedly large population of the
Kπ=16+ band the authors had observed in their previous 178Hf(136Xe,136Xe)178Hf Coulomb
excitation experiment. A re-analysis of that experiment, in conjunction with activation data
obtained from counting the decays of 178m2Hf, produced via irradiation of natural Ta targets
with a 178Hf24+ beam, made it possible to determine a set of matrix elements for electromag-
netic operators causing the transitions between the bands. From this, the authors were able
to identify three distinctly different paths for populating the dominant rotational bands in
Coulomb excitation of 178Hf, and to infer information about the amount of K mixing in the
different bands, as a function of spin. The authors concluded that the Kπ=6+ isomer band
is populated via a multi-step process, while the Kπ=8− bands are excited directly from the
ground state band and the γ band by highly K-forbidden E3 transitions. The Kπ=16+ iso-
mer was found to be populated. No evidence of direct excitation from the ground-state band
to the Jπ = 16+ isomer state is reported nor substantiated by the data. The exact mecha-
nism for populating the 16+ state has not been identified. Two possible paths exist based
on first exciting the nucleus to high spin-states (probably J > 20~) in the ground-state band
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via multi-step Coulomb excitation: 1) multiple-step transitions (either Coulomb excitation
in the reaction or in the subsequent γ-decay) to the Kπ = 16+ band through a network of
K-allowed transitions excitations (based on the possibility that there may be more K bands
above 3-4 MeV in excitation); and/or 2) single-step, K-forbidden transitions (Coulomb exci-
tation or γ-decay) from states in the ground-state band into the Kπ = 16+ band, (mediated
by K-mixing). Overall, the authors found substantial K-forbidden Coulomb excitation of
several rotational bands. The observations are consistent with a rapid breakdown of the K
quantum number as the low-K bands are excited to higher energy, i.e. higher K components
are admixed in the low-K bands (such as the ground state band) with increasing spin, while
the high-K bands (such as the Kπ=16+ isomer band) remain relatively pure for all known
states. The authors also considered various de-excitation paths for the 178m2Hf isomeric state:
Coulomb depopulation was calculated to be possible (at the 1% level), but no intermediate
states that might aide the de-excitation of the 178m2Hf state via photons were found. The
work also provides a large amount of new nuclear structure information, including improved
information on the quasiparticle nature of the various isomeric bands.

Projected shell-model description for nuclear isomers; Sun (2008) [142]. This unpub-
lished reprint (on the nuclear theory archive) describes calculations for isomeric states in
several nuclei using the formalism of the so-called projected shell model. The projected shell
model is a configuration interaction method utilizing a deformed Nilsson basis, where the
residual interaction is general taken to be of the form quadrupole-plus-pairing. The projected
shell model derives its name from projecting angular momentum onto the deformed basis
while diagonalizing the residual interaction within the configuration basis. Calculations are
reported for 178Hf demonstrating overall agreement between theory and experiment for the
ground-state band as well as the Kπ = 6+ band, the first and second Kπ = 8+ bands, and
the Kπ = 14− and Kπ = 16+ bands. Note that counter to experiment, in the calculations,
the Kπ = 14− band lies slightly below the Kπ = 16+ band. Projected shell-model calcula-
tions were also reported to examine the existence of a Kπ = 6+ bands in N = 104 isotones.
A discussion on the existence of shape isomers for nuclei in the A=70 region based on the
projected shell model is also given.

3.4 Section summary

Past experiments have provided extensive detail of the structure of 178Hf. One of the most
powerful tools employed has been Coulomb excitation, a multi-step process used to excite the
nucleus to angular momenta greater than 20 units or so. In addition, it has also permitted
a probe of the “goodness” of the K quantum number at high spin. While levels have been
analyzed and identified up to 5 MeV, the spectrum is by no means complete up to this
excitation energy. Indeed, many of the known bands have not been extended up to this
energy. However, following extensive analysis of observed γ-transitions, the spectrum is
fairly complete up to an energy of approximately 2.7 MeV. Additional K bands built on
quasiparticle excitations are possible, and have even been predicted. From the Couomb-
excitation experiments it can be concluded that these are either weakly populated, so it is
not possible to pick them out of the background, or that they have long half lives which have
hindered their observation in the experiments carried out so far. It also has to be remarked
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that because of the extreme sensitivity of modern γ-detectors, such as GAMMASPHERE,
Coulomb excitation has been very successful in populating a wide range of states, including
the Kπ = 16+ isomer. However, these experiments have not been able to identify a state
with mixed K that could serve as a doorway state to de-excite the 31-yr isomer following
the absorption of the low-energy ( 10 keV) photon. It is important to note that for such a
state to act as a “trigger” it would also have to have an allowed γ-decay to a state lying
significantly below the isomer that continues to decay to the ground-state band, otherwise
the phase-space factors for electromagnetic decay would dictate that it decay back to the
isomeric state. The γ-decay of such a state should have been observable in the γ-coincidence
experiments following Coulomb excitation, but has not been seen thus far.
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4 Potential energy release mechanisms

As discussed in the introduction, there is energy stored in an isomeric state, and, if pure
178m2Hf could be obtained, the energy-density would be extremely high compared with chem-
ical methods of energy storage. In order to decide if there is a here a practical device, we
have first to see if there are systematic methods of releasing that isomer energy. Is there a
triggering mechanism for releasing that potential energy?

Some experiments of the last 10 years appear to suggest that the isomer energy of 178m2Hf
can be released by incident X-rays of energies in the range 5–50 keV, and these experiments
are reviewed in detail in Section. 4.1. More recently, it has been conjectured [109] that
neutrons may be an suitable incident projectile for a reaction that releases the excitation
energy, and this prospect is examined in Section. 4.2. Finally, in Section. 4.3 we consider how
nuclear excitations may be prompted by electron transitions, a process which, if it occurred,
could amplify the triggering induced by X-rays.
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4.1 Reactions with photons

It is certainly possible to de-excite isomers by reactions with photons. One physical mech-
anism is a direct absorption of a photon by the nucleus in an isomeric state leading to its
excitation to an intermediate level that will then decay bypassing the isomeric state either
by γ-emission to the ground state or by a particle emission or fission. Another mechanism
is coupling of atomic interactions to the nucleus in a process like the nuclear excitation by
electron transition (NEET) described in the Sect. 4.3. In this case, a photon excites the
atomic electrons and their excitation energy is transferred in a resonant process to the iso-
meric nucleus exciting it to an intermediate state that then decays bypassing the isomeric
state.

The main focus of this section is a description and discussion of X-ray experiments
aimed at inducing de-excitation of the K-isomer 178m2Hf. First, however, we briefly review
established de-excitations of the K-isomer 180mTa and the spin isomer 68mCu triggered by re-
actions with photons. The nuclear photo-absorption is the de-excitation mechanism in these
two cases. We then proceed to the 178m2Hf case where presumably the NEET mechanism
should play a role if a de-excitation induced by X-rays with energies ≤ 90 keV occurs.

4.1.1 Triggered de-excitation of 180mTa

The isotope 180mTa is the rarest stable isotope occurring in nature and it is the only naturally
occurring isomer. The ground state of 180Ta is 1+ with half life of 8.1 h. The 9− isomeric
state at excitation energy of 75.3 keV has a half-life greater than 1.2× 1015 yr.

Depopulation of the isomeric state 180mTa by the reaction 180mTa (γ,γ′)180Ta was first
reported in Ref. [33]. Bremsstrahlung with end-point energy of 6 MeV was used to irradiate
enriched 180mTa target. The γ radiation excited the isomer to intermediate states of at least
2 MeV excitation energy that subsequently decayed through unobserved cascades to the 1+

ground state of 180Ta. The electron capture and a beta decay of the 180Ta ground state then
produced 180Hf and 180W. The Kα and Kβ fluorescence of the 180Hf was then observed. The
reported integrated cross section was 4.8×10−25 cm2 keV which was two orders of magnitude
greater than typical (γ,γ′) reactions that produce isomers of other species.

In a subsequent experiment [27], the energy of the bremsstrahlung was varied between 2
to 5 MeV. This allowed the identification of the energy range of intermediate states through
which the isomer depopulation proceeds. Two energy regions were identified, one at 2.8 MeV
and the other at 3.6 MeV. The reported integrated cross section was 1.2 × 10−25 cm2 keV,
which exceeds by an order of magnitude known cross sections that produce isomers of other
species.

The large magnitude of the integrated cross section reported in Ref. [27] was disputed
in a comment [111]. An independent measurement using 1.3 MeV and 4 MeV γ-radiation
found upper limit of 14 nb cross section at 1.33 MeV and finite value of 0.52(20) mb at
4 MeV. It was claimed that the 4 MeV result considered together with data obtained for
115In(γ,γ′)115mIn did not support the large integrated cross section of Ref. [27]. Also, the
bremsstrahlung calibration in the commented upon experiment was questioned.
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ditions will not be precisely the same in both nuclei, the

purported 180Ta transitions are apparently orders of magni-

tude faster.

The major and perhaps most pertinent difference between

these cases, however, is that the upper states in 180Ta are

very nonyrast, in contrast to the states in 181Hf. Level-

density effects !random mixing due to overlapping levels"
may be the key feature, as these are already known to reduce

hindrances for E2 transitions from states, depending on their

position above the yrast line #17$.
Independent of the explanation, to be consistent with the

inferred E1 excitation strength, this treatment also implies a

significant %-ray branch from the 1076 keV 8! state back to

the 9" isomer. As is clear from Figs. 1 and 2, the next two

resonances also match !within the uncertainties" the energies
of K&#5! band members. The situation is summarized in

Table I !and schematically in Fig. 2" where the decay widths
are listed for all states of the K&#5! band which might be

accessible by E1 excitation from the 9", 75 keV isomer.

The decay widths within the rotational band are estimated

using a combination of the rotational-model formulas for a

band with K#5, and the known in-band %-ray branching
ratios from which the other band properties associated with

the intrinsic configuration (gK"gR values, mixing ratios,

etc." have previously been extracted #7,9$. A quadrupole mo-
ment of 6.79 e b, consistent with that measured #18$ for the
K&#9" state, has been assumed. Also included are the total

widths for each branch !column seven of the table" including
conversion, estimated from calculated conversion coeffi-

cients #19$ and where necessary the mixing ratios implied by
the rotational-band analysis #7,9$.
Note that neither the in-band %-ray widths, nor the

conversion-electron widths !the sum of which give ' for

each state" are dependent on any assumptions about the
strengths of the E1 decay paths. The E1 width for the 1076

keV state is extracted from the photon-scattering cross-

section data, as discussed above, and all other E1 widths in

Table I have been estimated assuming the same hindrance of

FW#7$104. As can be seen from the table, there are several
E1 decay paths possible from each of the 9! and 10! mem-

bers of the K&#5! band, which would also result in signifi-

cant %-ray branches back to the 9" band. These are illus-

trated schematically in Fig. 2.

Furthermore, the results of Table I can be used in Eqs. !1"
and !2" to predict the cross sections which should be ob-
served at resonance energies corresponding to the 9! and

10! states. Application of these formulas gives cross-section

predictions of 0.073 eV.b and 0.089 eV.b at photon energies

of 1203 keV and 1424 keV, respectively. Belic et al. #10$
observe a clear second discontinuity at 1220!30" keV in their
(% ,%!) data and subsequent analyses #11$ for it and a third
resonance at 1430!30" keV, give even larger cross sections
!0.27 and 0.24 eV.b" than those predicted here. If the large
cross sections are substantiated, then they are at the limit of

what can be understood within the present scenario, i.e., by

only lowering the hindrances for the E1 transitions !to, say,
FW(104) which is equivalent to increasing 'm . It may also

be necessary to consider mechanisms for increasing '0 !and

FIG. 2. Partial level scheme for 180Ta, adapted from Ref. #9$, with energies in keV. The low-energy photoactivation transitions #10,11$
from the long-lived isomer are illustrated on the right-hand side. They correspond to photon resonance energies of 1010!10" keV,
)1220 keV, and )1430 keV. The corresponding excitation energies are 75 keV higher. Also shown are the predicted E1 transitions

decaying from the K&#5! band back to the K&#9" band.

RAPID COMMUNICATIONS

INTERPRETATION OF THE EXCITATION AND DECAY . . . PHYSICAL REVIEW C 64 061302!R"

061302-3

Figure 2: Partial level scheme for 180Ta with energies in keV. Photoactivation transitions are shown
on the right. Also shown are the predicted E1 transitions decaying from the Kπ = 5+ band back
to the Kπ = 9− isomer band. Adopted from Ref. [156].

In the reply [21], the authors of the original paper defended their calibration of the
bremsstrahlung spectra and cast doubt on the Ta/In data connection.

Another experiment using bremsstrahlung with end-point energies in the range of 5.4 - 7.6
MeV was reported in Ref. [85]. The goal of this study was a determination of the depletion
probability of the 180mTa isomer after γ-ray absorption. Under the assumption that the
cross section for the isomer depletion can be taken as a product of the giant electric dipole
resonance cross section and the probability for decay of the compound nucleus to the ground
state and with the possibility to determine the absolute cross section of the (γ,γ′) reaction
using a monitoring reaction 232Th(γ,f) allowed to deduce the probability of the ground-state
population. It was found that this probability increases with γ-ray energy and reaches about
15% at the highest measured energy of 7.6 MeV. Therefore, there is 85% probability that
the compound-nucleus excited state will decay back to the isomer. This result suggests only
a modest K-mixing at the excitation energies studied in 180Ta.

Astrophysics consequences of the depopulation of the 180mTa isomer by resonant pho-
toabsorption were investigated in Ref. [12]. The irradiation of the isomer was performed for
bremsstrahlung endpoint energies from 0.8 to 3.1 MeV. The depopulation of the isomer was
observed down to about 1 MeV. An intermediate state as low as 1.01 MeV was suggested.
This implies a reduction of the isomer lifetime in a photon bath accompanying the s-process.

A theoretical investigation of the 180mTa isomer depopulation by resonant photoabsorp-
tion was performed in Ref. [156]. Experimental results reported in Ref. [12], in particular the
suggestion of an intermediate state at 1.01 MeV excitation energy above the isomer energy,
were interpreted. It was proposed that the deexcitation proceeds through the K = 5 band
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Coulomb excitation experiments provide information on
the energies, spins, and parities of the excited levels and
reduced transition probabilities. Such experiments are ex-
tremely challenging due to the low intensity of the radio-
active beams and the possible low collectivity of the
transitions involved. Moreover, the very complex level
structure of the odd-A and odd-odd nuclei can lead to
isomeric states. Apart from being an important probe for
nuclear structure, Coulomb excitation might cause an in-
duced isomeric deexcitation, as suggested in [9], leading to
triggered !-ray emission—a field of great current interest.

In this Letter we report on pioneering studies, opening
the field for Coulomb excitation and other reaction experi-
ments with odd-odd nuclei, on the structure of 68;70Cu
using post-accelerated beams, isomerically purified
through selective laser ionization. In a simple shell-model
picture, the low-lying level structures of these two nuclei
can be regarded as one 2p3=2 proton plus one neutron
particle or hole occupying either the 2p1=2 or 1g9=2 orbi-
tals, coupled to the 68Ni core, giving rise to the multiplet of
states I" ! "1#; 2#$ and I" ! "3%; 4%; 5%; 6%$, respec-
tively. The spins 1# and 6% were assigned to the ground
states of 68Cu and 70Cu, respectively. The 6% state in 68Cu
and (1#, 3%) levels in 70Cu were found to be #-decaying
isomers [10–13]. Prior to this study, the experimental
information on the remaining members of the negative-
parity multiplet was rather incomplete. Candidates for
these states were suggested at 778, 956, and 1350 keV, in
68Cu, and 226 and 506 keV, respectively, in 70Cu
[12,14,15].

