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There have been many attempts to define the notion of quasilocal mass for a spacelike two surface in

spacetime by the Hamilton-Jacobi analysis. The essential difficulty in this approach is to identify the right

choice of the background configuration to be subtracted from the physical Hamiltonian. Quasilocal mass

should be non-negative for surfaces in general spacetime and zero for surfaces in flat spacetime. In this

Letter, we propose a new definition of gauge-independent quasilocal mass and prove that it has the desired

properties.
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Introduction.—As is well known from the equivalence
principle, there is no well-defined concept of energy den-
sity in general relativity. On the other hand, when there is
asymptotic symmetry, concepts of total energy and mo-
mentum can be defined. This is called the ADM energy-
momentum and the Bondi energy-momentum when the
system is viewed from spatial infinity and null infinity,
respectively. These concepts are fundamental in general
relativity and have been proven to be natural and to satisfy
the important positivity condition in the work of Schoen-
Yau [1], Witten [2], etc. However, there are limitations to
such definitions if the physical system is not isolated and
cannot quite be viewed from infinity where asymptotic
symmetry exists. It was proposed more than 40 years ago
to measure the energy of a system by enclosing it with a
membrane, namely, a closed spacelike two surface, and
then attach to it an energy-momentum four vector. It is
natural to expect that the four vector will depend only on
the induced metric, the second fundamental form, and the
connection on the normal bundle of the surface embedded
in spacetime. This is the idea behind the definition of
quasilocal mass of this surface. Obviously, there are a
few conditions the quasilocal mass has to satisfy. First,
the ADM or Bondi mass should be recovered as spatial or
null infinity is approached. Second, the correct limits need
be obtained when the surface converges to a point. Third
and most importantly, quasilocal mass must be non-
negative in general and zero when the ambient spacetime
of the surface is the flat Minkowski spacetime. It should
also behave well when the spacetime is spherically sym-
metric. Many proposals were made by Hawking [3],
Penrose [4], etc. The most promising one was proposed
by Brown and York [5] where they motivated their defini-
tion by using the Hamiltonian formulation of general rela-
tivity (see also Hawking-Horowitz [6]). They found
interesting local quantities from which the definition of
quasilocal mass was extracted. Their definition depends on

the choice of gauge along the three-dimensional spacelike
slice which the surface bounds. It has the right asymptotic
behavior but is not positive in general. Shi-Tam [7] proved
that it is positive when the three-dimensional slice is time
symmetric. Motivated by geometric consideration, Liu and
Yau [8] (see also Kijowski [9], Booth-Mann [10], and Epp
[11]) introduced a mass which is gauge independent, and
proved that it is always positive. However, it was pointed
out by ÓMurchadha et al. [12] that the Liu and Yau mass
can be strictly positive even when the surface is in a flat
spacetime. In this Letter, we explore more in the direction
of the Hamilton-Jacobi analysis of Brown and York.
Combining some ideas of Liu and Yau, we define a quasi-
local mass which is gauge independent and non-negative.
Moreover, it is zero whenever the surface is in the flat
Minkowski spacetime. We believe that the present defini-
tion satisfies all the requirements necessary for a valid
definition of quasilocal mass, and it is likely to be the
unique definition that satisfies all the desired properties.
Hamiltonian formulation revisited.—Consider a space-

time region M that is foliated by a family of spacelike
hypersurface �t for t in the time interval ½t0; t00�. The
boundary of M consists of�t0 ,�t00 , and

3B. Let u� denote
the future-pointing timelike unit normal to�t. Assume u�

is tangent to 3B. Denote the boundary of�t by �t which is
the intersection of �t and

3B. Let v� denote the outward
pointing spacelike unit normal of �t such that u�v

� ¼ 0.