In the present work we made use of Coulomb excitation
of post-accelerated 6% beams of 68;70Cu to characterize the
states of the "2p3=2$1g9=2 multiplet. The beams were
produced in a similar way as in [12,13] where narrow
band laser scans provided the optimum values of the laser
frequency that maximize the ionization of the different
isomers.

The 6% beams of 68;70Cu, post-accelerated by REX-
ISOLDE [16] up to 2:83 MeV=nucleon, were used to
bombard a 2:3 mg=cm2 120Sn target. Typical beam inten-
sities at the detection setup were 3& 105 pps [68Cu"6%$]
and 5& 104 pps [70Cu"6%$]. Scattered projectile and re-
coiling target nuclei were detected by a DSSSD detector
[17], covering the forward angles between 16.4' and 53.3'

in the laboratory system.
The detection of the ! rays was performed with the

MINIBALL array [18] consisting of 8 clusters each com-
bining three sixfold segmented HPGe crystals. While the
!-ray energy was extracted from the core signal of the
individual crystals, the segment with the highest energy
deposition determined the emission angle of the ! ray.
Doppler correction was applied by combining this infor-
mation with the direction and velocity of the coincident
scattered particle detected in the DSSSD detector.

Experiments with radioactive beams often suffer from
the contamination of the beam of interest with other isobars

and, in this particular experiment, isomers. The isobaric
contamination was investigated by performing measure-
ments with and without laser radiation (laser ON/OFF) at
regular time intervals. The amount of Ga contaminant was
determined by comparing the yield of elastically scattered
particles in the DSSSD detector in the periods with the
lasers on (both Ga and Cu present in the beam) and the
periods with the lasers off (only Ga present in the beam).
Values of 74(2)% and 70(5)% were obtained for the purity
of the 68;70Cu beams, respectively.

The isomeric beam contamination stemmed from the
broadening of the hyperfine-split resonances of each iso-
mer [12,19]. This introduced a small contamination of the
6% beam with contributions from the lower spin isomers.
The characteristic ! rays produced in their # decay al-
lowed to determine the isomeric content of the beam. The
analysis showed that when the laser was tuned to the
maximum production of the 6% beam, 86(3)% and
85(5)% of the total 68;70Cu ion yield was produced in this
spin state, respectively. In 70Cu, the (3%, 1#) isomers were
found to contribute with almost equal amounts ((7%) to
the total Cu yield.

The upper part of Fig. 1 shows the particle–!-ray coin-
cidence spectrum observed after 12.3 h of data taking with
the 6% isomeric beam of 68Cu. No Doppler correction was
applied to this spectrum. The three peaks at low energies,
namely, 84, 178, and 693 keV, were identified as transitions
depopulating excited levels in 68Cu [15]. The prompt ! ray
of 178 keV deexcites the state at 956 keV, populated in our
work by Coulomb excitation. It feeds the 3% state at
778 keV, which further deexcites via the 693 and 84 keV
transitions defining the 3% ! 2# ! 1# sequence. A spin
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FIG. 1. Top: particle–!-ray coincidence spectrum acquired
with the 6% beam of 68Cu. The partial level scheme and deexci-
tation ! rays shown in the upper right corner are based on
Refs. [15,21] and this work. Energies are given in keV. Levels
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particle–!-ray coincidence spectrum acquired with the 1#

beam. No Doppler correction was applied to these spectra.
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Figure 3: Partial level scheme for 68Cu and deexcitation γ-rays with energies in keV. Adopted
from Ref. [140].

8+, 9+ and 10+ states. The isomer is a K = 9, 9− state. E1 radiation excites each of the
three K = 5 states, which subsequently decay either back to the isomer or to the 1+ K = 1
ground state, see Fig. 2. The 8+, K = 5 state with excitation energy of 1076 keV is identi-
fied with the 1.01 MeV state (measured from the isomer energy) of Ref. [12]. A substantial
K-mixing of the non-yrast states is suggested in order to explain experimental observations.

4.1.2 De-excitation of 68mCu by Coulomb excitation at ISOLDE

In a recent letter [140] a pioneering study was reported on induced isomeric deexcitation
of 68mCu nucleus leading to triggered γ-ray emission. The experiment was performed at
ISOLDE, CERN. Coulomb excitation was used with a post-accelerated beam of 68mCu iso-
merically purified through selective laser ionization. The isomeric state has Jπ = 6−, excita-
tion energy of 722 keV and a half-life of 3.75 min. The beam was used to bombard a 120Sn
target and the detection of the γ-rays was performed with the MINIBALL array. It was
established that the isomeric state is excited into an intermediate 4− state at 956 keV, which
then promptly decayed to a 3− state at 778 keV that further deexcites via 3− → 2+ → 1+ se-
quence, see Fig. 3. The 1+ state is the ground state with a half-life of 31.1 s. It is interesting
to note that by the Coulomb excitation of the 6− isomer in 68Cu, the induced instantaneous
depopulation of a nuclear isomer was demonstrated. Unlike in the case of the K-isomers, e.g.
180mTa or 178m2Hf where the isomer depopulation can only proceed through weak transitions
arising from K-mixing, here an alternative scheme is revealed. The E2 Coulomb excitation
feeds a member of the multiplet which deexcites faster through M1 than E2 transitions,
eventually bypassing the isomer.

4.1.3 178m2Hf X-ray experiments

Experiments involving the 178m2Hf isomer are more complex and challenging compared to
180mTa investigations. First, the 31-year half-life of 178m2Hf compared to the extremely long
half-life of 180mTa implies a much stronger background from the natural decay of the 178m2Hf.
Second, a significantly higher excitation energy of the 178m2Hf isomer, 2.446 MeV, compared
to 75.3 keV of 180mTa , means a much higher level density in the vicinity of the isomeric
state, making interpretation of measurements, as well as the theoretical understanding, more
challenging. Third, the decay of the short-lived ground state of 180Ta was successfully used
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as a signal for the 180mTa induced deexcitation. This cannot be done in the 178Hf case as it
is stable. Finally, a production of the 178m2Hf target is a complicated task in itself.

Bremsstrahlung X-ray experiments by Collins et al.

The first report of accelerated γ-ray emission from the 178m2Hf irradiated with X-rays was
published in Ref. [29]. X-ray pulses from a device typically used in dental medicine with an
end point energy set to be 70 or 90 keV were used in the experiment. Intensities of several
γ transitions were found to increase by about 4%. An integrated cross section of 10−21 cm2

keV for the resonant absorption of X-rays to induce γ-decay was deduced. An excess of
6%±2% and 2%±1% was reported for the 495 keV line corresponding to the 11− → 9−

transition in the Kπ = 8−1 , 4 s isomer band and for the 426 keV line corresponding to the
8+ → 6+ transition in the ground-state band, respectively. On the contrary, no enhancement
was found for the 574 keV line of the 13− → 11− transition in the Kπ = 8−1 4 s isomer band
that feeds the 495 keV transition during the spontaneous decay. The low-energy 93 keV
(2+ → 0+) and 213 keV (4+ → 2+) lines were blocked by a Pb filter. The ground-state band
6+ → 4+ 326 keV transition was not discussed.

A separate paper describing the same experiment was published in Laser Physics journal
[28]. In this paper, an enhancement was reported for the 8+ → 6+ 426 keV transition and,
in addition, for the 6+ → 4+ 326 keV transition in the ground-state band. However, the
enhancement of the 495 keV line 11− → 9− transition was not confirmed.

Comments on these experiments

Three published comments followed the paper [29].

In the first one [118], it was suggested that the reported enhancements are due to sta-
tistical fluctuations. It was argued that the both measured and calculated (γ, γ′) integrated
cross sections are several orders of magnitude smaller than that reported in Ref. [29]. At the
same time, there were inconsistensies in the enhancements reported in Refs. [29] and [28],
i.e. no mentioning of the 495 keV line enhancement in the latter, was pointed out. Further,
it was noticed that some of the 178Hf lines show negative variations.

In the second comment [105], the large integrated cross section reported in [29] was shown
to represent about 38% of the E1 energy-weighted sum rule. Taking into account the 90 keV
energy of the X-ray photons, the excitation energy of the intermediate state that facilitates
deexcitation of the isomer cannot be higher. It is physically unacceptable for such a low-lying
state to carry such a large portion of the E1 sum rule. Consequently, nuclear absorption
is ruled out as the physical process that can explain accelerated γ-ray emission reported in
Refs. [29] and [28].

The third comment [152] argued along similar lines as the previous comment [105]. Its
conclusion was that a resonant excitation by the X-rays into an intermediate state is excluded
as an explanation of the data obtained in [29]. Atomic interactions coupling strongly to the
nucleus were suggested as a speculative explanation to be explored.

In their reply [30], the authors of the experiment disputed the statistical fluctuation expla-
nation of their data as suggested in the first comment [118]. Figures showing enhancements
for three ground-state band transitions were presented. The 426 keV 8+ → 6+ transition
discussed in the original paper was shown together with the 326 keV 6+ → 4+ transition
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and the 213 keV 4+ → 2+ transition. The latter two transitions were not discussed in the
letter [29] except for a statement that the 213 keV 4+ → 2+ transition was blocked by a Pb
filter. The most strongly enhanced transition reported in the original letter, the 495 keV
line corresponding to the 11− → 9− transition in the Kπ = 8−1 4 s isomer band, was not
mentioned in the reply.

Subsequent bremsstrahlung experiments by Collins et al.

Results of a subsequent bremsstrahlung experiment performed by Collins’ group was
published in Ref. [32]. The X-ray end point energy was 63 keV. A 1.6% enhancement was
reported in the 213 keV 4+ → 2+ ground-state band transition. The 326 keV 6+ → 4+

ground-state band transition was also found enhanced by irradiation and integrated cross
section of 2.2 × 10−22 cm2 keV was deduced. Further, it was stated that the resonant
absorption takes place below 20 keV as indicated by the use of selective absorption filters
in the irradiating beam. Counts were summed for the 213 keV 4+ → 2+ ground-state
band transition and the 217 keV 9− → 8− 4-s isomer band transition. No other 4-s isomer
band transitions were reported. The 426 keV, 8+ → 6+ ground-state band transition so
prominently discussed in Ref. [29] was not mentioned in this work. It was proposed that
the induced transitions bypass the 4-s isomer band through which the 178m2Hf spontaneously
decays. This was in contradiction to the claims made in the original Ref. [29], where the
495 keV line corresponding to the 11− → 9− 4-s isomer band was reported to be the most
significantly enhanced.

More results obtained with bremsstrahlung X-rays were reported in Ref. [31]. The end-
point energy was 90 keV. The 326 keV 6+ → 4+ ground-state band transition was found
enhanced by irradiation. Integrated cross section of 3× 10−23 cm2 keV was reported.

Coincident measurements of the 178m2Hf γ-transitions either from spontaneous decay or
from an induced decay by bremsstrahlung X-rays with end point energy set between 60 and
90 keV were reported in Ref. [37]. A new 129.5 keV line was found during X-ray irradiation in
coincidence with the 213 keV 4+ → 2+ ground-state band transition (see also the discussion
of the thesis by C. Rusu [131] below). When gated on this new line, only the 213 keV
ground-state band transition was seen. On the contrary, when gated on the 88.8 keV,
8− → 8+ transition, all the ground-state band cascade was observed. The conclusion was
that the induced decay bypasses the 4-s isomer band, in contradiction to the original claims
in [29], through unidentified cascades that include the 129.5 keV transition. The transitions
connecting the lower members of the ground-state band were found more enhanced.

Argonne measurements

Independent experiments seeking to confirm the X-ray induced acceleration of the 178m2Hf
isomer were performed at Argonne National Laboratory with an intense white X-ray beam
from the Advanced Photon Source [4]. The X-ray intensity was 4 orders of magnitude larger
than those in [29]. The explored X-ray energy range was 20-60 keV. Using a tungsten shutter,
the beam was on the target for 11 s and off the target for 22 s during runs over a period of
10 hours. If the claims in [29] concerning the enhancement of the 11− → 9− transition in
the Kπ = 8−1 , 4 s isomer band were correct, the measured γ-rays in the ground-state band
during the beam-off period would show an enhanced counting rate in interval the first 11
s interval as compared to the second 11 s interval. No statistically significant difference in
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the γ-ray intensities between the two periods was found for any γ-ray line in the spectrum.
Further, an attempt was made to search for changes in intensities due to a hypothetical
prompt deexcitation bypassing the 4 s isomer band. No significant increase in activity for
any transition was seen, although the background with the beam on was high and the Pb
absorbers were in place. The obtained data were consistent with an integrated cross section
less than 2 × 10−27 cm2 keV for decays that would go through the 4-s isomer and a value
less than 2× 10−26 cm2 keV for decays that would populate the ground-state band directly,
more than three orders of magnitude below the valuse reported by Collins et al.

Collins’ experiments with tuned beam at SPring-8

Tunable synchrotron radiation from the SPring-8 facility was used to study induced γ-
emission of 178m2Hf [41]. Energy range of 9 to 13 keV was explored in steps of 5 eV. The
178m2Hf target irradiation lasted several tens of second at each energy. The energy range
was selected because it contains much of the transition strength for photoionization of the
L-shell electrons of Hf. A 4 σ enhancement of the summed 213 keV 4+ → 2+ ground-state
band transition and 217 keV 9− → 8− transition in the Kπ = 8−1 4 s isomer band was
reported with cross section of ≈ 2×10−22 cm2. The nuclear excitation by electron transition
(NEET) process was identified as the physics mechanism of the induced transitions. The
NEET branch was reported to be 2 × 10−3 relative to L-shell photoionization. The null
result of the Argonne measurement [4] was attributed to lack of optical transparency at
the resonant energies for NEET. In addition to the 178m2Hf transitions, transitions due to
the 172Hf impurity were also measured. Fractional increases in Figs. 4 and 5 of Ref. [41]
demonstrate large statistical fluctuations. It is not clear why there was no attempt to increase
irradiation time in the regions of interest (e.g. near L1 and L3 edges) in order to improve
statistics of the alleged transition enhancements.

Second Argonne experiment

Responding to the new experiments by Collins’ group concluding that the induced γ-
emission of 178m2Hf was triggered by X-rays not in the energy range of 20-60 keV as reported
in Ref. [29] but rather at lower 9 to 13 keV range [32, 41] that was not explored in the first
Argonne measurement [4], a new experiment was performed at the Advanced Photon Source
using a thin electroplated Hf target [3]. An increased sensitivity to the low-energy X-rays
was achieved. The same 11 s illumination of the target and two 11 s counting periods were
used as in the original experiment. No enhanced γ-emission was observed for any 178Hf line.
An upper limit to the energy-integrated cross section for X-ray induced decay of the 31-y
178Hf isomer was established that was less than 1× 10−26 cm2 keV over the incident photon
energy range of 6-20 keV, three orders of magnitude below the values reported by Collins’
group.

Further Collins’ measurements at SPring-8 and Paul Scherrer Institute

Monochromatic synchrotron radiation X-rays with tunable energy were also used by the
Collins’ group in follow up experiments to the 2001 SPring-8 measurements [41]. Results
obtained in 2002 at the SPring-8 and in 2003 at the Paul Scherrer Institute SLS synchrotron
radiation source were reported in Ref. [40]. Enhancement of the ground-state band transi-
tions was reported for X-ray energies around 9.56 keV near the Hf(L3) edge. Further, a new
130 keV line not seen in spontaneous decay was reportedly seen when the 178m2Hf target was
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conclude that such behavior has been found in these
additional higher order effects of photoionization when
the excitation is transferred into fluorescence from the
nucleus.

The difficulty in extracting quantitative information
from data such as that shown in Fig. 6 lies in determin-
ing the baseline above which the enhancement occurs
without having data from a broader range of X-ray
energies. For the first analyses, the baseline was
selected to be a constant number shown by the line at
zero in Fig. 6. It is not unique, but is one which is pos-
sibly consistent with the assumption that the effect of
the SR irradiation is not to suppress the spontaneous
decay of the isomeric nuclear state. Then, over the
range of X-ray energies 9555.6 to 9568.9 eV corre-
sponding to the main peak in photoionization at the L3
edge, the average enhancement in Fig. 6 for the 2002
data is 0.0068, corresponding to 10756 counts in excess
of the 1587214 counts from spontaneous decay. The
cross sections ! for excitation can be readily expressed
as ! = fA/F, where f is the fractional enhancement over
spontaneous emission (0.0068), A is the rate coefficient
for spontaneous emission (A = 7.09 " 10–10 s–1), and F
is the irradiating photon flux [23]. Values of flux were
taken from Fig. 3 and were corrected for the mean of
the absorption shown, giving for the resulting flux and
cross section, 6.5 " 1010 cm–2 s–1 and 7.4 " 10–23 cm2,
respectively. The photoionization cross section at the
L3 edge is 4.6 " 10–20 cm2; so this excitation in these
targets represents about 1.6 " 10–3 of the photoioniza-
tion probability. Though somewhat less than the value
of 0.2% previously reported [23], this seems to be rea-
sonable agreement, confirming again that this is a major
effect.

During both experiments in 2002, SPring-8 was
operating in the multibunch mode, meaning there were
11 repetitions of a “bunch” of 160 current pulses lasting
50 ps, with each pulse being followed by a spacing gap
of 2 ns. Between bunches, there were a few extra
spaces, and for stability a 12th bunch was left unfilled.
Neither a bending magnet nor undulator has significant
Q; so the SR follows the same duty cycle. Thus the #
emission from the GSB must originate from a source
with a duty cycle of (11/12) " (50/2000) = 1/43. When
the duty cycle is considered, the acceleration of decay
of the 178Hfm2 isomeric population caused by the cre-
ation of 2p3/2 holes in the electron shells of the atoms
approaches 50% near the maxima seen at 9561 and
9573 eV in Fig. 6.

Also significant among the results obtained in 2002
were the importance of “new” # lines from transitions
not seen in spontaneous decay. The number of counts
from # photons collected during the period the beam
was blocked was multiplied by the ratio (200/35) and
then was subtracted from the total number of counts
collected during irradiation. Figure 7 shows an interval
from the resulting difference spectrum without any fur-
ther scaling. The Gaussian curve fitted to the data of

Fig. 7 gave an energy for the line of 130.23(14) keV.
However, the uncertainty expressed in the centroid of
the line is only statistical and does not reflect possible
small shifts arising from the location of the line on the
far wing of the larger impurity line at 125.8 keV. The
value for the energy of the new line obtained as
130.23 keV is not significantly different from the value
of 129.5 keV reported earlier [13]. The area under the
curve in Fig. 7 was 405(118) counts. Coincidence mea-
surements [13] had shown that this line was emitted
only during the period of irradiation and was not
present in delayed measurements [24, 25], such as
those that had failed to show any enhanced decay.

Measurement of the excitation function of the new #
line at 130.2 keV provided a significant supplement to
the measurements of enhancements of members of the
GSB previously reported. The upper panel of Fig. 8
shows the numbers of counts collected in the best mea-
surements made in 2002. In the case of data for the
130-keV line made on the 09XU beamline, the scan-
ning through the SR X-ray energies was made with a
step of 0.1 eV and ! was calculated from the variance
when ten successive measurements were combined into
one with a width $E = 1.0 eV. The GSB data were taken
as described above. Summing the counts and combin-
ing !’s in accordance with statistical rules for the data
between 9566 and 9572 eV gave a total accumulation
of 6123 (970) extra photons over the course of our SR
experiments in 2002. This indicates a confidence of
6.3!, including all causes of variation, not just counting
statistics as described above.

The lower panel of Fig. 8 shows the improvement
realized by remeasuring the pronounced feature for
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Fig. 7. Differences in the number of counts from # photons
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irradiated. This line was identified as the same one that was observed in coincidence with
the 4+ → 2+ ground-state band transition in measurements discussed in Refs. [37] and [131].
The second Argonne experiment was criticized for having lower energy resolution and lower
sensitivity to photons near the 130 keV γ-line. A 12σ enhancement for the ground-state
band transitions was reported. However, an examination of Figure 7 of Ref. [40] (130 keV
line), reproduced here in Fig. 4, and Figure 8 of Ref. [40] reveals large statistical fluctuations
that make enhancement claims unconvincing. The fit revealing the 130 keV line in Fig. 4 is
rather arbitrary. It should also be noted that there is 125.8 keV γ-transition in 172Hf, which
is present due to target impurity, that makes identification of the proposed weak 130 keV
178Hf transition challenging.

Results obtained with the tunable monochromatic X-rays from SPring-8 and Paul Scher-
rer Institute SLS synchrotron were discussed and summarized in Ref. [38] in a similar way
as was done in Ref. [40].

Another experiment was performed by the Collins’ group at SPring-8 in 2004 [39]. This
time, a discovery of a trigger level that serves as an intermediate state for the induced de-
excitation of the isomer was reported. It was claimed that the trigger level lies at 2457.20(22)
keV and that a direct deexcitation of this level to the ground state by a single γ-transition
was observed. It should be noted that this is by far the strangest claim made by Collins et al.
In order for a prompt transition to occur to the ground state, this intermediate state must
have a spin-parity of 1+, 1−, or 2+. Which means a change in spin of 14-15 units from the
isomer to the intermediate state. At the same time, a state with such a spin and parity would
decay to the first excited 2+ state of 178Hf at 93 keV. So, not just the 2457 keV transition but
also a 2364 keV transition should have been seen simultaneously. The intermediate state,
or trigger level, excited either by X-ray resonance absorption or by the NEET mechanism
is expected to have spin 15− as the most probable transition induced by the synchrotron
X-rays would be electric dipole (E1). A transition of the 15− state to the ground state has a
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probability of 10−49. We note that this work makes use of a 2447.86 keV γ-ray coming from
the beta-decay of 214Bi for calibration purposes, which has a half life of 19.4 m, and is part
of the 232Th alpha-decay chain. It is likely to be observed because of Rn in the air. These
γ-rays actually follow the beta-decay of 214Bi and are from 214Po. This particular γ-ray is
from a 2.4% branch in the beta-decay of 214Bi. The sum of this background line and the
source X-ray is 2447.86 keV + 9.56 keV = 2457.41 keV, which is within the error for the
2457.20(22) keV line observed. Thus, it is quite possible that the observed 2457.2 line is due
to a pile up effect where scattered 9.5 keV photons coincide with the 2447.86 keV 214Bi line
in the detector. Given the high irradiation rate, 1012 photons cm−2 s−1 this is reasonable.
It is interesting to note that in this paper the authors admitted criticism of their previous
results. In particular, it was admitted that measurements of increases of spontaneous decay
transition intensities were subject to fluctuations that may have resulted from the difficulties
in stabilizing experimental alignments. Further, the observation of new lines such as the one
at 130 keV that appeared in the γ-spectra of the induced decay had difficulties because of
its proximity to a line from the spontaneous decay of a contaminant isotope, 172Hf.

Carroll’s independent experiments

Independent experiments by Carroll and collaborators were described in Refs. [20] and
[127]. In the former, a search for low-energy (≤20 keV) triggered γ-emission from 178m2Hf
was performed using the YSU MINIBALL detector array. Irradiations of samples were per-
formed using a radiographic X-ray tube with a rotating anode operated in a pulse mode.
Bremsstrahlung was produced with photon endpoint of 100 keV. The isomeric sample con-
tained 3×1013 178m2Hf atoms. A dummy sample containing only the ground-state Hf isotopes
was also used. No induced de-excitation was observed. An upper limit on the integral cross
section for triggering on the order of 1020 cm2 keV for incident photons near 10 keV was
obtained. In the latter paper, an experiment using intense monochromatic synchrotron ra-
diation from the X15A beamline at the National Synchrotron Light Source at Brookhaven
National Laboratory was described. Studies were performed to probe incident photon ener-
gies over the L1, L2, and L3 X-ray edges of Hf and the 1213 keV range. No enhancement of
the 178m2Hf γ-lines was observed and a limit on the integrated cross section of the order of
1× 10−25 cm2 keV was set.

Sandia group experiment at CAMD and Stone’s independent analysis and report

The Sandia Group of P. McDaniel performed an experiment at the CAMD Facility, Baton
Rouge, in November 2003 with the aim to test claims of triggering the decay of the 31 y
isomer 178m2Hf by suitable tuned X-rays. The experiment was performed in four stages.
The system set up comprised two Ge detectors, a 178m2Hf source (with some 172Hf and its
daughter 172Lu), and a 137Cs source. The more intense transitions in the decay of 172Lu, and
the 137Cs, acted as invariant standards to monitor the behaviour of the detection system.
The X-ray flux at the beam line used at CAMD was given as approximately 3×1013 photons
keV−1 cm−2 s−1 in a line width of about 1 eV. This flux was lower than the fluxes used
in Collins’ group experiments at Spring-8 and at the SLS where positive results of X-ray
triggering of 178m2Hf decay have been reported. The data were taken in 30-minutes intervals
with the X-rays on the Hf target at a fixed X-ray energy. The beam-off data were taken
with beam in the synchrotron but with the X-ray line gate closed. The energy range of
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9509-9595 eV in steps of 1 eV was explored. In total, eleven intense γ-peaks were analysed:
The 213 keV, 326 keV and 426 keV transitions in the ground-state band and five 8−, 4-s
isomer band transitions of 178Hf, three transitions in 172Lu and one in 137Cs. The Sandia
group has published results in the CAMD 2003 Annual Report. Their conclusion was that
based on the data from all 178m2Hf transitions triggering at the level of 0.5 % over a wide
X-ray energy range between 9560 and 9570 eV was observed. This claim was based on
results obtained during the first and the longest stage of the experiment called ”Sweeps”.
The stage named ”Triples” gave according to the Sandia group an inconclusive triggering
upper limit of 0.05%. The last two stages had lower statistical quality and gave no results
to support observation of triggering. An independent analysis of the raw data collected by
the Sandia group in all four stages of the experiment was performed by J. R. Stone and N.
J. Stone [141]. They found a presence of a slow drift in the detector response. When this
was modeled and taken into account no evidence remained for triggering by X-rays in the
energy range 9509-9595 eV at the 0.2% level and no evidence at 9563 keV at the 0.05% level.
It was suggested that reports of evidence for triggering made by the Sandia group based on
the same data are in error through having ignored, or failed to recognize, the presence of the
slow drift during the ”Sweeps” stage of the experiment. The drift in the detector response
had impact on the analysis because majority of the background runs were performed at
the beginning of the ”Sweeps” stage while most of the beam-on data were taken at later
times when the detector counts were increasing for both the background and the beam-on
data in all observed transitions. It should be noted that the result of the analysis of the
”Sweeps” stage by Stones is in agreement with the Sandia results and conclusions from the
three other stages. In those stages, the background was taken at times close to the beam-on
measurement, so no time-drift in the detectors could influence the analysis.

Coincidence measurement reported in the thesis by C. Rusu

In another experiment by the Dallas group performed by a Ph.D. student C. Rusu, nuclear
spectroscopy was used to study photoexcitation of 178m2Hf [131]. Coincident detection of the
Hf γ-photons was achieved with four HPGe detectors. A bremsstrahlung X-ray generator
was used as excitation source, which covered a continuous energy-range from 0 to 60 keV. An
observation of X-ray triggered isomer deexcitation was reported. In particular, an analysis
of the γ-γ coincidence data revealed that during X-ray irradiations, a line of 129.5 keV
was found in coincidence with the 213.4 keV 4+ → 2+ ground state band transition. The
confidence level reported was 5σ. The 129.5 keV line is not a known transition of the
spontaneous decay of 178m2Hf. The 129.5 keV γ-transition was interpreted as a member of
a sequence of γ-transitions that bypasses most of the normal decay cascade populated by
spontaneous decay. It should be noted that results of this experiment were also reported
in Ref. [37]. In the same paper and also in Ref. [40] an observation of a 130 keV line was
reported when 178m2Hf was irradiated by synchrotron radiation at SPring-8 facility although
the evidence for a signal was marginal due to low statistics. It should also be noted that two
129 keV transitions were identified in 178Hf in (n,γ) activation experiments [60]. The first
corresponds to a transition from the 1513.8 keV 4+ state to 1384.5 keV 4+ γ-band state.
The second corresponds to a transition from the 1538.8 keV 4− state to 1409.4 keV 4− state.
The 129.5 keV transition was observed when gated on the 213.4 keV transition together with
other ground-state band transitions and with the 88.8 keV 8− → 8+ transition. When gated
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on the 129.5 keV transition, only the 213.4 keV transition was seen. These coincidences were
observed only during 2.5 ms pulse X-ray irradiation. As described in the thesis in detail,
effort has been made to subtract background carefully.

TRIP measurement

An attempt to reproduce coincidence measurements by C. Rusu [131] was made by the
Sandia group of P. MacDaniel. The experiment, named TRiggered Isomer Proof (TRIP)
Test, was performed at the National Synchrotron Light Source at Brookhaven National
Laboratory in 2005 [104]. Since bremsstrahlung was used in experiment [131], it was not
known at which energy the isomer triggering (if any) occurred. Based on the claims of
Ref. [40] that the same 130 keV line was observed at the SPring-8 facility experiment at
the X-ray energy around 9567 eV and based on the Sandia group earlier experiment [141]
claiming isomer triggering at the level of 0.5 % near the 9567 eV X-ray energy, it was decided
to perform the coincidence measurements at this X-ray energy. As a result of the experiment
a 4σ effect was reported for the 213 keV - 129 keV coincidence peak in the beam-on vs. beam-
off difference spectrum. Next, the decay path involving the 129 keV transition was suggested
comprising the 1513.8 keV 4+ state and 1384.5 keV 4+ state in the γ-band of 178Hf. Finally,
a suppression of the 426 keV and 326 keV ground state band transitions relative to the lower
213 keV and 93 keV ground state band transitions was observed.

Comments on TRIP report

By examining the coincidence spectra, reproduced here in Fig. 5, we conclude that the
peaks were due to statistical fluctuations. The raw beam-on minus beam-off coincidence
spectrum in the 129 keV region was strongly negatively biased. Compton plateau from
the strong 326 keV and 426 keV ground state band peaks was blamed for this issue. The
Compton background due to the 326 keV, 426 keV, 495 keV and 574 keV transitions was
modeled and the whole coincidence spectrum corrected. The net result was basically a shift of
the difference coincidence spectrum upwards. The question is, why the Compton background
was not subtracted directly from the original coincidence peaks similarly as done, e.g. in
Ref. [131]. Concerning the suppression of the 426 keV and 326 keV ground-state band
transitions presented as a clear proof of bypassing the higher ground-state band states and
feeding directly the 4+ state from a prompt triggered decay, it should be noted that the 495
keV and 574 keV 4-s isomer band transitions were actually seen enhanced with the beam
on, but the enhancement was blamed on random coincidences. The 129 keV transition was
suggested to originate from the decay of the 1513.8 keV 4+ level. It is known that there
are other five transitions out of this level, all of which have a significantly (more than a
factor of ten) higher branching ratio. The measurements should have seen some of these
transitions. For example in a comparable energy range, there is a 245 keV transition to
the 3+ γ-band state that would also decay to the 307 keV 4+ ground state band state [60].
The most important objection concerns the X-ray energy selection in the TRIP experiment.
First, by examining Fig. 7 of Ref. [40], reproduced here Fig. 4, we conclude that no 130
keV peak was observed in the SPring-8 measurement near the 9567 eV X-ray energy. More
significantly, the Sandia group data from the CAMD measurement analysed by J. R. Stone
and N. J. Stone [141] proved that there was no evidence of triggering at this X-ray energy at
the 0.05% level. If the coincidence observation reported in Ref. [131] was real, the induced
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Figure 5: Differences in the number of counts of transitions in coincidence with the 213.4 keV
transition with the beam on and the beam off. Adopted from Ref. [104].

isomer decay occurred at a different X-ray energy.