Denote by k the trace of the two-dimensional extrinsic
curvature of �t in �t in the direction of v�. Denote the
Riemannian metric, the extrinsic curvature, and the trace of
the extrinsic curvature on �t by g��, K�� ¼ r�u�, and

K ¼ g��K��, respectively. Let t
� be a timelike vector field

satisfying t�r�t ¼ 1. t� can be decomposed into the lapse

function and shift vector t� ¼ Nu� þ N�. Let S denote the
action for M, then the Hamiltonian at t00 is given by H ¼
� @S

@t00 . The calculation in Brown and York [5] (see also

Hawking-Horowitz [6]) leads to
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H ¼ � 1

8�

Z
�t00

½Nk� N�v�ðK�� � Kg��Þ� (1)

on a solution M of the Einstein equation. To define quasi-
local energy, we need to find a reference action S0 that
corresponds to fixing the metric on 3B and compute the
corresponding reference Hamiltonian H0. The energy is
then E ¼ � @

@t00 ðS� S0Þ ¼ H �H0. In Brown and York’s

prescription, the reference is taken to be an isometric
embedding of � into R3, considered as a flat three-
dimensional slice with K�� ¼ 0 in a flat spacetime.

Choosing N ¼ 1 and N� ¼ 0, the Brown and York quasi-
local energy is 1

8�

R
�ðk0 � kÞ. References such as surfaces

in the light cones ([13,14]) and other conditions [9] have
been proposed. However, the Brown and York energy for
the examples [12] of surfaces in the Minkowski space are
in general nonzero for all these references. We shall define
quasilocal energy using general isometric embeddings into
R3;1 as reference configurations. In particular, the t� is
obtained by transplanting a Killing vector field in R3;1 to
the physical spacetime through the embedding.

Definition of quasilocal energy in the canonical
gauge.—Suppose � is a spacelike surface in a time-
orientable spacetime, u� is a future-pointing timelike unit
normal, and v� is a spacelike unit normal with u�v� ¼ 0
along �. We assume v� is the outward normal of a space-
like hypersurface � that is defined locally near �.
Consider the 4-vector field

ku� þ v�ðK�
� � K��

�Þ (2)

along �. The definition of this vector field only depends on
the two normals u� and v� along �. The normal compo-
nent (with respect to �) of (2) is j� ¼ ku� � pv�, where
p ¼ K � K��v

�v�. j�, as well as the mean curvature

vector field, h� ¼ �kv� þ pu�, are defined independent
of the choice of gauge u� and v�.

Consider a reference isometric embedding i:� ,! R3;1

of �. Fix a constant timelike unit vector t�0 in R3;1, and

choose a preferred pair of normals u�0 and v
�
0 along ið�Þ in

the following way: Take a spacelike hypersurface �0 with
@�0 ¼ ið�Þ and such that the outward pointing spacelike
unit normal v�

0 of @�0 satisfies ðt0Þ�v�
0 ¼ 0. Let u�0 be the

future-pointing timelike unit normal of �0 along ið�Þ. We
can similarly form k0u

�
0 þ v�

0 ½ðK0Þ�� � K0�
�
�� in terms of

the corresponding geometric quantities on �0 and ið�Þ.
(u�0 , v

�
0) along ið�Þ in R3;1 is the reference normal gauge

we shall fix, and it depends on the choice of the pair (i, t�0).
When the mean curvature vector h� of � in M is space-

like, a reference isometric embedding i:� ,! R3;1 and
t�0 2 R3;1 determine a canonical future-pointing timelike

normal vector field �u� in M along �. Indeed, there is a
unique �u� that satisfies

h� �u
� ¼ ðh0Þ�u�0 (3)

where h�0 is the mean curvature vector of ið�Þ in R3;1.