Tkalya’s NEET calculations and assessment of Collin’s experiments

Theoretical assessment of the X-ray induced decay of 172Hfm2 was presented by E. Tkalya
in Refs. [146, 147]. Two mechanisms for the induced decay were considered: (1) direct
interaction of the incident X-rays with the nucleus and (2) the nucleus-X-ray interaction
proceeding via atomic shells. It was establish that the absence of K forbiddenness for all
transitions to a hypothetical mixed K intermediate level cannot explain the cross sections
reported by Collins et al. even if collective nuclear matrix elements or resonant conditions
were assumed. Tkalya also tested, and rejected, the hypothesis that the enhancement is
due to normal nuclear transitions in the inverse nuclear excitation by electron transition
process. The conclusion was that there is no explanation of the Collins’ group experimental
results within quantum electrodynamics and the contemporary concepts of atomic nuclei. In
Ref. [147], responding to the report of the intermediate state at 2457.20(22) keV decaying
directly to the 178Hf ground state [39], it was sarcastically suggested that the intermediate
level is a mixed J state, i.e. one would have to assume that the angular momentum is not
conserved in order to explain this experimental claim. It should be pointed out that the
NEET calculations by Tkalya agree or slightly over predict the experimental observations in
197Au [49]. The most optimistic calculations for the 172Hfm2 isomer underpredict integrated
cross sections reported by Collins et al. by orders of magnitude. At the same time, they are
consistent with the limits established by the Argonne measurements and the experiments by
Carroll and Roberts.

Conclusions

Overall, the X-ray 172Hfm2 experiments by Collins et al. are statistically marginal and
inconsistent. None of the reported positive triggering results were confirmed by independent
groups, including those exeriments performed by former collaborators (Carroll). The re-
ported cross sections and integrated cross sections strongly exceed theoretical expectations.
The only measurement that shows statistical significance is the coincidence experiment de-
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scribed in the thesis by C. Rusu [131]. The Sandia group experiments failed to confirm this
measurement, but only a very small X-ray energy region was explored. The experimental
results related to the 129 keV - 213 keV coincidence in the induced isomer decay could be
strengthened by higher statistics. In addition, background reduction might be achieved by
using anti-coincidences e.g. with the 326 keV 6+ → 4+ ground-state band.

34



4.2 Reactions with particles

4.2.1 Introduction

While much effort has been devoted to the search for γ+178m2Hf triggering, it is worthwhile
to speculate about triggering being induced by neutrons incident on 178m2Hf. One possible
outcome of such a reaction is ‘superelastic scattering’, or ‘inelastic scattering by neutron
acceleration’ (INNA) [95], whereby the neutron is re-emitted with some part of the isomer
energy, and could perhaps continue to trigger neighboring isomers, gaining energy all the
time. This is a ‘thin chain’, and not a multiplying chain reaction as in fission reactors, but
may yet prove useful. The process would end either when the neutron escapes from the
isomer bulk, or is captured in an (n,γ) reaction to produce 179Hf decaying by emitting γ
rays. More γ energy would be produced in a single (n,γ) reaction than in a single INNA
reaction, but capture will terminate the thin chain of isomer triggering. Some proposals
[109] using mixtures of other elements, to be reviewed below, have been made for generating
a multiplying chain reaction.

An analysis of neutron-isomer reactions should predict the relative amounts of inelastic
and INNA reactions (which are endothermic and exothermic reactions, respectively), and
also the competition with the (n,γ) capture reaction. The competition between these three
processes will depend on whether there is K-hindrance or K-mixing in the decay of the 179Hf
compound nucleus, and also on level densities, transmission coefficients and γ strengths as
are used in all statistical-model calculations. If there should be large K-mixing, then normal
statistical models should be usable immediately to give good predictions, whereas if there
are large K-hindrances, then we should expect the compound nucleus to decay back to the
m2 isomer, which is that no triggering is taking place.

4.2.2 Level densities for 178Hf and 179Hf

The structure of levels in the region of the 178Hf isomer is relatively well known, and the level
density around the isomer state is about 100 MeV−1 (summed over all Jπ). At high energies
where not all levels are known (above e.g. 2.5 MeV in 178Hf and above 1 MeV in 179Hf) we
assume a Gilbert and Cameron model [53] of the level densities as tuned to D0 = 57± 6 eV,
the spacing of resonances for thermal neutrons.

If we add a neutron to 178m2Hf to make 179Hf∗ excited states, then we are at an excitation
energy of 6.099 MeV (the neutron separation energy in 179Hf) plus the isomer energy, or
8.55 MeV excitation energy. An interesting theoretical question is whether the observed
level density in 179Hf∗ agrees with Fermi-gas formulae for 6.099 MeV, or for 8.55 MeV. That
is, whether the isomer structure is preserved (or not) within the 179Hf∗ compound-nucleus
system.

4.2.3 Experiments

Experiments which scatter neutrons on isomers have been performed for the isomer states
of 177mLu [128], 178m2Ta [110], and 180mTa [85], as well as most recently for 68,70mCu [140].
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The earliest neutron experiments[110] measured total and (n,γ) cross sections, and, with
low-energy s-wave neutrons, were able to probe the resonant structure of 179Hf∗ excited states
at spin states of J = 16± 1

2
. These experiments revealed a mean level spacing of about 0.9

eV, corresponding to a single-J level density of about 5.5 × 105. It was pointed out this is
within 10% of the density expected from the Ignatyuk approach, and within a factor of 2
expected from the Fermi gas model for an excitation energy of 8.55 MeV. The Fermi gas
model for 6.1 MeV of excitation predicts a level density of only 1.1× 104. The fact that this
is much further from experiment than the Ignatyuk predictions suggests that there is indeed
considerable K-mixing within the 179Hf∗ compound nuclear states.

There were also a series of experiments [69, 68, 66] in which 178Hf was excited in multiple
Coulomb excitation by a Xenon projectile. These experiments were below the Coulomb
barrier, and so were direct reactions, and not compound-nucleus reactions. That is, they
probed the structure of 178Hf itself, and they revealed that the 16+ isomer state could be
populated by some of the decays from high-lying states in the ground-state band. The
fractional population was small ( the 19+

K=16 → 18+
K=16 transition in the four-quasiparticle

Kπ = 16+ band were measured to be ≈ 10−3 of the 8+
GSB → 6+

GSB transition), but do reveal
that there is a non-zero but small degree of K-mixing within the ground-state band of 178Hf.
This comes about from the stronger Coriolis forces from the high angular frequencies in
the high-spin states induced by Coulomb excitation. The degree of K-mixing is however
estimated as less than one Weisskopf unit, or one nucleon’s worth of rearrangement. It is
much less than a collective effect of all 178 nucleons.

4.2.4 Theory

The question now arises as to whether we have all the pieces to construct a realistic theory
of neutron interactions with 178Hf, or whether the K-selection and K-mixing phenomena are
too idiosyncratic for us to make a theory with good predictive power. We have seen weak
K-mixing in 178Hf, and strong K-mixing in 179Hf. To answer, we conclude that the strong
K-mixing in 179Hf, suggested by experiments and advocated by Oganessian [114], Collins
[26], Karamian[84] and Muradian[109], is precisely that assumption which allows us to make
a good theory.

Assuming strong K-mixing in the compound-nucleus states in 179Hf, we can now use
standard statistical (Hauser-Feshbach) methods without any further K-hindrance factors.
As is standard in the field, we fine-tune parameters to known properties of the nuclei.

We performed Hauser-Feshbach calculations, using TALYS (www.talys.eu), for neutrons
incident on the 16+ isomer state of 178Hf at 2.45 MeV, and predicted the energies and
intensities of outgoing neutrons to produce 178Hf, and of outgoing gamma-rays to produce
179Hf. The calculations used the global neutron optical developed by Koning and Delaroche,
applied to all levels here without any collective couplings in the entrance channel, and used
for both ground and isomer initial states. This optical potential gives the transmission
coefficients TL shown in Fig. 6.

The level density scheme used the known discrete levels for the first 130 levels, where the
isomer is level 98. Above that energy we used the scheme of Gilbert and Cameron [53], with
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Figure 6: Transmission coefficients for neutrons on 178Hf as a function of neutron energy, for
partial waves L = 0 . . . 10. Calculated from the global Koning-Delaroche optical potential (Nuclear
Physics A 713(2003) 310), neglecting the spin-orbit component.
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Figure 7: The cross sections for 178Hf (n,γ) for neutrons incident on the 178Hf ground state. We
show 6 experimental data sets, the ENDF.B-VII evaluation (black line), and the results of our
present TALYS statistical model (red line). We see excellent agreement for the cross sections in
this case.

parameter a fitted to the observed D0 = 57 eV for neutrons incident on the 178Hf ground
state. We used spin distribution parameter σ = 6.61 at the neutron separation energy,

37



0 0.5 1 1.5 2
                       Outgoing neutron energy (MeV, cm)

0

0.1

0.2
   

   
   

   
   

   
   

   
  C

ro
ss

 s
ec

tio
n 

pe
r 

un
it 

en
er

gy
 (

b/
M

eV
)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

1

2

3

4

Ein = 10 keV

Ein = 100 keV
Ein = 1 MeV

Ein = 300 keV
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the 178m2Hf isomeric state, calculated by a statistical Hauser-Feshbach model assuming complete
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and matched to the constant temperature formula at 6.49 MeV excitation energy. These
level parameter assignments predict a resonance spacing for s-wave neutrons incident on
the isomer of D0m = 0.64 eV, in good agreement with the Muradian et al [110] observation
of 0.9+0.6

−0.3 eV. The gamma strength function followed the form of Kopecky-Uhl, with GDR
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make 179Hf∗, and then the evaporation of a neutron. The lines are color-coded according to the
transmission probabilities according to Fig. 6. All the other final states have TL < 10−9.

parameters of E = 14.2 MeV, Γ = 4.14 MeV and σ0 = 476 mb. The gamma strength
function was tuned so that neutrons incident on the ground state have the experimental
total radiative width of Γγ = 0.054 eV. There is a theoretical uncertainty arising from this
last approximation, which may affect the overall (n,γ) cross sections by up to a factor of 2
or 3. We can check the overall accuracy of the model only for neutrons incident on the 178Hf
ground states, and we see in Fig. 7 that the agreement there is excellent.

These Hauser-Feshbach calculations, for each incident neutron energy, predict the energies
and cross sections of outgoing neutrons, as shown in Fig. 8 for energies of 10, 100, 300 keV
and 1 MeV (shown by the blue lines). The cross sections to the residual nuclei and isomeric
levels are shown in Fig. 9, as a function of incident neutron energy from 100 eV to 20 MeV
(lab). Not all the triggering cross section for producing low-lying levels of 178Hf can count
as INNA, however: only that part where the neutron outgoing energy is greater than the
ingoing energy. For large neutron energies, it turns out the there are larger cross sections
for the emission of a lower-energy outgoing neutrons (‘normal’ inelastic reactions), followed
by gamma-decays that bypass the isomer level. The total triggering cross section for the
production of de-excited 178Hf nuclei is shown by the blue curve in Fig. 9.

These results show that INNA does occur, but that for neutron energies up to 10 keV
it is about 10−3 of the (n,γ) capture cross section. The small INNA component, moreover,
does not give energetic neutrons with all of the isomer energy. This can be seen from the
curves in Fig. 6 and from the 178Hf level diagram: a (say) 2 MeV outgoing neutron could
be in at most a L = 6 partial wave by the transmission coefficient being at least 10−4, but
from the level diagram must be at least in a L = 12 partial wave to carry sufficient angular
momentum away from the isomer compound. Fig. 10 shows lines connecting to the final
states 178Hf that can be reached by evaporation of neutrons with various threshold values of
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Figure 11: Experimental cross sections for the reaction 9Be(n,2n) as a function of incident neutron
energy. The threshold is 1.84 MeV, but the (n,2n) cross section is only significant for neutrons with
more than 3 MeV.

the transmission coefficients of Fig. 6. These contradictory requirements mean that INNA
is a very weak process compared with (n,γ) capture processes, in which up to 8.5 MeV of
energy is released by γ-emissions as the 179Hf decays to its ground state2.

Similar calculations are also feasible for the INNA reaction on the 177Lu isomer, and we
have compared our results (not shown here) to the recent French experiments [128]. Our
calculations for neutron capture and decay to the ground state of 178Lu agree well with
experiment, but there is a small discrepancy concerning the decay to the 178Lu(9−) isomer.
The decay to that isomer was not seen experimentally (it would give a decay component
with a specific lifetime), yet is predicted by Hauser-Feshbach models to be about 70% of the
ground-state decay. The the overall (n,γ) cross sections are thus still uncertain by a factor
of up to 2.

4.2.5 Recent Russian Proposals

In a recent speculative note, Muradian [109] suggested several points that may yet enable an
enhanced INNA (superelastic) scattering, and the triggering of isomer energy by neutrons.

2We note ironically that this is much more energy than hoped to have been released by the isomer
triggering, but only occurs once per neutron.
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His points are

1. That 178Hf(n,γ) cross section is uncertain. We agree, but only within a factor of 2 or
3 when we compare where experiments are possible. This is far from a factor of 103.

2. That K-mixing in 179Hf is large. We agree, and use this as the basis of our calculations.
If K-mixing were yet still not 100% complete, then our INNA predictions must be
regarded as an upper limit.

3. That the fraction of high-K states decreases with increasing excitation energy in 178Hf,
so that INNA should increase for higher-energy initial states. The first part is not true
for the observed level scheme. And the INNA rate depends moreover on K-mixing in
179Hf rather than 178Hf, since low-energy neutrons produce compound-nucleus rather
than direct reactions.

4. That neutron cross sections are large at low energies such as 1 eV. This is true: both
(n,n′) and (n,γ) cross sections rise as 1/v at low energies. However, they do so with
fixed ratio, so the INNA/capture ratio is constant.

5. That including a mixture of 9Be in the 178m2Hf bulk may produce a multiplying chain
because of the 9Be(n,2n) reaction. However, the 9Be(n,2n) reaction has a threshold of
1.84 MeV (see Fig. 11), and even a full-2.445 MeV incident neutron will yield outgoing
neutrons of only 0.3 MeV: a rather low energy where (n,γ) capture on 178m2Hf is more
than 10 times the cross section for INNA and further neutron production.

.

4.2.6 Summary

Under the optimistic but well-founded assumption that complete K-mixing occurs within
the compound-nucleus states, we are able to formulate a good theory of neutron+isomer
reactions. This theory has been tested for neutrons incident on the 177Lu 23/2− isomer, and
so can be applied for our n + 178m2Hf reaction.