Physically, (3) means the expansions of � � M and
ið�Þ � R3;1 along the respective directions �u� and u�0 are

the same. This condition corresponds to fixing the metric
on 3B up to the first order in choosing the reference
Hamiltonian. �u� shall be called the canonical gauge with
respect to the pair (i, t�0). Take �v� to be the spacelike

normal vector that is orthogonal to �u� and satisfies �v�h� <

0, and take a spacelike hypersurface �� inM such that �v� is
the outward normal. We can similarly form �k �u� þ
�v�ð �K�

� � �K��
�Þ, where �K�

�, �K, and �k are the corresponding

data on ��. The trace of the two-dimensional extrinsic
curvature �k of � with respect to �v� is then given by �k ¼
� �v�h� > 0.
Four vectors in R3;1 and M, along ið�Þ and �, respec-

tively, can be identified through

u�0 ! �u�; v�
0 ! �v�; (4)

and the identification of tangent vectors on ið�Þ and �.
The quasilocal energy of � in the canonical gauge with

respect to (i, t�0) is defined to be

1

8�

Z
�
f �k �u� þ �v�ð �K�

� � �K��
�Þ � k0u

�
0 � v�

0 ½ðK0Þ��
� K0�

�
��gðt0Þ�; (5)

where �u� is determined by (3), the identification (4) is
used, and t�0 in R3;1 is identified with N0 �u

� þ N�
0 in M.

In terms of the lapse N0 and shift N
�
0 , the quasilocal energy

is

1

8�

Z
�
ðk0 � �kÞN0 � ½v�

0 ðK0Þ�� � �v� �K���N�
0 : (6)

The mean curvature vector h� being spacelike is equiva-
lent to ��> 0 where � and � are the expansion along the
future and past outer null normals of�. When the image of
the reference embedding lies in a flat space slice inR3;1, we
have t�0 ¼ u�0 . On the other hand, the canonical gauge is
�u� ¼ 1ffiffiffiffiffiffiffi

8��
p j�, and we derive that �k ¼ ffiffiffiffiffiffiffiffiffiffi

8��
p

. In this case,

(5) recovers the Liu and Yau quasilocal mass 1
8�

R
�ðk0 �ffiffiffiffiffiffiffiffiffiffi

8��
p Þ.
Admissible pairs.—Unlike Brown and York or Liu and

Yau, we do not require the surface� to have positive Gauss
(intrinsic) curvature and apply the embedding theorem of
Weyl. Instead, we prove a uniqueness and existence theo-
rem of isometric embeddings into the Minkowski space
under a more general convexity condition.
Definition 1.—Let t�0 be a constant timelike unit vector in

R3;1. A closed surface � in R3;1 is said to have convex
shadow in the direction of t�0 if the projection of � onto the

orthogonal complement R3 of t�0 is a convex surface.

The set of isometric embeddings with convex shadows is
parametrized by functions satisfying a convexity condition.
Theorem 1.—Let �ab be a Riemannian metric on a two-

sphere �. Given any function � on � with
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�þ ð1þ �abr0
a�r0

b�Þ�1 detðr0
ar0

b�Þ
det�ab

> 0 (7)

where � is the Gauss curvature and r0 is the covariant
derivative of the metric �ab. Then, there exists a unique
spacelike embedding i:� ,! R3;1 such that the time func-
tion restricts to � on ið�Þ, and the induced metric on ið�Þ is
�ab.

Uniqueness is dealt with first. Suppose there are two
such isometric embeddings i1 and i2 with the same time
function �. It is not hard to check that the condition (7)
implies the projections of i1ð�Þ and i2ð�Þ onto the orthogo-
nal complement of the time direction are isometric as
convex surfaces in R3. By Cohn-Vossen regidity theorem,
the projections are congruent by a rigid motion of R3.
Since they have the same time functions, i1ð�Þ and i2ð�Þ
are congruent by a Lorentzian rigid motion of R3;1. To
prove existence, condition (7) is shown to imply that the
metric �ab þr0

a�r0
b� has positive Gauss curvature and

thus can be isometrically embedded into R3. We may
assume this R3 is a space slice in the Minkowski space,
so the induced metric on the graph of � in R3;1 is exactly
�ab. This completes the proof of Theorem 1.

In order to recognize a surface in the Minkowski space,
we solve a Dirichlet boundary value problem for Jang’s
equation. Given a hypersurface (�, gij, Kij) in M, Jang’s

equation seeks for a solution f of

X3
i;j¼1

�
gij � DifDjf

1þ gijDifDjf

�

�
�

DiDjf

ð1þ gijDifDjfÞ1=2
� Kij

�
¼ 0; (8)

whereD is the covariant derivative of gij. The graph of f in

the space �� R is denoted by ~�. In this Letter, we are
interested in the case when @� ¼ � and the prescribed
value of f on the boundary� is given. Notice that if� is in
R3;1 and if we take the time function � as the boundary

value to solve Jang’s equation, then ~�will be a flat domain
in R3.

Definition 2.—Consider a spacelike two surface � in a
time-orientable spacetime M, an isometric embedding
i:� ,! R3;1, and a constant timelike unit vector t�0 2
R3;1. Let � denote the time function restricted to ið�Þ. (i,
t�0) is said to be an admissible pair for � if the following

conditions are satisfied: (A) i has convex shadow in the
direction of t�0 . (B) � bounds a spacelike domain � in M
such that Jang’s Eq. (8) with the Dirichlet boundary data �
is solvable on � (with possible apparent horizons in the
interior). (C) Suppose f is the solution of Jang’s equation
in (B) and v� is the outward unit normal of� that is tangent
to�, and u� is the future-pointing timelike normal of� in
M. Consider the new gauge given by u0� ¼ sinh	v� þ
cosh	u� and v0� ¼ cosh	v� þ sinh	u�, where sinh	 ¼

fvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�abr0

a�r0
b
�

p , and fv is the normal derivative of f in the

direction v�. We require that

k0N0 � N�
0v

0�K0
�� > 0; (9)

where k0, g0��, and K0
�� are the corresponding data on the

new three dimensional spacelike domain �0 spanned by
v0�, and N0 and N�

0 are the lapse function and shift vector

of t�0 ¼ N0u
�
0 þ N�

0 .

Remark 1.—By a barrier argument, we show that �
satisfies (B) if on �, k > 1

tatað1þtataÞ ðKabt
atbÞ þ Kabu

aub

where ua is a two-vector such that taua ¼ 0 and uaua ¼
1, and ta ¼ �a

�t
�
0 is the projection of t�0 onto �. Also by

elliptic estimates, (C) will be satisfied if (9) holds for u�

and v�, and�abr0
a�r0

b� is small enough. In particular, if�
has positive Gauss curvature and spacelike mean curvature
vector in M, then any isometric embedding i whose image
lies in an R3 is admissible. Conditions (B) and (C) are
necessary for the present proof of the positivity result
Theorem 2, and they are general enough to include this
most important case. We expect the most general positivity
result holds under a convexity condition involving the
Hamiltonian surface density four vector (2) of � and the
function �.
Positivity of quasilocal energy.—We emphasize that

although the definition of admissible pairs involves solving
Jang’s equation, our results only depend on the solvability
and not on the specific solution. The expression of quasi-
local energy only depends on the canonical gauge �u�.
Theorem 2.—Suppose M is a time-orientable spacetime

that satisfies the dominant energy condition. Suppose �
has spacelike mean curvature vector in M. Then, the qua-
silocal energy (5) with respect to any admissible pair (i, t�0)
is non-negative.
We take the time function � on ið�Þ and consider the

Dirichlet problem of Jang’s equation (8) over (�, gij, Kij)

with f ¼ � on �. Condition (B) guarantees the equation is

solvable on �. Denote by ~� the graph of the solution of
Jang’s equation. Schoen and Yau [15] showed that if M
satisfies the dominant energy condition, there exists a

vector filed X on ~� such that

R � 2jXj2 � 2divX (10)

where R is the scalar curvature of ~�.