We conclude that inelastic neutron acceleration (INNA) does occur, and that neutrons
can release the energy of some fraction of the 178m2Hf isomers, but that for neutrons below
10 keV incident energy, this fraction is about 10−3. For higher neutron energies the fraction
does increase to 10−2 of σtot, but even at 1 MeV most of the energy is carried away by
photons rather than neutrons. This is because of the spin-trap form of the 178Hf spectrum,
which means that is rather difficult to emit neutrons with any good fraction of the isomer
excitation energy. Injecting neutrons into a target of even pure 178m2Hf isomer will therefore
hardly yield any even non-multiplying chain reactions. Including a mixture of 9Be in the
target will not produce a multiplying chain, because even a full-2.445 MeV incident neutron
will yield outgoing neutrons of only 0.3 MeV, at which energy the triggering probability is
10−3.

41



4.3 Nuclear excitation by electron transition (NEET)

Nuclear excitation by electronics transition (NEET) is a way to enhance the decay of nuclear
states via excitation of the atomic states. The attractiveness of this process is that the atomic
excitation has, in general, higher cross section. If one can manipulate at the atomic level
and cause the enhancement of de-excitation of nuclear levels, then there may be a way to
control energy releasing in nuclei. However, to be able to meet the NEET, certain conditions
need to be satisfied: such as energy degeneracy between the atomic and nuclear states, and
the same transition multipolarity between the states. Therefore, the NEET probability is
several orders of magnitude smaller than atomic de-excitation by x-ray emission.

4.3.1 Physics of NEET

When a hole is produced in an inner atomic shell, the electron in the outer shell will like
to fill in the vacancy thus producing x-rays or Auger electrons. Morita [107] first suggests
the possibility of NEET via absorbing virtual photons. One can imagine the process is
quite similar to the inverse internal conversions. The internal conversion process which
associated with the gamma-ray decay strongly depends on the energy of the gamma-ray,
and the multipolarity of the gamma-ray. The probabilities of radioactive transitions drop
quickly with the power of multipole order of the transition. Isomer states in general arise as a
consequence of certain hindrances when the radioactive transitions are considerable reduced.

4.3.2 Experiments

Otozai et al. [121] investigated 70-keV states in 189Os and obtained a NEET probability of
(1.7 ± 0.2) × 10−7, and Fujioka et al. [49] for 78-keV state in 197Au with a probability of
(2.2±1.8)×10−4, both cases using electron beams to produce holes in the K-shells. However,
the measured 189Os NEET probability becomes lower and lower as time goes by. Saito et al.
[133] measured (4.3± 0.2× 10−8); Shinohara et al. measured (5.7± 1.7)× 10−9 and Ahmad
et al. [5] measured < 9 × 10−10 using synchrotron x-rays. For 197Au, Kishimoto et al. [93]
measured (5.0 ± 0.6) × 10−8 using synchrotron x-rays. These recent results are few orders
of magnitude lower than the results from the first measurements. It is possible that the
earlier measurements results are due to effects of statistical fluctuations. The 237Np NEET
results from Saito et al. [133] (2.1± 0.6)× 10−4 is way too large compared to the theoretical
calculations by 8 orders of magnitude (see next section), it possible the measurement result
suffers from similar spurious effects as in the earlier 189Os and 197Au measurements.

4.3.3 Theory

Morita calculated NEET probability in 235U via a virtual photon absorption, Using the
perturbation theory in his calculations,and suggested using NEET as a possibility of 235U
and 235mU separation. Few years later mentioned by Grechukin and Soldatov [57] that
Morita uses an inaccurate expression of the electron-nucleus interaction that led significant
overestimation of the NEET probability. Pisk et al. [124] assumes that the NEET occurs
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Figure 12: The probabilities for NEET processes have decreased, as experiments and theory have
both improved.

during the ionization process with nuclear and electron transitions being simulataneous even
if the resonance conditions are not met. They calculated the NEET probabilities of 189Os
(1.8× 10−8 (E2), 2.3× 10−7 (M1)), 197Au(3.5× 10−5 (M1), 237Np(1.5E-7(E1) and 192Ir(4.6E-
6(M1)). Tkalya [144] revisited Os, Au, Np by using assumptions as in Pisk et al.(89) with a
Soldatove code [57] to calculate mean field and electronics wave functions. The calculated the
NEET transition probabilities are: 189Os(1.1×10−10), 197Au(1.2×10−7), 237Np(3.1×10−12),
192Ir(2 × 10−11), and 161Dy(6.6 × 10−11). These calculation results are low compared to
the experimental measurements due to the inability in the experimental setup performed to
distinguish between the true NEET process to the inelastic electron-nucleus collisions, direct
photo-absorption, and Compton excitation of nucleus level. He suggested that a special
coincidence measurement is needed to obtain the true NEET component. In a more recent
updated paper by Harston [62], the NEET transition probabilities have been recalculated:
189Os(1.1× 10−10), 197Au(3.6× 10−8), 237Np(2× 10−12).

Apart from 197Au results which have good agreements between the experimental measure-
ments and theoretical calculations, both 189Os and 237Np showed quite large discrepancies.
Early measurements seem to have issues with observing spurious signals from statistical fluc-
tuations. Because of these discrepancies, several other nuclei such as 229mTh, 235mU, 178mTa,
etc. have been proposed for clear investigation of the NEET process. Figure 12 shows a
plot of the measured NEET probabilities and theoretical results for both 197Au and 189Os
with respect to time. As we can see from the plot, earlier measurements suffer from spurios
effects and earlier theories overestimate the NEET probability.
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4.3.4 178m2Hf

Recent results by Collins et al. [41] using the Spring-8 facility in Osaka to investigate isomeric
178m2Hf with monochromatic beams of 9-13 keV reported enhanced decay of the isomers at
three energies. They ascribed the enhanced decay to the L-shell NEET process with a prob-
ability of 2× 10−3. This conclusion is also orders of magnitude greater than any reasonable
theoretical estimation. For example, detailed calculations by Tkalya [145] demonstrate a
range of maximum L-shell NEET probabilities 1× 10−4 to 1× 10−11 for nuclear mutipolari-
ties of E1, E2 and M1. More recent theoretical estimation by Karpeshin et al. [89] published
in Chinese Physics Letters add the consideration of resonance internal conversion processes,
the resulting transition probability could increase by a factor of 800 for E3 transition. How-
ever, this additional boost still could not account for the enhancement observed by Collins
et al. [41]. A careful review of Collins’ results suggesting that summing effects between the
baseline 214Bi gamma-ray source used in the experiment that emits gamma-ray at 2447 keV
and the monochromatic 9-13 KeV beams may produce a summing peak at 2457.2-keV and
was mistakenly interpreted as the direct transistion of the 178m2Hf to the ground state.
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5 Controlled and Explosive Energy Release

Here we develop a framework for assessing the performance of systems designed to release
energy in a controlled or explosive way. As a starting point we first define a simple metric
that can be used to judge a broad variety of systems. This in Section 5.2 is then applied to
the particular class of systems that rely on energy stored in nuclear states.

Combining these general considerations with the detailed cross sections from Section 4.2,
we are in a position to use standard Monte Carlo transport codes to examine the possible
existence of chain reactions wherein a neutron may trigger the release of energy from a
whole series of isomeric nuclei, acquiring more energy at each step. In Section 5.3, with
its numerical tables, we show the detailed results of such computer simulations. Finally, in
Section 5.4 we address some of basic physical requirements that must be satisfied of isomers
were to be hypothetically used in gamma-ray lasers.
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5.1 Motivation

Our basic goal is to relate the performance of nuclear storage systems to the microscopic
(nuclear and atomic) characteristics of these systems. The two are related through details of
particle transport. Though nuclear and atomic structure can be complicated, the aspects of
particle transport important for energy release depend only on a few fairly simple quantities.
Table 3 gives references to equations that describe the relation between performance and
microscopic characteristics of systems that rely on energy stored in nuclear isomers.

Figure 13 shows a generic energy release system. Some energy Ein is sent in, and corre-
sponding to this some energy Eout comes out. A basic metric for the system performance is
the gain:

G =
Eout

Ein

. (1)

For practical applications one can’t usefully use all of the energy that comes out. Here we
will ignore the efficiency for recovering useful energy. However, it is important to note that
by the same token one can’t usefully use all of the energy that is sent in. This efficiency
cannot be ignored. And for this reason the energy Ein is defined to include all of the energy
it costs to drive the release system.

As an example of why it is important to consider the total energy input into the system
(and not just the part that is useful), consider the simple system shown in figure 14. In this
system an accelerator is used to make neutrons. These neutrons hit a big block of copper
(the kind found in common pennies) and through absorption release nuclear energy. The
energy released by a neutron capturing on copper is

Eout ≈ 10 MeV. (2)

This implies that ordinary copper (and many other common materials) contain a tremendous
nuclear energy that could potentially be exploited. Ten thousand pounds of copper (costing
about $40K at today’s prices) hold enough energy to power the United States for about a
day.

In principle one could bombard the copper with neutrons of almost arbitrarily low energy.
However, this isn’t really the issue. The real question has to do with how much energy it
costs to make a neutron. With the exception of systems that achieve fusion, the most efficient
neutron generators today use about 1000 MeV to make a single neutron. So the gain of our

Table 3: Microscopic Quantities Influencing the Performance of Energy Release Systems

Type Trigger Particle Quantity Note

non-multiplying neutron eq. 6
non-multiplying photon eq. 9 eq. 15 for simple absorption
multiplying neutron eqs. 23 and 6 transport simulation for accurate estimate
multiplying photon eqs. 29 and 9
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Figure 13: A generic energy release system. An energy Ein is sent into the system. This results
in an energy Eout leaving the system. A basic measure for the efficiency of the system is the gain
G = Eout/Ein. An efficient system must have a gain larger than one. Note that Ein is defined to
include all of the energy that it costs to drive the system, and not just the portion that results in
useful energy conversion.

Figure 14: Illustration of an energy release system that exploits the nuclear energy stored in
ordinary copper. Though the nuclear energy that could be released from copper and other systems
is enormous, current technology cannot be used to efficiently extract this energy.

copper system is

G ≈ 10 MeV

1000 MeV
≈ 0.01, (3)

which makes it unsuited for energy production. As far as we know, though, there is no
fundamental limit on the cost of making a single neutron. If some method for making
neutrons without fission at a cost of a few MeV per neutron were discovered the world’s
energy problems would be solved in a simple way.
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5.2 Microphysics Impacting Energy Release for Nuclear Storage
Systems

It is convenient to divide a discussion of nuclear energy release systems according to the role
of particles in prompting energy release. There are a few basic cases:

• Spontaneous emission. At this extreme energy release does not depend on sending
particles into the system storing the nuclear energy. Energy release may still depend
on the ambient conditions. These include density and temperature of the material,
electron density, an applied electric field, and so on. We will not consider this case
here.

• Particle-induced energy release without particle multiplication. In these systems “trig-
ger” particles are used to induce energy release. Daughters of interactions involving
these trigger particles do not play a crucial role.

• Particle-induced energy release with particle multiplication. In these systems the
daughters of interactions involving trigger particles go on to produce more energy.
The distinction between the multiplying and non-multiplying cases is to some extent
artificial. The non-multiplying case is just the limit where multiplication is inefficient,
and the two systems are described by the same formalism. But from the perspective
of understanding the important physics it is convenient to divide the two.

Laser systems are not described by the cases above and are not considered here.

5.2.1 Energy Release Systems Relying on Particle-Induced Energy Release with-
out Multiplication

In this type of system a trigger particle is sent in to induce energy release. Following a single
interaction event (which may itself involve a complicated multi-step microphysics process)
the particle is effectively lost. The mean energy released per particle sent in is

〈eout〉 = Σ〈εinteractei ×
σi

σtot

〉. (4)

Here σi/σtot is the probability for a reaction of type i and ei is the energy released in a
reaction of type i. Angle brackets in this equation denote an average over the distribution
of incident particles. This is needed because the incident beam may be characterized by
a broad energy distribution, so that different particles in the beam are characterized by
different interaction cross sections. The probability for an incident particle to interact with
the energy storage medium is given by

εinteract = 3 · 10−3

(
ρL

1 g/cm3

) ( σtot

1 barn

) (
200

A

)
, (5)

where ρ and L are the density and linear dimension of the energy storage material and A is
the atomic mass of the isotope comprising this material. To maximize the gain one would
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want to design a system so that the interaction efficiency is near or larger than unity. For
neutron induced reactions with cross sections in the range of a few barns this implies a
system with areal density larger than about 300 g/cm2 (or a linear dimension near 30 cm
for material with a density of 10g/cm3). For photon-induced de-excitation with photons
that have energies in the 10 keV range and total interaction cross sections near 105 barns
a system with areal density near 0.003 g/cm2 is ideal. For photon-based systems without
multiplication an interaction efficiency much larger than unity is not useful.

A discussion of how eq. 4 is applied to energy release from isomeric de-excitation is given
below.

(n,n’)-induced de-excitation of an isomer The average energy released from a single
interaction between neutrons and a target in an excited isomeric state is

〈eout〉 = Eexc

(
fnσnn′

σtot

)
(6)

where Eexc is the excitation energy of the isomer, fn is the fraction of (n,n’) reactions that
lead to de-excitation of the isomer, and σnn′ is the cross section for (n,n’) reactions. In the
best case every neutron interaction leads to de-excitation and the release of an energy Eexc.
If a way to make neutrons at an energy cost of less than Eexc were discovered we could use
isomer systems to generate power. If such a discovery were made, we could use the same
neutron sources to more efficiently produce energy through (n,γ) reactions on any one of
dozens of common stable materials.

Photo-induced de-excitation of an Isomer For these systems there are three important
reaction channels:

• Atomic scattering and absorption of incident photons. To a good approximation these
processes just deplete otherwise useful photons and do not lead to appreciable energy
release.

• Nuclear photo-absorption followed by decay back to the isomer. This is also not useful
for energy release.

• Nuclear photo-absorption followed by decay to the ground state. This releases an
energy

eout = eres + Eexc ≈ Eexc, (7)

where Eexc is the excitation energy of the isomer above the ground state and eres is
the energy of the absorbed photon. We will denote the cross section of this process of
absorption followed by de-excitation to the ground state by

fσγ, (8)

where f is the fraction of the time that nuclear photo-absorption leads to decay back
to the ground state.

49



Neglecting energy released in the first two types of interactions gives for the average
energy release (eq. 4)

〈eout〉 ≈ Eexc〈
σγf

σtot

〉. (9)

This equation applies both to the case of simple photon absorption and to the case where de-
excitation is mediated by electron processes resulting from the interaction between incident
photons and atomic electrons. To give some insight into the role of beam properties in energy
gain systems we will consider the simple absorption case in some detail below.

For the case where direct photon absorption is responsible for de-excitation, the cross
section σγ for a nucleus in state i to capture a photon and be directly excited to state j can
be estimated in a model independent way through appeal to detailed balance:

σγ(E = Eres) = 2.5 · 103b

(
1 MeV

Eres

)2 (
2Jj + 1

2Ji + 1

)
. (10)

Here J denotes spin and Eres represents the excitation energy of the state i relative to the
state j.

Only those photons with the right energy to excite the nucleus out of the isomeric state to
some higher lying state can be absorbed. At zero temperature the range of photon energies
that can be absorbed is given by

Γ0, (11)

the intrinsic width of the resonantly excited state for decay to the isomeric state. Atoms in
material at finite temperature have non-zero velocities and so “see” Doppler shifted photons.
The typical shift δE of the apparent photon energy is given by

δE

Eres

≈ vthermal

c
≈ 10−6

√
T

T0

240

A
, (12)

where vthermal is the average thermal velocity, T0 = (1/40)eV is a typical room temperature,
and A represents the atomic mass number of the absorbing nucleus. For simplicity we are
assuming that the Debye and Einstein temperatures of the material are not greater than
about twice the ambient temperature. Under these conditions the behavior of nuclei in the
solid with respect to absorption of MeV photons is close to that of atoms in a gas at the same
temperature. We note that measured Debye temperatures for actinides are typically in the
range 100-200 K and that only a handful of pure materials have a Debye temperature larger
than about 600K. Equation 12 suggests the definition of an effective thermal absorption
width

Γthermal ≈ Γ0 + 1 eV

(
Eres

1 MeV

)
. (13)

The thermal average of the resonant scattering cross section is given by

σNRF = σγ
Γ0

Γthermal

(14)
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for photons with an energy within Γtherm of the resonance energy. Photons outside of this
window are not efficiently absorbed. The average energy release is then

〈eout〉 = Eexc

(
fσγ(Γ0/Γthermal)

σtot

) (
Γthermal

Γbeam

)
. (15)

The first term in parenthesis represents the fraction of time that in interaction involving
a resonant photon leads to de-excitation of the isomer. The second term in parenthesis
represents the fraction of photons in the incident beam that have have the right energy to
de-excite the isomer. Both terms are smaller than or equal to one.

The largest possible gain for systems like these occurs if incident photons can be made
with perfect efficiency. In this case

GMAX =
Eexc

Eres

. (16)

For an efficient system this gain must be larger than one.

Using the equations above one can relate the requirements for an efficient energy release
system to the characteristics of the light source and the nucleus being de-excited. For the
sake of illustration let’s suppose that the isomer lies at an energy Eexc = 1 MeV and that
Eres=10 keV. The maximum possible gain is then a factor of 100. If we want to address what
nuclear and beam characteristics are needed for an efficient system it is convenient to treat
the two terms in parenthesis in eq. 15 separately. The first term describing the fraction of
interacting photons that de-excite the isomer is

fσγ(Γ0/Γthermal)

σtot

≈ f
Γ0

Γthermal

(
2.5 · 107barns

σatomic + 2.5 · 107barnsΓ0/Γthermal

)
. (17)

Here σatomic is the atomic interaction and we have taken the spin factor to be about 1. For
hafnium the atomic interaction cross section (not counting elastic coherent scattering) for 10
keV photons is about 6.7·104 barns. The requirement that most resonant photons undergo
nuclear photo-absorption rather than atomic absorption is then Γ0 > 0.01 meV, which is not
at all implausible from the perspective of nuclear structure.

If we suppose for our example case that most resonant photons induce de-excitation
of the isomer, then the requirement for an efficient system (G > 1) is just determined by
the condition that the fraction of incident photons with the right energy to be resonantly
absorbed is not too small:

Γthermal

Γbeam

>
1

100
. (18)

To gain insight into this equation we need to consider characteristics of real photon beams.
Bremsstrahlung sources (common x-ray machines) are characterized by an approximately
flat power spectrum and a fractional resolution near unity. If such a source were used to
excite a 10 keV resonance, the effective beam width would have to be near 10 keV. Of course
it would be possible to use attenuation of the beam to filter out lower energy photons,
but this doesn’t help the overall energy budget. For a bremsstrahlung machine, then, the
requirement for efficient energy gain is

Γ0 >
10keV

100
= 100eV, (19)
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which is really implausibly large.

The world’s most advanced light sources achieve energy resolutions near 0.1%. For these,
efficient gain requires a nuclear state with a partial width

Γ0 > 100 meV (20)

which is still quite large but not implausible. It is worth noting that the current high
resolution light sources are very inefficient at making monochromatic photons. Sources
relying on the collision between relativistic electrons and laser light to make x-rays, for
example, use about 100 MeV to make a single 10 keV photon. With such sources efficient
gain is not possible for any nucleus.

5.2.2 Energy Release Systems Relying on Particle Multiplication

In these systems a single incident particle can lead to many reactions. The energy gained
per incident particle is

Eout = M〈eout〉 (21)

where M is the effective multiplication describing the number of reactions induced by a
single incident particle and

〈eout〉 = Σei〈
σi

σtot

〉 (22)

is again the mean energy released per reaction. Note that in general the spectrum of daughter
particles will change from generation to generation. For this reason an accurate solution of
eq. 21 typically involves a transport calculation.

The formalism describing particle multiplication in complicated systems is well developed.
For our purposes it will suffice to consider the case of an infinite medium, for which the
multiplication is as large as possible. The ratio of the number of particles present in a given
generation to that present in the previous generation is commonly written as k. In terms of
the scattering properties

k = Σνi
σi

σtot

, (23)

where νi is the number of particles emitted in a reaction of type i (zero for absorption, two
for an (n,2n) reaction, and so on). The total number of particles created per incident particle
is

M = Σkn =
1

1− k
, (24)

for k < 1. For k > 1 the particle population grows without bound.

(n,n’) induced de-excitation of an isomer Nuclear properties determining the effi-
ciency of these systems are described by eqs. 22 and 24. Though the solution of a transport
equation is needed to accurately estimate performance, we can make some basic observations
with simple arguments. First, it is clear that with (n,n’) reactions alone one can’t make a
critical system. There will always be some contribution from neutron absorption, so that the
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number of neutrons in the next generation will be smaller than the number in the current
generation.

To give a very schematic sense of the kinds of multiplication possible consider again the
example of an isomer with an excitation energy of 1 MeV. Purely for the sake of example,
we’ll suppose that neutrons with an energy of 1 MeV are sent into the system and that
every (n,n’) reaction leads to de-excitation of the isomer. For nuclei with mass number near
200 (platinum for example) a typical total (n,n’) cross section is about 1 barn, a typical
absorption cross section is about 80 mb, and a typical total scattering cross section is about
5 barns. With these numbers

k ≈ 1− σnγ

σtot

≈ 0.98 (25)

and the multiplication is about 50. We should note that this is a gross overestimate of the
multiplication because of the degradation of the spectrum with generation. Both elastic
and (n,n’) reactions lead to daughter neutrons with less energy than their parents, and the
absorption cross section strongly increases with decreasing neutron energy. Solution of the
transport equations for an infinite platinum medium give a k < 0.1. Assuming though that
the spectrum remains constant at 1 MeV gives a mean energy per reaction of

〈eout〉 = Eexc

(
σnn′

σtot

)
+ Qnγ

(
σnγ

σtot

)
≈ 0.2 + 0.16 MeV = 0.36 MeV, (26)

where we have assumed a 10 MeV q value for absorption. With the numbers above the mean
energy released per incident neutron is

Eout = M〈eout〉 ≈ 18 MeV, (27)

which is not much better than a simple block of copper.

photo-induced de-excitation of an isomer Stimulated de-excitation of an isomer gen-
erally produces a cascade of discrete daughter photons. An estimate for the k eigenvalue is
found by averaging eq. 24 over the photons produced following de-excitation

k =
1

ν
Σν

j=1

σj,γfj

σj,tot

νj (28)

where j identifies a photon in the cascade and ν represents the total number of photons in
the cascade. This equation neglects the contribution of elastic and inelastic scattering to the
criticality. The different νj correspond to the number of photons produced when a photon
with energy ej induces de-excitation. Typically νj ≈ ν and

k ≈ Σν
j=1

σj

σj,tot

. (29)

Eq. 29 can be used to estimate the criticality of photon-based energy storage systems.
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5.3 Monte Carlo Simulations Describing Neutron Transport and
Growth in Systems made from Beryllium and the Hafnium
Isomer

To quantify energy release from super-elastic (n,n′) de-excitation of the Hf isomer in macro-
scopic systems we developed a set of Monte Carlo simulations. Monte Carlo simulations were
done with Mercury, a 3D particle transport code [User Guide version b.15, LLNL Technical
manual, UCRL TM-204296, Rev.1 (2006)]. Cross section and outgoing particle distribution
data used in the simulations was taken from Hauser-Feshbach based evaluations described
in Section 4.2.

These provide a reaction-by reaction account of neutron scattering, absorption, and pro-
duction. A description of the models and data used for the simulations is given below. For
the purpose of understanding whether or not one can build an efficient energy generation
system or weapon from Hafnium we want to know the effective multiplication of neutrons
in the Hafnium assembly. Alternatively, since (n,n′) reactions are responsible for generating
energy, we want to know how many inelastic collisions result from each neutron put into the
system. This gives a measure of the gain, and is in close analogy with the basic consider-
ation for conventional fission weapons. When a uranium or plutonium assembly becomes
super-critical a single neutron will result in a great many fission events and the release of a
large amount of energy.

Systems containing beryllium were considered to address the suggestion by [109] that
(n,2n) reactions on the beryllium would act as a catalyst for isomer de-excitation. Results of
simulations for systems made of beryllium and 178m2Hf are given in Table 4. This shows the
number of reactions of different types induced per incident neutron. A range of geometries,
incident neutron energies, and compositions was considered. The basic conclusions from this
table are:

1. Systems made of 178m2Hf and beryllium, and that rely on super-elastic scattering,
cannot be used for weapons or energy release. These systems are calculated to be
quite sub-critical. In no case is the number of (n,n′) reactions per incident neutron
larger than 1.5.Note that our simulations describe very large Hf assemblies (1 meter
radius for the homogeneous mixtures of beryllium and hafnium). More reasonably-
sized systems would have smaller efficiencies than calculated here.

2. For the homogeneous mixtures of beryllium and hafnium the efficiency for energy
release via super-elastic scattering is a decreasing function of beryllium concentration.
This implies that beryllium acts as a poison rather than a catalyst.

To test the sensitivity of our results to assumptions about cross sections for the hafnium
isomer we ran a second set of simulations. These take the excited hafnium to be in the 12+

excited state at 2.15 MeV rather than the 31 y isomeric state. Since this 12+ state has a much
larger super-elastic (n,n′) cross section than the isomer it should represent a sort of upper
bound on the possible efficiency of energy generation systems built from hafnium. Note
that one couldn’t actually build a system from the 12+ state, since it has a sub-picosecond
lifetime.
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Results from studies of the 12+ state are given in table 5. The conclusions are the same
as for the isomeric state, although the efficiency of inducing (n,n′) reactions is a few times
larger in the case of the 12+ state. As for the isomer, this efficiency is a decreasing function
of the beryllium concentration.

Results given in tables 7 and 8 were obtained for a spherical assembly made of a 178m2Hf
core and a 9Be reflector. They show that for 1 MeV neutrons, an energy at which super-
elastic scattering is the most likely to happen, very few (n,2n) reactions occur in the beryllium
reflector. They are several orders of magnitude too low to be used for weapons or energy
release. The same is true for a 14 MeV neutron source, where a larger number of (n,2n)
reactions occurs in both hafnium and beryllium through neutron downscatter.

5.3.1 Description of Monte Carlo Models

Several models were developed. As a simple check we first modeled a ‘broomstick’ (very long
cylinder with small radius) made of 178m2Hf hit by a pencil beam of mono-energetic neutrons.
Results of these validation simulations are given in table 6. Because the cylinder is assumed
to have very small radius any neutron that interacts within the cylinder will escape. This
implies that the ratio of the number of events for two different reaction types is simply
proportional to the ratio of the two reaction cross sections. We checked this by comparing
the values in table 6 to the results from the Hauser-Feschbach calculations and found it to
be good. We also checked the superelastic cross-sections and energy spectrum of outgoing
neutrons and verified consistency with results from the Hauser-Feschbach evaluations. To
quantify various reactions in a BeHf mixture, we modeled a 10 cm-radius and a 100 cm-radius
sphere of pure 178m2Hf of density 13.31 g/cm3 and tallied the number of reactions/source
neutron occurring in the medium for five source neutron energies ranging from 1 to 14 MeV.
The point source was located at the center of the sphere. The pure Hf was then replaced by
a mixture of 9Be and 178m2Hf, where the 9Be atom fraction was varied from 0.001% to 95%.
The density of the mixture was modified accordingly. We considered two 178Hf states: the
31 y 16+ isomeric state and the 12+ excited sate at 2.15 MeV. Results are given in tables 4
and 5.

We also considered heterogeneous assemblies of beryllium and hafnium consisting of a
pure sphere of hafnium surrounded by a 50 cm thick beryllium reflector. We modeled four
sphere sizes, 10, 30, 50 and 100 cm radius respectively, for the 178m2Hf core. The neutron
source was isotropic and monoenergetic, with an energy of either 1 or 14 MeV. We defined
two source geometries: a volumetric source with the dimensions of the Hf sphere, or a point
source located at the center of the Hf sphere. Results for the 1 and 14 MeV neutron source
are given in tables 7 and 8 respectively.
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Table 6: Number of reaction/source neutrons in a thin cylinder made of Hf, for several
neutron energies En.

Hf state En [MeV] Elastic (n,n′) (n,2n) (n,p) (n,γ) (n,α)
1 0.7498 0.08480 0.1654
2 0.7073 0.1497 0.1179 2.000·10−7

178m2Hf 5 0.5930 0.3952 4.000·10−7 0.01178 3.300·10−6

10 0.4878 0.3031 0.2077 3.698·10−4 6.139·10−4 2.881·10−4

14 0.5414 0.08279 0.3695 2.251·10−3 3.539·10−7 1.426·10−3

1 0.6749 0.2279
2 0.7073 0.2642 0.028510 2.000·10−7

Hf 12+ 5 0.5929 0.4047 2.441·10−3 2.100·10−6

10 0.4878 0.1726 0.3386 2.935·10−4 4.534·10−4 2.144·10−4

14 0.5414 0.05032 0.3965 2.012·10−3 2.971·10−4 1.171·10−3
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5.4 Gamma-ray lasers

A simple treatment of the γ-ray laser appears in the article by V. Vali and W. Vali [151].
While more complex γ-ray laser schemes have been proposed since this paper appeared,
the fundamental challenges of realizing a γ-ray laser are illustrated in the considerations
presented in this paper.

Lasing

u

o

l

f

Figure 15: Basic energy levels and state label definitions.

A simple “two-state” laser is assumed. The schematic level diagram is shown in Fig. 15.
The system is in the initial state designated “o.” It is pumped to the upper state “u” which
undergoes a transition to the lower state “l” through spontaneous emission. The system
further relaxes to state “f.” The wavelength of the laser light is λul and the laser state
populations are designated: No, Nu, Nl, Nf , the number of atoms in the respective states.

The cross section for induced emission of a γ-ray from the nuclei in the excited state “u”
is given by the expression:

σ0 =
λ2

ul

2π

γu

γu + γl

2Il + 1

2Iu + 1
(30)

where γu and γl are the transition widths and Iu and Il are the angular momentum of the
upper and lower states. The process by which mono-chromatic γ-rays induce emission from
nuclei in the excited state “u” competes with all the other γ-ray scattering processes. The
intensity I of γ-rays falls off exponentially with the distance x traveled in side the medium.

I = I0e
−Nσex (31)

where N is the number density of atoms and σe is the electronic scattering cross section.
This is the sum of the Rayleigh, Compton, photoelectric and pair production cross sections.

The decay rate of the nuclei in the state “u” is governed by its spontaneous decay rate

dNu

dt
= −λNu (32)
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Figure 16: Photon cross section for Hf as a function of photon energy showing
the contributions of different processes. The data for this plot was generated from
physics.nist.gov/PhysRefData.

where λ is the decay constant. If induced emission occurs with some probability p, the decay
constant is increased by the factor (1 + p) where p is defined by the ratio of cross sections:

p =
Nuσ0

Nlσl + Nσe

(33)

where Nl is the number density of nuclei in state “l” and σl is the nuclear resonant absorption
cross section from state “l” to state “u.” Assuming a high density of excited nuclei “u” and
a low density of nuclei “l,”

Nlσl < Nuσ0 (34)

and,
Nlσl < Nσe (35)

we have

p =
Nuσ0

Nσe

. (36)

The property of the system to “lase” is to have more photons participating in the stim-
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ulated emission scattering than all other electronic scattering processes, i.e.:

Nuσ0

Nlσl + Nσe

> 1 (37)

which is the condition of criticality. This leads to the requirement on the number density of
excited nuclei to all nuclei:

Nu

N
>

σe

σ0

. (38)

Because Nu/N ≤ 1 we find the condition σ0 > σe.