Let ~� be the graph of � over �, and denote the outward

normal of ~� with respect to ~� by ~vi and the mean curva-

ture of ~� with respect to ~vi by ~k. The boundary calculation

in [16] shows that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jr�j2p ð~k� ~viXiÞ is equal to the

expression in (9), and thus Condition (C) guarantees ~k�
~viXi > 0. We make use of another important property of
the canonical gauge that
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Z
~�
ð~k� ~viXiÞ � �

Z
�
½ �k �u� þ �v�ð �K�

� � �K��
�Þ�ðt0Þ�:

(11)

This is why the eventual definition of the quasilocal energy
is independent of the solution of Jang’s equation. On the

other hand, it is not hard to check that �R
�½k0u�0 þ

v
�
0 ðK�

0� � K0�
�
�Þ�ðt0Þ� ¼ R

�̂
k̂. (We were motivated by

Gibbon’s paper [17] to study this expression.) Here, �̂ is
the image of the projection of ið�Þ onto the orthogonal

complement of t�0 , and k̂ is the mean curvature of �̂.

Therefore, the proof is reduced to the inequality
R
�̂
k̂ �R

~�ð~k� ~viXiÞ. We note that the Riemannian metrics on ~�

and �̂ are the same. The proof will be completed by the
following comparison theorem in [16] for the solution of

Jang’s equation. Suppose ~� is a Riemannian three mani-

fold with boundary ~�, and suppose there exists a vector

field X on ~� such that (10) holds on ~� and ~k > ~viXi on
~�.

If the Gauss curvature of ~� is positive, and k0 is the mean

curvature of the isometric embedding of ~� into R3, thenR
~� k0 �

R
~�ð~k� ~viXiÞ.

Definition of quasilocal mass and its positivity.—Our
definition of quasilocal mass is similar to recovering the
rest mass of a particle from the energy as measured by all
observers of unit four velocities. The quasilocal mass of �
in M is defined to be the infimum of the quasilocal energy
(5) among all admissible pairs (i, t�0).

Under the assumptions of Theorem 2, we obtain
Theorem 3.—If the set of admissible pairs is nonempty,

then the quasilocal mass of � in M is non-negative. In
particular, this is the case when � has positive Gauss
curvature.

The first part is clear from the definition. When � has
positive Gauss curvature, we can use Weyl’s isometric
embedding theorem to embed � into a flat space slice R3

on which the time function in R3;1 is a constant. Thus, the
admissible set is nonempty by Remark 1. This completes
the proof of Theorem 3.

Suppose the infimum is achieved by an admissible pair
(i, t�0), the quasilocal energy-momentum four vector is

defined as mð�Þt�0 where mð�Þ is the quasilocal mass of

�. Therefore, Theorem 3 implies the quasilocal energy-
momentum four vector is always future pointing and non-
spacelike whenever it is defined.

Properties of the new quasilocal mass.—Expression (5)
contains the desired correction term; so the examples of
surfaces in R3;1 found in [12] have zero quasilocal mass.
The new quasilocal mass given in the previous section has
the following properties: (i) Suppose � is a spacelike two
surface which bounds a spacelike hypersurface � in a

spacetime M. The quasilocal mass is defined when the
mean curvature vector of � in M is spacelike and the
definition is independent of the choice of �. If M satisfies
the dominant energy condition and � has positive intrinsic
curvature, then the quasilocal mass is non-negative. More
generally, this holds if the set of admissible pairs for � is
nonempty. (ii) Any spacelike two surface in R3;1 with
convex shadow in a time-direction (see Definition 1) has
zero quasilocal mass. (iii) The small sphere limits of the
quasilocal mass recover the matter energy-momentum
tensor in the presence of matter and the Bel-Robinson
tensor in vacuo, and the large sphere limits approach the
ADM mass in the asymptotically flat case and the Bondi
mass in the asymptotically null case.
We remark that the admissible pairs form an open subset

of the set of functions � on � that satisfies (7). The
condition that the admissible set is nonempty in Theorem
3 is a very mild assumption, and the quasilocal mass should
be positive regardless of the sign of the intrinsic curvature
of �. The Euler-Lagrange equation for the energy mini-
mizing isometric embedding into R3;1 is derived in [16].
When a � in spacetime is given, we can solve for this
equation and define the quasilocal energy-momentum four
vector. The monotonicity property of our mass will be
discussed in a forthcoming paper.
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