Consider the λ = 3 electric transition of the 16+ state to the 13− state in the 8−-band of
the Hf nucleus discussed above. The energy separation is 12.7 keV, or λul = 1.5 nanometer.
Assuming the 13− state undergoes a low multipole electromagnetic transition to the state
“f,” it would have a half-life of roughly 1 ps, γl = 7× 1011 s−1. The 16− state has a 31 year
half life leading to a transition rate of γu = 7× 10−10 s−1. If there were no other suppression
factors (such as line broadening due to nuclear recoil on decay, or line width broadening) the
cross section for stimulated emission would be σ0 = 1.2× 10−14 barns.

The Hf photon scattering cross section for a 12.7 keV γ is σe = 6× 104 barns. The ratio
σe/σ0 = 5×1018 which is much larger than unity. The criticality condition is not met in this
case, that is, the probability that the γ-ray undergoes an electronic scatter is much greater
than the probability that it would induce a transition of the “u” state to the “l” state with
the addition of a second γ-ray.

Even under this very optimistic scenario, it is unlikely that the conditions for producing
a γ-ray laser could be met utilizing the 178m2Hf isomer.

More complicated schemes for realizing γ-ray lasers have been proposed (see, for exam-
ple [160]). Using nuclear isomers as the energetic material requires overcoming the funda-
mental problem that a long lived isomer state has a very narrow line width. The emitted
γ causes the nucleus to recoil, thus Doppler shifting energy of the γ. The line width is so
narrow that the emitted γ is “de-tuned.” Many schemes involve creating an environment for
the nucleus that reduces the effect of the recoil, such as the creation of a Mössbauer crystal.
Additional cooling of such crystals is necessary to reduce the Doppler broadening due to the
thermal motion of the atoms in the lattice. Finally, some widths are so narrow that the γ’s
motion in the gravitational potential will de-tune them from resonance, a point noticed in
the earliest considerations [151].

A review of the status of γ-ray laser research is written by Elton [47] refers to the article by
Collins [34] which applies ideas from an earlier review [10], and other work [35, 36, 120, 119].
The main thrust of this work is to overcome the difficulty presented by the very narrow
nuclear state line widths. A review of many proposed γ-ray laser schemes was extensively
reviewed by Baldwin and Solem [9]. The difficulty of creating an environment uniform
enough so that the nuclei were not subject to energy level shifting effects (e.g. strong local
magnetic fields) led the authors to conclude that no scheme would work.

Further, they went on to formulate the ’graser dilemma:’ that the laser ’pump can destroy
the conditions essential to gain.’ The conditions required to resolve the graser dilemma can
place limits on the characteristics of the candidate nuclear systems proposed as the laser
medium.

61



In this schemes described below, the nuclear isomer is produced separately from the
actual time at which it will be used for the laser. In the case of 178m2Hf the concept allows
for the production of the laser medium which involves an irradiation of an appropriate feed
stock nuclei to produce the isomer, its separation from the stock, and the formation of
an appropriate crystal. Assuming concentrations of 1022 cm−3 it should be noted that the
crystal itself is radioactive, roughly 13 mCi.

The first scheme proposed in [34] uses a long lived nuclear isomer which is pumped by a
coherent source of optical radiation, Figure 17.

Lasing

u

o

l

f

r

i

ΔE

Figure 17: Level scheme for a proposed γ-ray laser with a nuclear isomer “storage” level ’i’
and a coherent pump to virtual levels ’u’ and ’l’. The frequency of the pump is tuned so
that the level ’u’ is within a small ∆E of a real state ’r’ so that the transition rate from ’i’
to ’u’ is resonantly enhanced. The state ’u’ then undergoes stimulated emission to ’f.’

The population of the ’u’ and ’l’ virtual states occur through scattering the coherent
radiation from ’i.’ Choosing an energy value of that coherent radiation such that ’u’ is close
to a real level in the nucleus, ’r’ will enhance the ’i’ to ’u’ transition and inverts the level
population, which then lases from the ’u’ to ’f’ levels. Level ’r’ must exist so that Ei-Ei

can be pumped with a laser where ∆E is of order neV (nano-electron-volt) or meV (milli-
electron-volt) to benefit from the resonant enhancement. The state ’r’ must also have the
correct quantum numbers as does the virtual state ’u,’ a photon quanta difference from ’i.’

If the coherent pump photon energy is much above 10 eV (soft x-rays) photo-ionization
of the medium takes place. The creation of the plasma changes the opacity of the material,
usually increasing it and shortening the mean-free path of the pump photons preventing the
creation and subsequent inversion of the virtual states ’u’ and ’l.’ The time over which this
happens depends on many factors, but the photon-ionization cross sections are usually much
larger than the excitation cross sections of the level ’i’ (a factor of 1000 is typical). In the
”high energy” pump case, the plasma is being created much faster than the inverted state
population.
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Keeping the pump photon energy below 10 eV is also problematic, as solid state factors
(such as the opacity of metals to near optical photons). The issue for the nuclear structure
is the level density near the isomer level ’i,’ where the state ’r’ is required for the resonant
enhancement of the virtual state ’u.’

The incoherent pump scheme described in [34] is shown in Figure 18.

Lasing
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i spontaneous

Figure 18: Level scheme for a proposed γ-ray laser with a nuclear isomer “storage” level ‘i’.

This sample is then “pumped” from the isomer level ’i’ to a presumed band of levels
designated “t”, referred to as the “K-mixing” band. It is assumed that this band exists
close in energy to the isomer level. This band couples the isomer band to some other band
(perhaps the ground state band) and the level subsequently decays spontaneously (with a
lifetime of 1 to 10 ps) to the upper laser level “u.” The properties of this level must inhibit
its decay to a length of time comparable to the laser pump time, of order 1 ns. The transition
from “u” to “l” proceeds by the induced decay by stimulated emission. Finally, the level “l”
must undergo a spontaneous decay with a time short compared to the pumping time to the
level “f.”

An estimated intensity of the pump is roughly 10 kJ/cm2 in 10 keV photons. This
corresponds to the intensity in that spectral band of a 300 eV black body radiator. These
photons have a mean free path in Hf metal of roughly 4 µm. Only 1 in 1000 pump “i” to
“t”, the remaining photons ionize the Hf atoms creating a hot electron plasma, which shuts
off the illumination of the remaining Hf atoms. The pump power then goes into heating the
plasma, launching a shock wave into the metal resulting in the subsequent hydrodynamic
expansion. This takes place in a time scale short compared to the proposed pump durations
of 100ps. This scheme fails to resolve the “graser dilemma.”

One final scheme proposed for a graser [165] attempts propose to overcome these problems
by using a laser cooled gas of nuclear isomers. Cooling the atoms to µK temperatures is
possible using modern atomic physics techniques. At these temperatures, and in a gaseous
phase, the nuclei are assumed free from the problems of band shift and spreading. However,
any laser scheme pumping the nuclear isomer increases the temperature of the gas. In the
case of pump photon energies exceeding the ionization potential, there is the additional
opacity problems and the radiation-hydrodynamic behavior of a mixed neutral gas - plasma
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system. Keeping the atoms cool would require at least as much cooling power as pump
power, and would have to establish the low required temperatures for the duration of the
pump and stimulated decay.

All of these proposed schemes find some possible set of mechanisms for establishing the
conditions for producing a γ-ray laser. However, in most cases, the important effects of the
reactions of pump photons other than the pumping transitions cause a failure to establish
the conditions required for lasing.

64



6 Conclusions and remarks

Our over-arching conclusion from the assessment of the information we reviewed is that the
use of 178m2Hf nuclear isomer for energy storage with controlled energy release is improbable.
The origins of the stability of nuclear isomers provides the first challenge to the notion. While
a precise theory of nuclear structure is lacking, the physical picture which has been built
up by the collaboration of theory and experiment can explain the observed phenomena e.g.
of 180Ta. Reaction and decay pathways which would lead to the rapid decay of this state
would prevent any amount of it surviving its synthesis, yet there is a measurable cosmic
abundance.

The level schemes of nuclei, of 178m2Hf in particular, are very complex and composed of a
huge number of states, yet the structure is well described and the physical character of those
states can be explained by the current physical picture. The proposed existence of “new”
states with specific quantum numbers can always be verified by careful experimental work.

The exploration of nuclear structure as well as the description of transition probabilities
between the various excitation bands also provides a way of estimating the size of decay
probabilities and reaction rates. Thus nuclear fluorescence can be used as a tool along with
e.g. Coulomb excitation, and should present a consistent picture of inter-band and intra-band
transitions. In 178m2Hf this is true only by setting aside the experimental results observing
large transition rates with small excitation energies.

Ingenious schemes can be imagined for enhancing the transition rates, e.g. resonant
scattering, or electronic interactions. However, these schemes can be calculated and, in
instances where other experiments have been done, compared to those experiments. In no
case does the theory support the very large cross sections required to explain the “high rate”
triggering results.

To test the ideas of creating a situation were energy release is self-sustaining by the
products of the de-excitation reactions, it is possible to use the measured cross sections,
or where there is no data, calculate cross sections needed to evaluate the reactivity of the
material. We find that, using the best information from nuclear data, no scheme provides
a practical energy release process. This is true for all the variety of release mechanisms
proposed: neutron scattering, photon scattering, or various laser schemes. The fundamental
problem with all these schemes is the relative probability of the relevant reaction to occur
for the release is much smaller than the probability of something else happening, and that
there is no situation that satisfies the relevant “criticality” conditions that would sustain the
various reaction schemes. This is true even if the unexplained large cross sections observed
by some groups are taken at face value.

Our conclusion is that the utilization of nuclear isomers for energy storage is impractical
from the the points of view of nuclear structure, nuclear reactions, and of prospects for
controlled energy release. We note that the cost of producing the nuclear isomer is likely
to be extraordinarily high, and that the technologies that would be required to perform the
task are beyond anything done before and are difficult to cost at this time.

While additional research in the nuclear physics of isomers would be a worthy academic
endeavor, the usefulness of this research for a practical energy source is doubtful.
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A Glossary of Concepts

Collective rotation: Due to the location of individual single-particle levels and the presence
of a quadrupole-quadrupole interaction, any nuclei exhibit deformed shapes as their lowest
energy configuration; most often axially-symmetric prolate shapes. Much like di-atomic
molecules, these deformed nuclei can rotate collectively about an axis perpendicular to their
symmetry axis (for quantum systems rotation about a symmetry axis is forbidden). The
spectrum for collective rotation as a function of total angular momentum J follows the
pattern E = J(J + 1)/2I, where I is the moment of inertia and only even values of J are
allowed. A schematic of collective rotation is shown in Fig. 19.

Figure 19: Schematic describing: a) collective rotation of a prolate nucleus and b) collective
rotation with K alignment (for illustrative purposes a Kπ = 8− band is shown). The overall
behavior of the energy levels is also shown.

Compound nucleus: A concept originally introduced by Niels Bohr to describe nuclear reactions
when a projectile is absorbed into the target. In general, the “compound” state is excited,
and involves many complicated configurations in the nucleus. Because of the very high
density of states, the nucleus is not in any one particular state, but posses properties that
are statistically distributed across the broad spectrum of states. An important feature of the
compound nucleus is that once formed, it loses all memory of its formation.

Decay probabilities: The standard statistical (Hauser-Feshbach) method allocates decay proba-
bilities to each final state in proportion to its transmission coefficient TL, after scaling so the
total probability is unity.

Electromagnetic decay: Excited states in a nucleus lying below the threshold for particle emis-
sion will generally decay by emitting electromagnetic radiation (in the form of photons) to
reach the lowest energy configuration. Two types of radiation occur, electric, usually denoted
by E and is due to re-arrangments in the charge distribution in a nucleus, and magnetic,
denoted by M is caused by changes in the distribution of magnetic moments in the nu-
cleus. In addition, radiation is also characterized by its multipolarity, λ, e.g., dipole (λ = 1),
quadrupole (λ = 2, etc. The multipolarity λ determines the maximum change in the angular
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momentum permitted in the transition, e.g., |Jf − Ji| ≤ λ, where here Ji and Jf denote
the angular momentum for the initial and final states. In addition, the type, i.e., electric
or magnetic, and multipolarity determine the change in parity required in the transition.
For electric transitions odd multipolarities require a change in parity, while even multipolar-
ities occur only between states of the same parity. This is reversed for magnetic transitions.
General features for electromagnetic decay are that the parity changing electric-dipole (E1)
transitions are the fastest, followed by the parity conserving electric-quadrupole (E2) and
magnetic-dipole (M1) transitions. In general, decays involving higher multipolarites are
suppressed as is also seen in the section defining the Weisskopf unit.

Isomer: Excited, metastable state of an atomic nucleus. The life times of isomeric states can vary
over many orders of magnitude; experimental constraints establish t1/2= 1 ns (1 nanosecond
= 10−9s) as an effective lower life time limit for the purposes of defining an isomeric state,
while some isomers with much longer life times also exist (180Ta has a half live of over 1015

years). Isomers can decay via α, β, γ-ray emission, or internal conversion. There are three
types of isomeric states, shape isomers, spin isomers and K isomers, defined according to the
mechanism that hinders their decay. Shape isomers can occur when there are two (or more)
stable mean-field configurations that represent a local minima in the energy surface. Due to
the significant differences in the low-lying structure, for example prolate and oblate shapes,
transitions between the lowest states with these configurations tend to be suppressed. Spin
isomers occur when a high-spin state lies below states of lower angular momentum that would
permit an “allowed” electromagnetic decay, i.e., a multipolarity λ = 1, 2. A K isomer can
occur when a given level has alignment K of its total angular momentum along its symmetry
axis and all the states lower in excitation energy that are accessible to decay require a large
change in K. See e.g.,Walker and Dracoulis [155].

Level density: The level density, or also density of states, is the number of levels per unit energy,
for each spin J and parity π. We can also present the total level density, after summing
over all J and π. In general, the density of states is known experimentally in two regions
of excitation energy. First, at low energies, the level density is determined by counting
the observed discrete levels. Second, for excitations just at the neutron separation energy,
neutron scattering on stable targets provides the density of states through neutron S-wave
resonances, D0. For much of the spectrum, however, the density of states is modeled with
a modified form of the Fermi-gas model, generally attributed to Gilbert and Cameron [53]].
The parameters in the model are tuned to experimental data and extrapolated to other nuclei.

K quantum number: In general, nuclei are not rigid objects, often intrinsic degrees of freedom
will couple with the collective rotation. Often, individual particles will couple their intrinsic
spins to a value K and align it along the symmetry axis of the rotating prolate nucleus.
The intrinsic spin ~K is then coupled with the rotational angular momentum, ~I to form the
total angular momentum ~J . The spectrum as a function of angular momentum J follows the
pattern E = [J(J+1)−K2]/2I, with J = K, K+1, K+2, .... The component K along the
symmetry axis is very nearly conserved, in a manner very similar to the classical symmetric
top. The K quantum number in comparison with collective rotation is shown in Fig 19.

K-hindrance and K-mixing: Strictly speaking, K is not a symmetry of the underlying Hamil-
tonian, like parity or angular momentum, and thus is not an absolute quantum number to
be preserved. However, because of the explicit structure of states with different K, the in-
teraction matrix element, V , connecting them is weak; typically it is of the order 10 eV to
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100 eV. Applying first-order perturbation theory, the mixing amplitude between two states is
proportional to V/∆E, where ∆E is the difference in energy between the two states. Thus,
when the level density in a system is much less than 103 MeV−1, states should be relatively
pure, and transitions to different K states will be severely hindered. At higher excitation en-
ergies, when the level density reaches 104−6 MeV−1 or more, multiple K values can be mixed
within each energy eigen-state of the nucleus. In this regime, we have strong K-mixing.

Neutron transmisson coefficient TL: This, for each angular momentum partial wave L, is the
probability from the exterior of populating a compound-nuclear state. And also the time-
reversed process: the probability of escape from a initial CN state. The TL for particles
are calculated from the optical potential for neutron-nucleus scattering, and are essentially
proportional to the imaginary parts of these optical potentials. They increase slowly with
energy for low L, and are very small but increasing as ∼ E5 for large L: see Fig. 6.

Neutron inelastic scattering, direct and compound: When a neutron reacts with a nucleus
in its ground state, it can either scatter elastically and keep the same centre-of-mass energy,
or it can give energy to the nucleus and come away with less of its own. This second outcome
is called ‘inelastic scattering’, and occurs when the neutron has energy at least equal to the
excitation energy of the final state of the nucleus.

When neutrons react with isomers, however, there is a third possible outcome: the nucleus
could instead give energy to the neutron. The nucleus would then be left in an energy level
below that of the isomer, and then decay more rapidly, whereas the outgoing neutron will have
a larger kinetic energy. This processes is called ‘superelastic scattering’, or ‘inelastic scattering
by neutron acceleration’ (INNA). In contrast to normal inelastic scattering, INNA can occur
for any incident neutron energy, no matter how low. If there are large K-hindrances, however,
then we should expect the compound nucleus to decay back to the isomer (an example of
‘compound elastic scattering’).

Parity: A symmetry property exhibited in quantum systems when the Hamiltonian describing
the motion is invariant to reflections about the origin. The parity quantum number is often
denoted by the symbol π and takes the values +1 (even) and −1 (odd). For even-parity
states, the wave function has the behavior ψ(x) = ψ(−x) while for odd-parity states, we
have ψ(x) = −ψ(−x).

Yrast state: Technical term to define the state of a given angular momentum that has the lowest
excitation energy. Derived from Swedish. The root is yr which is an adjective meaning to
’whirl’. Yrast is the superlative of yr, literally meaning “dizziest”.

Weisskopf unit: Measure of Electromagnetic transition strength corresponding to the rearrange-
ment of just one nucleon. This is a useful estimate to giving an overall scale to base the
strength of a particular transition. In particular, highly collective transitions will have tran-
sition rates substantially larger than the Weisskopf estimate, while transition rates lower than
the Weisskopf estimate are generally hindered. For a transition of multipolarity λ and γ-ray
energy Eγ (measured in MeV), the decay rate, T is

T =
B(λ+ 1)

λ[(2λ+ 1)!!]2

(
3

λ+ 3

)2 (
Eγ

197 MeV

)2λ+1 (
R

fm

)C

1021s−1, (39)

where B = 16 and C = 2λ for Electric transitions and 1.9 and 2λ − 2, respectively, for
magnetic transitions, and R is the nuclear radius (often approximated for a nucleus with A
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nucleons as 1.2A1/3 fm). Three important features are evident: 1) electric transitions tend to
have a larger decay rate than magnetic transitions; 2) the decay rate increases substantially
with increasing γ-ray energy, and 3) for nominal γ-ray energies of the order 1-5 MeV, the
decay rate decreases substantially with increasing multipolarity.
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B Physical Properties of Hafnium

Symbol: Hf

Atomic Number: 72

Atomic Mass: 178.49

Density: 13,310 kg/m3

Tm = 2233◦C

Tb = 4603◦C

cp = 0.144 J/g K

Cp = 25.73 J/mol K

Ground state electron configuration: [Xe]4f145d26s2

Solar abundance Hf/H: 6× 10−12

Terrestrial abundance: 5.3 p.p.m.

Seawater: 7× 10−6 p.p.m.
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Table 9: Hafnium isotopes, see the Nuclear Wallet Cards distributed at www.nndc.bnl.gov

T1/2, Γ or
A Jπ ∆ (MeV) Abundance Decay mode
153 -27.302 60 ns
154 0+ -32.733 2 s ε100.00%, α0.00%
154m (10+) -30.062 9 µs IT100.00%
155 -34.102 0.89 s ε100.00%
156 0+ -37.8522 23 ms α100.00%
156m 8+ -35.8932 0.52 ms α100.00%
157 7/2- -38.754 110 ms α86.00%, ε14.00%
158 0+ -42.1041 2.85 s ε55.70%, α44.30%
159 7/2- -42.8535 5.6 s ε65.00%, α35.00%
160 0+ -45.9372 13.6 s ε99.30%, α0.70%
161 -46.3187 18.2 s ε > 99.87%, α < 0.13%
162 0+ -49.1731 39.4 s α8.0× 10−3%, ε99.99%
163 -49.2863 40.0 s ε100.00%, α < 1.0× 10−4%
164 0+ -51.8215 111 s ε100.00%
165 (5/2-) -51.6355 76 s ε100.00%
166 0+ -53.859 6.77 m ε100.00%
167 (5/2)- -53.4678 2.05 m ε100.00%
168 0+ -55.3605 25.95 m ε100.00%
169 (5/2)- -54.7169 3.24 m ε100.00%
170 0+ -56.2539 16.01 h ε100.00%
171 7/2(+) -55.4313 12.1 h ε100.00%
171m 1/2(-) -55.4094 29.5 s IT100.00%, ε
172 0+ -56.4035 1.87 y ε100.00%
173 1/2- -55.4118 23.6 h ε100.00%
174 0+ -55.8466 2.0× 1015 y α100.00%

0.16%
175 5/2(-) -54.483 70 d ε100.00%
176 0+ -54.577 5.26%
177 7/2- -52.8896 18.60%
177m 23/2+ -51.5741 1.09 s IT100.00%
177m 37/2- -50.1496 51.4 m IT100.00%
178 0+ -52.4443 27.28%
178m 8- -51.2968 4.0 s IT100.00%
178m 16+ -49.9982 31 y IT100.00%
179 9/2+ -50.4719 13.62%
179m 1/2- -50.0969 18.67 s IT100.00%
179m 25/2- -49.3661 25.05 d IT100.00%
180 0+ -49.7884 35.08%
180m 8- -48.6469 5.47 h IT99.70%, β − 0.30%
181 1/2- -47.411 42.39 d β − 100.00%
181m (25/2-) -45.6691 1.5 ms IT100.00%
182 0+ -46.0586 8.90× 106 y β − 100.00%
182m 8- -44.8856 61.5 m β−58.00%, IT42.00%
183 (3/2-) -43.2861 1.067 h β−100.00%
184 0+ -41.5013 4.12 h β−100.00%
184m 8- -40.229 48 s β−100.00%
185 -38.359 3.5 m β−100.00%
186 0+ -36.431 2.6 m β−100.00%
187 -32.984 30 s β−?
188 0+ -30.879 20 s β−

72



C Production of 178m2Hf

Producing the nuclear isomer 178m2Hf has been the subject of many studies. The initial
discovery of 178m2Hf by Helmer and Reich [70] followed a two year irradiation of 100-200
mg of hafnium oxide in reactors with thermal neutron fluxes > 4 × 1014 n/cm2/s. The
samples were allowed to decay for three years. The hafnium was then chemically separate
from the sample. In part of the subsequent spectroscopic analysis of the samples, 178Hf was
isotopically separated. No estimate of the amount of produced 178m2Hf was provided by the
authors.

In a recent paper by Karamian, et al. [76] the production cross section for 178m2Hf was
measured (along with other isotopes of Hf). From that paper the production of 178m2Hf can
be estimated by the expression:

N178m2 = N177
σproduction

σtotal − σburnup

(
e−σburnupΦ − e−σtotalΦ

)
(40)

where Φ is the neutron flux, N177 is the amount of 177Hf which serves as the “feed stock” for
the production and N178m2 is the amount of 178m2Hf produced. The cross sections reported
by Karamian, et al. provide an estimate for the production.

Table 10: Cross sections relevant to 178m2Hf production

σtotal
177Hf(n,X) σproduction

177Hf(n,γ)178m2Hf σburnup
178m2Hf (n,X)

373 b 2.6× 10−6 b 2× 10−4 b

It is instructive to calculate the total quantity of 178m2Hf that Helmer and Reich would
have produced. Starting from 100 mg of HfO2, with 177Hf at 18.6% abundance the initial
amount of “feed stock” would be roughly 16 mg. Estimating the reactor flux for 2 years of
running to be Φ = 6.3× 1021 n/cm2 yields roughly 0.075 ng of 178m2Hf.

To obtain gram quantities of 178m2Hf it would require processing 10 metric tonnes of
HfO2.

Accelerator production might be possible via the reaction 179Hf(n,2n)178m2Hf. This cross
section was evaluated by Chadwick for an unpublished report (Hermannsfeldt, private com-
munication). The cross section at 18 MeV incident neutron energy is calculated to be 10 mb.
The shape of the cross section above 18 MeV is uncertain. The total neutron cross section
179Hf(n,X) is approximately 2.5 b. Each incident neutron incident on the 179Hf target makes
0.004 178m2Hf nuclei, or 250 incident neutrons to make a single 178m2Hf.

Neutrons would be made by accelerating deuterons to high energy and directed onto a Li
target to produce neutrons in the appropriate energy range. A thick Li target would yield
roughly 1/3 of a neutron out in the energy range of interest. A high intensity machine would
accelerate 6×1018 deuterons/s/Ampere. The neutron yield would be 2×1018 neutrons/s/A.
Assuming that 120 MeV deuteron accelerator can be designed and built with roughly 100
mA beam currents, the neutron yield would be 2× 1017 neutrons/s.
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The 178m2Hf production for one year of running would be 2× 1022 atoms, or roughly 6 g.

Additional issues with accelerator production of 178m2Hf are the enrichment of 179Hf from
natural stock, and the processing of the irradiated target to recover the 178m2Hf. There are
also considerable technical challenges regarding the accelerator, the Li target and processing
the 178m2Hf from the 179Hf target. Finally, not all the cross sections relevant for the estimating
production are known.
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D Summary of discussions with visitors

The following visitors came to the Lawrence Livermore Laboratory, gave specific isomer pre-
sentations to the Assessment Group, and participated in wide-ranging discussions. Some-
times they also gave general seminars to the Livermore nuclear division.

Nicholas and Jirina Stone

Drs Nicholas and Jirina Stone, from Oxford University and University of Tennessee, vis-
ited May 20-22, 2008. They discussed with us many details of their report on Mcdaniel’s
experiments in at the CAMD Facility, Baton Rouge, La., in November 2003.

Nicholas Stone also presented a general seminar ‘Short-lived excited state g-factor mea-
surements with Radioactive Ion Beams [RIBs]: new opportunities and limitations of the
Recoil-in-Vacuum (RIV) method’, and Jirina gave a seminar entitled ‘Nuclear Equation of
State of High Density Matter’.

William Herrmannsfeldt

Dr Herrmannsfeldt from SLAC, Stanford University, visited June 18, 2008. He summarised
his previous work on HIPP, the ‘Hafnium Isomer Production Panel’ that met during 2002-03,
and its as-yet-unpublished report.

Olivier Roig

Dr Roig’s permanent affiliation is CEA/DIF/DPTA Service de Physique Nucléaire – Bruyères-
le-Châtel, France, but was visiting Los Alamos National Laboratory for February–July 2008.
He visited us July 21-22, 2008.

He presented a general seminar ‘Experiments with a high spin K isomeric target of
177Lum’ to the division, covering his published research in isomer de-excitation by thermal
neutrons, and well as a second seminar ‘Cross section measurements and more of the INNA
reaction on 177Lu’ concerning his recent and unpublished attempted to probe the INNA
process in more detail.

Ching-Yen Wu

Dr Wu, from the experimental group at LLNL, talked about his collaboration’s previous
experiments that produced isomers, including 178m2Hf, by Coulomb excitation. He also
talked out his group’s new experiments to be performed at Argonne Laboratory in August
2008.
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Phillip Walker

Professor Walker, of the University of Surrey, United Kingdom, visited July 28-29, 2008. He
gave a talk ‘Isomers at the interface between atomic and nuclear physics’ on the first day,
and subsequently joined extensive discussions about isomers and K-mixing.

Yuri Oganessian

Dr Oganessian visited Livermore on September 29 - October 1, 2008. On the first day he
gave a general talk ‘Heavy ion physics at Dubna’, and on the Tuesday he showed slides
and discussed his work. He talked about the production and isolation of isomers, laser
spectroscopy, K-mixing, and neutron-capture experiments.

James Carroll

Professor Carroll, from Youngstown State University Ohio, gave on Thursday Oct 2 a general
talk entitled ‘Studies of Nuclear Structure related to an Induced Depletion of Isomers’. Before
that, he discussed with us a range of questions about isomer depletion, and also his recently
submitted paper [22] about his last experiment at Spring8.
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This is a large value exceeding by two orders of magnitude known cross sections for (γ,γ′) reactions
producing isomers of other species.

[34] C. B. Collins, F. W. Lee, D. M. Shemwell, B. D. DePaola, S. Olariu, and I. I. Popescu, The coher-
ent and incoherent pumping of a gamma ray laser with intense optical radiation, J. Appl. Phys, 53
(1982), p. 4645. Abstract: Both the coherent and incoherent pumping with intense optical radiation
of electromagnetic transitions in nuclei were modeled in this work. In the first case the anti-Stokes
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a γ-ray laser. With the most favorable possible arrangement of nuclear energy levels, the threshold
for stimulated output at 10 keV might be reached at a few tens of Joules for isomeric media with
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when the nuclear recoil is compensated by the simultaneous absorption of an optical photon from the
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6.3 × 1014 nuclei of the isomer of 178Hf was irradiated with X-ray pulses derived from a device operated
at 15 mA to produce bremsstrahlung radiation with end point energies set to values between 60 and
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ground state ratios Ym/Yg were deduced. The systematics of the Ym/Yg values versus spin difference
of initial and final states in the photonuclear reaction shows that the structure selectivity for the
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detected nuclides we identified the spallation and fission products. High-spin isomeric states in the Hf
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Dubna. Quantities of about 2*1012 atoms of this isomer have been irradiated by thermal neutron at
the ORPHEE Reactor, Saclay. Only the neutron capture giving rise to the isomeric state 25/2− of
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four-quasiparticle state and an 8- two-quasiparticle state in 178Hf have been studied with emphasis on
K-forbidden decay modes. An M4 branch in the decay of the 16+ state was identified, locating the
isomer at an excitation energy of 2446.0 keV. Upper limits were found for the intensity of the 8- to 6+
transition and for other possible decay modes of the 16+ state. Hindrance factors for the K-forbidden
transitions are compared with those for similar transitions in neighbouring nuclides.

[95] I. A. Kondurov, E. M. Korotkikh, Y. V. Petrov, and G. I. Shuljak, Acceleration of thermal neutrons by
isomeric nuclei (180Hfm), Physics Letters B, 106 (1981), pp. 383–385. Abstract: Inelastic accelaration
of neutrons by 180Hfm has been observed. The experimental cross section for acceleration of thermal
neutrons is σin = 52 ± 13 b. The K-hindrance factor determining the long lifetime of the isomer is
absent in this reaction.
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